Skip to main content

Vascular Targets for Ischemic Stroke Treatment

  • Chapter
  • First Online:
Translational Stroke Research

Abstract

The vast majority of studies on stroke therapy have focused on protecting the neuron from hypoxic/ischemic injury. While undoubtedly important, stroke is a vascular disorder affecting not only neurons, but numerous other cell types in the brain including astrocytes, microglia, and vascular cells (endothelium and smooth muscle). In fact, the only effective treatment for ischemic stroke is a vascular one—dissolution of the clot with tissue plasminogen activator and rapid recanalization of an occluded vessel. The failure of every neuroprotective agent to make it into clinical trials highlights the complexity of ischemic stroke pathophysiology that involves inflammation, oxidative stress, and both macro- and micro-vascular dysregulation that causes brain injury itself and exacerbates the primary insult (i.e., secondary brain injury). The vasculature in the brain has a central role in defining stroke injury since the core infarction is dependent on the depth and duration of ischemia. In addition, any neuroprotective therapy for stroke depends on a patent and functional vasculature, further highlighting the importance of vascular protection as an important therapeutic approach to limiting stroke damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishigaya K, Yoshida Y, Sasuga M, Nukui H, Ooneda G. Effect of recirculation on exacerbation of ischemic vascular lesions in rat brain. Stroke. 1991;22(5):635–42.

    Article  PubMed  CAS  Google Scholar 

  2. Cipolla MJ, McCall AL, Lessov N, Porter JM. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 1997;28(1):176–80.

    Article  PubMed  CAS  Google Scholar 

  3. Kagstrom E, Smith ML, Siesjo BK. Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1983;3(2):170–82.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi A, Park HK, Melgar MA, Alcocer L, Pinto J, Lenzi T, et al. Cerebral cortex blood flow and vascular smooth muscle contractility in a rat model of ischemia: a correlative laser Doppler flowmetric and scanning electron microscopic study. Acta Neuropathol. 1997;93(4):354–68.

    Article  PubMed  CAS  Google Scholar 

  5. Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanisms of damage and treatment. J Neurosurg. 1992;77(3):337–54.

    Article  PubMed  CAS  Google Scholar 

  6. Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg. 1992;77(2):169–84.

    Article  PubMed  CAS  Google Scholar 

  7. Tasdemiroglu E, Macfarlane R, Wei EP, Kontos HA, Moskowitz MA. Pial vessel caliber and cerebral blood flow become dissociated during ischemia-reperfusion in cats. Am J Physiol. 1992;263(2 Pt 2):H533–6.

    PubMed  CAS  Google Scholar 

  8. Cipolla MJ, Bullinger LV. Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation. 2008;15(6):495–501.

    Article  PubMed  CAS  Google Scholar 

  9. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26(7–8):1057–83.

    PubMed  Google Scholar 

  10. Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84.

    Article  PubMed  Google Scholar 

  11. Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55(11):1475–82.

    Article  PubMed  CAS  Google Scholar 

  12. Wang CX, Todd KG, Yang Y, Gordon T, Shuaib A. Patency of cerebral microvessels after focal embolic stroke in the rat. J Cereb Blood Flow Metab. 2001;21(4):413–21.

    Article  PubMed  CAS  Google Scholar 

  13. Santa N, Kitazono T, Ago T, Ooboshi H, Kamouchi M, Wakisaka M, et al. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo. Stroke. 2003;34(5):1276–80.

    Article  PubMed  Google Scholar 

  14. Hoehn-Berlage M, Norris DG, Kohno K, Mies G, Leibfritz D, Hossmann KA. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab. 1995;15(6):1002–11.

    Article  PubMed  CAS  Google Scholar 

  15. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.

    Article  PubMed  CAS  Google Scholar 

  16. Symon L, Branston NM, Strong AJ, Hope TD. The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol Suppl (R Coll Pathol). 1977;11:149–54.

    Article  CAS  Google Scholar 

  17. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci. 1987;14(4):557–9.

    PubMed  CAS  Google Scholar 

  18. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.

    Article  PubMed  CAS  Google Scholar 

  19. Chan SL, Cipolla MJ. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-{gamma}. FASEB J. 2011;25(9):3229–39. doi:10.1096.

    Article  PubMed  CAS  Google Scholar 

  20. Rennels ML, Nelson E. Capillary innervation in the mammalian central nervous system: an electron microscopic demonstration. Am J Anat. 1975;144(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  21. Cohen Z, Bonvento G, Lacombe P, Hamel E. Serotonin in the regulation of brain microcirculation. Prog Neurobiol. 1996;50(4):335–62.

    Article  PubMed  CAS  Google Scholar 

  22. Cipolla MJ, Li R, Vitullo L. Perivascular innervation of penetrating brain parenchymal arterioles. J Cardiovasc Pharmacol. 2004;44(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  23. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA. 2007;104(1):365–70.

    Article  PubMed  CAS  Google Scholar 

  24. You J, Johnson TD, Marrelli SP, Bryan Jr RM. Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. Am J Physiol. 1999;277(3 Pt 2):H893–900.

    PubMed  CAS  Google Scholar 

  25. Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA. SKCa and IKCa channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009;40(4):1451–7.

    Article  PubMed  Google Scholar 

  26. Shih AY, Friedman B, Drew PJ, Tsai PS, Lyden PD, Kleinfeld D. Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J Cereb Blood Flow Metab. 2009;29(4):738–51.

    Article  PubMed  Google Scholar 

  27. Cipolla MJ. Stroke and the blood–brain interface. In: Dermietzel R, Spray D, Nedergaard M, editors. Blood–brain barrier interfaces. Weinheim: Wiley; 2006.

    Google Scholar 

  28. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med. 2006;354(6):553–5.

    Article  PubMed  Google Scholar 

  29. Wang CX, Shuaib A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol. 2007;83(3):140–8.

    Article  PubMed  CAS  Google Scholar 

  30. del Zoppo GJ. Virchow’s triad: the vascular basis of cerebral injury. Rev Neurol Dis. 2008;5 Suppl 1:S12–21.

    PubMed  Google Scholar 

  31. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23(8):879–94.

    Article  PubMed  Google Scholar 

  32. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.

    Article  PubMed  CAS  Google Scholar 

  33. Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun. 2010;24(5):708–23.

    Article  PubMed  CAS  Google Scholar 

  34. Wang CX, Shuaib A. Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol. 2002;67(2):161–72.

    Article  PubMed  CAS  Google Scholar 

  35. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78(6):539–52.

    Article  PubMed  CAS  Google Scholar 

  36. Peters K, Unger RE, Brunner J, Kirkpatrick CJ. Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res. 2003;60(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  37. Ahmad M, Graham SH. Inflammation after stroke: mechanisms and therapeutic approaches. Transl Stroke Res. 2010;1(2):74–84.

    Article  PubMed  CAS  Google Scholar 

  38. Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.

    Article  PubMed  CAS  Google Scholar 

  39. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med. 2002;8(12):1363–8.

    Article  PubMed  CAS  Google Scholar 

  40. Serena J, Blanco M, Castellanos M, Silva Y, Vivancos J, Moro MA, et al. The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke. 2005;36(9):1921–6.

    Article  PubMed  CAS  Google Scholar 

  41. Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus. 2007;22(5):E2.

    Article  PubMed  Google Scholar 

  42. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12(4):433–40.

    Article  PubMed  CAS  Google Scholar 

  43. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.

    PubMed  CAS  Google Scholar 

  44. Shapiro HM, Stromberg DD, Lee DR, Wiederhielm CA. Dynamic pressures in the pial arterial microcirculation. Am J Physiol. 1971;221(1):279–83.

    PubMed  CAS  Google Scholar 

  45. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66(1):8–17.

    Article  PubMed  CAS  Google Scholar 

  46. Mellander S. Functional aspects of myogenic vascular control. J Hypertens Suppl. 1989;7(4):S21–30; discussion S31.

    Google Scholar 

  47. Johansson B. Myogenic tone and reactivity: definitions based on muscle physiology. J Hypertens Suppl. 1989;7(4):S5–8; discussion S9.

    Google Scholar 

  48. Faraci FM, Baumbach GL, Heistad DD. Myogenic mechanisms in the cerebral circulation. J Hypertens Suppl. 1989;7(4):S61–4; discussion S65.

    Google Scholar 

  49. Osol G, Brekke JF, McElroy-Yaggy K, Gokina NI. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002;283(6):H2260–7.

    PubMed  CAS  Google Scholar 

  50. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson Jr JL. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.

    PubMed  CAS  Google Scholar 

  51. Phillips SJ, Whisnant JP. Hypertension and the brain. The national high blood pressure education program. Arch Intern Med. 1992;152(5):938–45.

    Article  PubMed  CAS  Google Scholar 

  52. Olsen TS, Larsen B, Skriver EB, Herning M, Enevoldsen E, Lassen NA. Focal cerebral hyperemia in acute stroke. Incidence, pathophysiology and clinical significance. Stroke. 1981;12(5):598–607.

    Article  PubMed  CAS  Google Scholar 

  53. Lassen NA, Agnoli A. The upper limit of autoregulation of cerebral blood flow—on the pathogenesis of hypertensive encepholopathy. Scand J Clin Lab Invest. 1972;30(2):113–6.

    Article  PubMed  CAS  Google Scholar 

  54. Euser AG, Cipolla MJ. Cerebral blood flow autoregulation and edema formation during pregnancy in anesthetized rats. Hypertension. 2007;49(2):334–40.

    Article  PubMed  CAS  Google Scholar 

  55. Johansson B, Li CL, Olsson Y, Klatzo I. The effect of acute arterial hypertension on the blood–brain barrier to protein tracers. Acta Neuropathol. 1970;16(2):117–24.

    Article  PubMed  CAS  Google Scholar 

  56. Gourley JK, Heistad DD. Characteristics of reactive hyperemia in the cerebral circulation. Am J Physiol. 1984;246(1 Pt 2):H52–8.

    PubMed  CAS  Google Scholar 

  57. Sundt Jr TM, Waltz AG. Cerebral ischemia and reactive hyperemia. Studies of cortical blood flow and microcirculation before, during, and after temporary occlusion of middle cerebral artery of squirrel monkeys. Circ Res. 1971;28(4):426–33.

    Article  PubMed  Google Scholar 

  58. Hayakawa T, Waltz AG, Hansen T. Relationships among intracranial pressure, blood pressure, and superficial cerebral vasculature after experimental occlusion of one middle cerebral artery. Stroke. 1977;8(4):426–32.

    Article  PubMed  CAS  Google Scholar 

  59. Skinhoj E, Hoedt-Rasmussen K, Paulson OB, Lassen NA. Regional cerebral blood flow and its autoregulation in patients with transient focal cerebral ischemic attacks. Neurology. 1970;20(5):485–93.

    Article  PubMed  CAS  Google Scholar 

  60. Macfarlane R, Moskowitz MA, Sakas DE, Tasdemiroglu E, Wei EP, Kontos HA. The role of neuroeffector mechanisms in cerebral hyperperfusion syndromes. J Neurosurg. 1991;75(6):845–55.

    Article  PubMed  CAS  Google Scholar 

  61. Cipolla MJ, Lessov N, Hammer ES, Curry AB. Threshold duration of ischemia for myogenic tone in middle cerebral arteries: effect on vascular smooth muscle actin. Stroke. 2001;32(7):1658–64.

    Article  PubMed  CAS  Google Scholar 

  62. Cipolla MJ, Curry AB. Middle cerebral artery function after stroke: the threshold duration of reperfusion for myogenic activity. Stroke. 2002;33(8):2094–9.

    Article  PubMed  Google Scholar 

  63. Kleindorfer D, Xu Y, Moomaw CJ, Khatri P, Adeoye O, Hornung R. US geographic distribution of rt-PA utilization by hospital for acute ischemic stroke. Stroke. 2009;40(11):3580–4.

    Article  PubMed  Google Scholar 

  64. Koudstaal PJ, Stibbe J, Vermeulen M. Fatal ischaemic brain oedema after early thrombolysis with tissue plasminogen activator in acute stroke. BMJ. 1988;297(6663):1571–4.

    Article  PubMed  CAS  Google Scholar 

  65. Cipolla MJ, Lessov N, Clark WM, Haley Jr EC. Postischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator. Stroke. 2000;31(4):940–5.

    Article  PubMed  CAS  Google Scholar 

  66. Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet. 1966;2(7473):1113–5.

    Article  PubMed  CAS  Google Scholar 

  67. Yamaguchi T, Waltz AG, Okazaki H. Hyperemia and ischemia in experimental cerebral infarction: correlation of histopathology and regional blood flow. Neurology. 1971;21(6):565–78.

    Article  PubMed  CAS  Google Scholar 

  68. Olsen TS. Regional cerebral blood flow after occlusion of the middle cerebral artery. Acta Neurol Scand. 1986;73(4):321–37.

    Article  PubMed  CAS  Google Scholar 

  69. Cipolla MJ, Gokina NI, Osol G. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. FASEB J. 2002;16(1):72–6.

    Article  PubMed  CAS  Google Scholar 

  70. Cipolla MJ, Osol G. Vascular smooth muscle actin cytoskeleton in cerebral artery forced dilatation. Stroke. 1998;29(6):1223–8.

    Article  PubMed  CAS  Google Scholar 

  71. Banan A, Fields JZ, Zhang Y, Keshavarzian A. iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers. Am J Physiol Gastrointest Liver Physiol. 2001;280(6):G1234–46.

    PubMed  CAS  Google Scholar 

  72. Schwartz N, Hosford M, Sandoval RM, Wagner MC, Atkinson SJ, Bamburg J, et al. Ischemia activates actin depolymerizing factor: role in proximal tubule microvillar actin alterations. Am J Physiol. 1999;276(4 Pt 2):F544–51.

    PubMed  CAS  Google Scholar 

  73. Hsu SS, Meno JR, Gronka R, Kushmerick M, Winn HR. Moderate hyperglycemia affects ischemic brain ATP levels but not intracellular pH. Am J Physiol. 1994;266(1 Pt 2):H258–62.

    PubMed  CAS  Google Scholar 

  74. Gisselsson LL, Matus A, Wieloch T. Actin redistribution underlies the sparing effect of mild hypothermia on dendritic spine morphology after in vitro ischemia. J Cereb Blood Flow Metab. 2005;25(10):1346–55.

    Article  PubMed  Google Scholar 

  75. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    Article  PubMed  CAS  Google Scholar 

  76. Bemeur C, Ste-Marie L, Montgomery J. Increased oxidative stress during hyperglycemic cerebral ischemia. Neurochem Int. 2007;50(7–8):890–904.

    Article  PubMed  CAS  Google Scholar 

  77. Maneen MJ, Hannah R, Vitullo L, DeLance N, Cipolla MJ. Peroxynitrite diminishes myogenic activity and is associated with decreased vascular smooth muscle F-actin in rat posterior cerebral arteries. Stroke. 2006;37(3):894–9.

    Article  PubMed  CAS  Google Scholar 

  78. Maneen MJ, Cipolla MJ. Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin. Am J Physiol Heart Circ Physiol. 2007;292(2):H1042–50.

    Article  PubMed  CAS  Google Scholar 

  79. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20(3):132–9.

    Article  PubMed  CAS  Google Scholar 

  80. Wei EP, Kontos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol. 1996;271(3 Pt 2):H1262–6.

    PubMed  CAS  Google Scholar 

  81. Li J, Li W, Altura BT, Altura BM. Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action. Toxicol Appl Pharmacol. 2005;209(3):269–76.

    Article  PubMed  CAS  Google Scholar 

  82. Cohen RA, Adachi T. Nitric-oxide-induced vasodilatation: regulation by physiologic s-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med. 2006;16(4):109–14.

    Article  PubMed  CAS  Google Scholar 

  83. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65.

    Article  PubMed  CAS  Google Scholar 

  84. Shreeniwas R, Koga S, Karakurum M, Pinsky D, Kaiser E, Brett J, et al. Hypoxia-mediated induction of endothelial cell interleukin-1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest. 1992;90(6):2333–9.

    Article  PubMed  CAS  Google Scholar 

  85. Andresen J, Shafi NI, Bryan Jr RM. Endothelial influences on cerebrovascular tone. J Appl Physiol. 2006;100(1):318–27.

    Article  PubMed  CAS  Google Scholar 

  86. Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300(5):H1566–82.

    Article  PubMed  CAS  Google Scholar 

  87. Faraci FM, Brian Jr JE. Nitric oxide and the cerebral circulation. Stroke. 1994;25(3):692–703.

    Article  PubMed  CAS  Google Scholar 

  88. Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol. 2003;285(4):H1590–9.

    PubMed  CAS  Google Scholar 

  89. McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ. Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke. 2006;37(5):1277–82.

    Article  PubMed  CAS  Google Scholar 

  90. Dora KA, Gallagher NT, McNeish A, Garland CJ. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res. 2008;102(10):1247–55.

    Article  PubMed  CAS  Google Scholar 

  91. Zygmunt PM, Hogestatt ED. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br J Pharmacol. 1996;117(7):1600–6.

    Article  PubMed  CAS  Google Scholar 

  92. Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, et al. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res. 2006;99(5):537–44.

    Article  PubMed  CAS  Google Scholar 

  93. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda). 2006;21:69–78.

    Article  CAS  Google Scholar 

  94. Dalkara T, Moskowitz MA. The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia. Brain Pathol. 1994;4(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  95. Lo EH, Hara H, Rogowska J, Trocha M, Pierce AR, Huang PL, et al. Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke. 1996;27(8):1381–5.

    Article  PubMed  CAS  Google Scholar 

  96. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine. J Cereb Blood Flow Metab. 1996;16(5):981–7.

    Article  PubMed  CAS  Google Scholar 

  97. Panahian N, Yoshida T, Huang PL, Hedley-Whyte ET, Dalkara T, Fishman MC, et al. Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience. 1996;72(2):343–54.

    Article  PubMed  CAS  Google Scholar 

  98. Zhang ZG, Chopp M, Bailey F, Malinski T. Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J Neurol Sci. 1995;128(1):22–7.

    Article  PubMed  CAS  Google Scholar 

  99. Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 1993;16(6):206–14.

    Article  PubMed  CAS  Google Scholar 

  100. Kanwar S, Kubes P. Nitric oxide is an antiadhesive molecule for leukocytes. New Horiz. 1995;3(1):93–104.

    PubMed  CAS  Google Scholar 

  101. Szabo C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock. 1996;6(2):79–88.

    Article  PubMed  CAS  Google Scholar 

  102. Heinzel B, John M, Klatt P, Bohme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992;281(Pt 3):627–30.

    PubMed  CAS  Google Scholar 

  103. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992;267(34):24173–6.

    PubMed  CAS  Google Scholar 

  104. Veltkamp R, Rajapakse N, Robins G, Puskar M, Shimizu K, Busija D. Transient focal ischemia increases endothelial nitric oxide synthase in cerebral blood vessels. Stroke. 2002;33(11):2704–10.

    Article  PubMed  CAS  Google Scholar 

  105. Marrelli SP, Khorovets A, Johnson TD, Childres WF, Bryan Jr RM. P2 purinoceptor-mediated dilations in the rat middle cerebral artery after ischemia-reperfusion. Am J Physiol. 1999;276(1 Pt 2):H33–41.

    PubMed  CAS  Google Scholar 

  106. Mayhan WG, Amundsen SM, Faraci FM, Heistad DD. Responses of cerebral arteries after ischemia and reperfusion in cats. Am J Physiol. 1988;255(4 Pt 2):H879–84.

    PubMed  CAS  Google Scholar 

  107. Rosenblum WI. Selective impairment of response to acetylcholine after ischemia/reperfusion in mice. Stroke. 1997;28(2):448–51; discussion 451–2.

    Google Scholar 

  108. Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA. Oxygen radicals in cerebral ischemia. Am J Physiol. 1992;263(5 Pt 2):H1356–62.

    PubMed  CAS  Google Scholar 

  109. Tayeh MA, Marletta MA. Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989;264(33):19654–8.

    PubMed  CAS  Google Scholar 

  110. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998;273(40):25804–8.

    Article  PubMed  CAS  Google Scholar 

  111. Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol. 2001;281(3):H981–6.

    PubMed  CAS  Google Scholar 

  112. Fukai T. Endothelial GTPCH in eNOS uncoupling and atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27(7):1493–5.

    Article  PubMed  CAS  Google Scholar 

  113. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.

    PubMed  CAS  Google Scholar 

  114. Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol. 2003;140(4):701–6.

    Article  PubMed  CAS  Google Scholar 

  115. Beckman JS, Chen J, Crow JP, Ye YZ. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res. 1994;103:371–80.

    Article  PubMed  CAS  Google Scholar 

  116. Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun. 1999;263(3):681–4.

    Article  PubMed  CAS  Google Scholar 

  117. Bauer PM, Fulton D, Boo YC, Sorescu GP, Kemp BE, Jo H, et al. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J Biol Chem. 2003;278(17):14841–9.

    Article  PubMed  CAS  Google Scholar 

  118. Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res. 2007;75(2):247–60.

    Article  PubMed  CAS  Google Scholar 

  119. Hashiguchi A, Yano S, Morioka M, Hamada J, Kochi M, Fukunaga K. Dephosphorylation of eNOS on Thr495 after transient forebrain ischemia in gerbil hippocampus. Brain Res Mol Brain Res. 2005;133(2):317–9.

    Article  PubMed  CAS  Google Scholar 

  120. Chen CA, Druhan LJ, Varadharaj S, Chen YR, Zweier JL. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem. 2008;283(40):27038–47.

    Article  PubMed  CAS  Google Scholar 

  121. Luksha L, Nisell H, Luksha N, Kublickas M, Hultenby K, Kublickiene K. Endothelium-derived hyperpolarizing factor in preeclampsia: heterogeneous contribution, mechanisms, and morphological prerequisites. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R510–9.

    Article  PubMed  CAS  Google Scholar 

  122. McNeish AJ, Dora KA, Garland CJ. Possible role for K+ in endothelium-derived hyperpola-rizing factor-linked dilatation in rat middle cerebral artery. Stroke. 2005;36(7):1526–32.

    Article  PubMed  CAS  Google Scholar 

  123. Kitazono T, Faraci FM, Taguchi H, Heistad DD. Role of potassium channels in cerebral blood vessels. Stroke. 1995;26(9):1713–23.

    Article  PubMed  CAS  Google Scholar 

  124. Park SL, Lee DH, Yoo SE, Jung YS. The effect of Na(+)/H(+) exchanger-1 inhibition by sabiporide on blood–brain barrier dysfunction after ischemia/hypoxia in vivo and in vitro. Brain Res. 2010;1366:189–96.

    Article  PubMed  CAS  Google Scholar 

  125. Brown RC, Davis TP. Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells. Biochem Biophys Res Commun. 2005;327(4):1114–23.

    Article  PubMed  CAS  Google Scholar 

  126. Yun HY, Dawson VL, Dawson TM. Neurobiology of nitric oxide. Crit Rev Neurobiol. 1996;10(3–4):291–316.

    Article  PubMed  CAS  Google Scholar 

  127. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol. 1995;57:683–706.

    Article  PubMed  CAS  Google Scholar 

  128. Iadecola C, Zhang F, Casey R, Clark HB, Ross ME. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke. 1996;27(8):1373–80.

    Article  PubMed  CAS  Google Scholar 

  129. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994;46(3):325–415.

    PubMed  CAS  Google Scholar 

  130. Ehrenreich H, Schilling L. New developments in the understanding of cerebral vasoregulation and vasospasm: the endothelin-nitric oxide network. Cleve Clin J Med. 1995;62(2):105–16.

    PubMed  CAS  Google Scholar 

  131. Ziv I, Fleminger G, Djaldetti R, Achiron A, Melamed E, Sokolovsky M. Increased plasma endothelin-1 in acute ischemic stroke. Stroke. 1992;23(7):1014–6.

    Article  PubMed  CAS  Google Scholar 

  132. Barone FC, Globus MY, Price WJ, White RF, Storer BL, Feuerstein GZ, et al. Endothelin levels increase in rat focal and global ischemia. J Cereb Blood Flow Metab. 1994;14(2):337–42.

    Article  PubMed  CAS  Google Scholar 

  133. Bian LG, Zhang TX, Zhao WG, Shen JK, Yang GY. Increased endothelin-1 in the rabbit model of middle cerebral artery occlusion. Neurosci Lett. 1994;174(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  134. D’Orleans-Juste P, Claing A, Warner TD, Yano M, Telemaque S. Characterization of receptors for endothelins in the perfused arterial and venous mesenteric vasculatures of the rat. Br J Pharmacol. 1993;110(2):687–92.

    Article  PubMed  Google Scholar 

  135. Barone FC, Willette RN, Yue TL, Feurestein G. Therapeutic effects of endothelin receptor antagonists in stroke. Neurol Res. 1995;17(4):259–64.

    PubMed  CAS  Google Scholar 

  136. Dawson DA, Sugano H, McCarron RM, Hallenbeck JM, Spatz M. Endothelin receptor antagonist preserves microvascular perfusion and reduces ischemic brain damage following permanent focal ischemia. Neurochem Res. 1999;24(12):1499–505.

    Article  PubMed  CAS  Google Scholar 

  137. Matsuo Y, Mihara S, Ninomiya M, Fujimoto M. Protective effect of endothelin type A receptor antagonist on brain edema and injury after transient middle cerebral artery occlusion in rats. Stroke. 2001;32(9):2143–8.

    Article  PubMed  CAS  Google Scholar 

  138. Leung JW, Chung SS, Chung SK. Endothelial endothelin-1 over-expression using receptor tyrosine kinase tie-1 promoter leads to more severe vascular permeability and blood brain barrier breakdown after transient middle cerebral artery occlusion. Brain Res. 2009;1266:121–9.

    Article  PubMed  CAS  Google Scholar 

  139. Kawai N, McCarron RM, Spatz M. Endothelins stimulate sodium uptake into rat brain capillary endothelial cells through endothelin A-like receptors. Neurosci Lett. 1995;190(2):85–8.

    Article  PubMed  CAS  Google Scholar 

  140. Stanimirovic DB, Bertrand N, McCarron R, Uematsu S, Spatz M. Arachidonic acid release and permeability changes induced by endothelins in human cerebromicrovascular endothelium. Acta Neurochir Suppl (Wien). 1994;60:71–5.

    CAS  Google Scholar 

  141. Williams LS, Rotich J, Qi R, Fineberg N, Espay A, Bruno A, et al. Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke. Neurology. 2002;59(1):67–71.

    Article  PubMed  CAS  Google Scholar 

  142. Matz K, Keresztes K, Tatschl C, Nowotny M, Dachenhausenm A, Brainin M, et al. Disorders of glucose metabolism in acute stroke patients: an underrecognized problem. Diabetes Care. 2006;29(4):792–7.

    Article  PubMed  CAS  Google Scholar 

  143. Kernan WN, Viscoli CM, Inzucchi SE, Brass LM, Bravata DM, Shulman GI, et al. Prevalence of abnormal glucose tolerance following a transient ischemic attack or ischemic stroke. Arch Intern Med. 2005;165(2):227–33.

    Article  PubMed  Google Scholar 

  144. Gray CS, Scott JF, French JM, Alberti KG, O’Connell JE. Prevalence and prediction of unrecognised diabetes mellitus and impaired glucose tolerance following acute stroke. Age Ageing. 2004;33(1):71–7.

    Article  PubMed  Google Scholar 

  145. Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology. 1990;52(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  146. Wang YY, Lin SY, Chuang YH, Chen CJ, Tung KC, Sheu WH. Adipose proinflammatory cytokine expression through sympathetic system is associated with hyperglycemia and insulin resistance in a rat ischemic stroke model. Am J Physiol Endocrinol Metab. 2011;300(1):E155–63.

    Article  PubMed  CAS  Google Scholar 

  147. Pulsinelli WA, Waldman S, Rawlinson D, Plum F. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology. 1982;32(11):1239–46.

    Article  PubMed  CAS  Google Scholar 

  148. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 2001;32(10):2426–32.

    Article  PubMed  CAS  Google Scholar 

  149. Quast MJ, Wei J, Huang NC, Brunder DG, Sell SL, Gonzalez JM, et al. Perfusion deficit parallels exacerbation of cerebral ischemia/reperfusion injury in hyperglycemic rats. J Cereb Blood Flow Metab. 1997;17(5):553–9.

    Article  PubMed  CAS  Google Scholar 

  150. Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab. 2007;27(3):435–51.

    Article  PubMed  CAS  Google Scholar 

  151. Woo E, Ma JT, Robinson JD, Yu YL. Hyperglycemia is a stress response in acute stroke. Stroke. 1988;19(11):1359–64.

    Article  PubMed  CAS  Google Scholar 

  152. Murros K, Fogelholm R, Kettunen S, Vuorela AL, Valve J. Blood glucose, glycosylated haemoglobin, and outcome of ischemic brain infarction. J Neurol Sci. 1992;111(1):59–64.

    Article  PubMed  CAS  Google Scholar 

  153. Hamilton MG, Tranmer BI, Auer RN. Insulin reduction of cerebral infarction due to transient focal ischemia. J Neurosurg. 1995;82(2):262–8.

    Article  PubMed  CAS  Google Scholar 

  154. Lawrence MS, Sun GH, Kunis DM, Saydam TC, Dash R, Ho DY, et al. Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke. J Cereb Blood Flow Metab. 1996;16(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  155. Bruno A, Liebeskind D, Hao Q, Raychev R. Diabetes mellitus, acute hyperglycemia, and ischemic Stroke. Curr Treat Options Neurol. 2010;12(6):492–503.

    Article  PubMed  Google Scholar 

  156. McCormick MT, Muir KW, Gray CS, Walters MR. Management of hyperglycemia in acute stroke: how, when, and for whom? Stroke. 2008;39(7):2177–85.

    Article  PubMed  Google Scholar 

  157. McCormick M, Hadley D, McLean JR, Macfarlane JA, Condon B, Muir KW. Randomized, controlled trial of insulin for acute poststroke hyperglycemia. Ann Neurol. 2010;67(5):570–8.

    Article  PubMed  CAS  Google Scholar 

  158. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  PubMed  CAS  Google Scholar 

  159. Mandarino LJ, Finlayson J, Hassell JR. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthalmol Vis Sci. 1994;35(3):964–72.

    PubMed  CAS  Google Scholar 

  160. Kawai N, Keep RF, Betz AL. Hyperglycemia and the vascular effects of cerebral ischemia. Stroke. 1997;28(1):149–54.

    Article  PubMed  CAS  Google Scholar 

  161. Venables GS, Miller SA, Gibson G, Hardy JA, Strong AJ. The effects of hyperglycaemia on changes during reperfusion following focal cerebral ischaemia in the cat. J Neurol Neurosurg Psychiatry. 1985;48(7):663–9.

    Article  PubMed  CAS  Google Scholar 

  162. Cipolla MJ, Godfrey JA. Effect of hyperglycemia on brain penetrating arterioles and cerebral blood flow before and after ischemia/reperfusion. Transl Stroke Res. 2010;1(2):127–34.

    Article  PubMed  Google Scholar 

  163. Gisselsson L, Smith ML, Siesjo BK. Hyperglycemia and focal brain ischemia. J Cereb Blood Flow Metab. 1999;19(3):288–97.

    Article  PubMed  CAS  Google Scholar 

  164. Berger L, Hakim AM. The association of hyperglycemia with cerebral edema in stroke. Stroke. 1986;17(5):865–71.

    Article  PubMed  CAS  Google Scholar 

  165. Dietrich WD, Alonso O, Busto R. Moderate hyperglycemia worsens acute blood–brain barrier injury after forebrain ischemia in rats. Stroke. 1993;24(1):111–6.

    Article  PubMed  CAS  Google Scholar 

  166. Cipolla MJ, Huang Q, Sweet JG. Inhibition of PKCβ prevents increased blood–brain barrier permeability and edema formation during hyperglycemic stroke. Stroke. 2011;42(11):3252–7.

    Article  PubMed  CAS  Google Scholar 

  167. Ennis SR, Keep RF. Effect of sustained-mild and transient-severe hyperglycemia on ischemia-induced blood–brain barrier opening. J Cereb Blood Flow Metab. 2007;27(9):1573–82.

    Article  PubMed  CAS  Google Scholar 

  168. Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke. 2007;38(3):1044–9.

    Article  PubMed  CAS  Google Scholar 

  169. Clarke H, Marano CW, Peralta Soler A, Mullin JM. Modification of tight junction function by protein kinase C isoforms. Adv Drug Deliv Rev. 2000;41(3):283–301.

    Article  PubMed  CAS  Google Scholar 

  170. Yuan Y, Huang Q, Wu HM. Myosin light chain phosphorylation: modulation of basal and agonist-stimulated venular permeability. Am J Physiol. 1997;272(3 Pt 2):H1437–43.

    PubMed  CAS  Google Scholar 

  171. Feekes JA, Cassell MD. The vascular supply of the functional compartments of the human striatum. Brain. 2006;129(Pt 8):2189–201.

    Article  PubMed  Google Scholar 

  172. Ginsberg MD, Prado R, Dietrich WD, Busto R, Watson BD. Hyperglycemia reduces the extent of cerebral infarction in rats. Stroke. 1987;18(3):570–4.

    Article  PubMed  CAS  Google Scholar 

  173. Prado R, Ginsberg MD, Dietrich WD, Watson BD, Busto R. Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories. J Cereb Blood Flow Metab. 1988;8(2):186–92.

    Article  PubMed  CAS  Google Scholar 

  174. Bruno A, Biller J, Adams Jr HP, Clarke WR, Woolson RF, Williams LS, et al. Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Neurology. 1999;52(2):280–4.

    Article  PubMed  CAS  Google Scholar 

  175. Uyttenboogaart M, Koch MW, Stewart RE, Vroomen PC, Luijckx GJ, De Keyser J. Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke. Brain. 2007;130(Pt 6):1626–30.

    Article  PubMed  Google Scholar 

  176. Sulter G, Elting JW, De Keyser J. Increased serum neuron specific enolase concentrations in patients with hyperglycemic cortical ischemic stroke. Neurosci Lett. 1998;253(1):71–3.

    Article  PubMed  CAS  Google Scholar 

  177. Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20(3):334–42.

    Article  PubMed  CAS  Google Scholar 

  178. Emsley HC, Smith CJ, Tyrrell PJ, Hopkins SJ. Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit Care. 2008;9(1):125–38.

    Article  PubMed  CAS  Google Scholar 

  179. Banwell V, Sena ES, Macleod MR. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J Stroke Cerebrovasc Dis. 2009;18(4):269–76.

    Article  PubMed  Google Scholar 

  180. Spera PA, Ellison JA, Feuerstein GZ, Barone FC. IL-10 reduces rat brain injury following focal stroke. Neurosci Lett. 1998;251(3):189–92.

    Article  PubMed  CAS  Google Scholar 

  181. Elkind MS. Impact of innate inflammation in population studies. Ann N Y Acad Sci. 2010;1207:97–106.

    Article  PubMed  Google Scholar 

  182. Fassbender K, Rossol S, Kammer T, Daffertshofer M, Wirth S, Dollman M, et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci. 1994;122(2):135–9.

    Article  PubMed  CAS  Google Scholar 

  183. Zaremba J, Skrobanski P, Losy J. Tumour necrosis factor-alpha is increased in the cerebrospinal fluid and serum of ischaemic stroke patients and correlates with the volume of evolving brain infarct. Biomed Pharmacother. 2001;55(5):258–63.

    Article  PubMed  CAS  Google Scholar 

  184. Rodriguez-Gonzalez R, Sobrino T, Rodriguez-Yanez M, Millan M, Brea D, Miranda E, et al. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke. J Transl Med. 2011;9(1):58.

    Article  PubMed  CAS  Google Scholar 

  185. Iversen PO, Nicolaysen A, Kvernebo K, Benestad HB, Nicolaysen G. Human cytokines modulate arterial vascular tone via endothelial receptors. Pflugers Arch. 1999;439(1–2):93–100.

    Article  PubMed  CAS  Google Scholar 

  186. van der Poll T, Lowry SF. Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense? Shock. 1995;3(1):1–12.

    PubMed  Google Scholar 

  187. Vila E, Salaices M. Cytokines and vascular reactivity in resistance arteries. Am J Physiol Heart Circ Physiol. 2005;288(3):H1016–21.

    Article  PubMed  CAS  Google Scholar 

  188. Tureen J. Effect of recombinant human tumor necrosis factor-alpha on cerebral oxygen uptake, cerebrospinal fluid lactate, and cerebral blood flow in the rabbit: role of nitric oxide. J Clin Invest. 1995;95(3):1086–91.

    Article  PubMed  CAS  Google Scholar 

  189. Cipolla MJ, Sweet JG, Gardner-Morse I. Effect of circulating factors on cerebral artery function during hyperglycemic stroke. FASEB J. 2011;25:1024–6.

    Google Scholar 

  190. Pretnar-Oblak J, Sabovic M, Pogacnik T, Sebestjen M, Zaletel M. Flow-mediated dilatation and intima-media thickness in patients with lacunar infarctions. Acta Neurol Scand. 2006;113(4):273–7.

    Article  PubMed  CAS  Google Scholar 

  191. Pretnar-Oblak J, Sabovic M, Sebestjen M, Pogacnik T, Zaletel M. Influence of atorvastatin treatment on l-arginine cerebrovascular reactivity and flow-mediated dilatation in patients with lacunar infarctions. Stroke. 2006;37(10):2540–5.

    Article  PubMed  CAS  Google Scholar 

  192. Pretnar-Oblak J, Zaletel M, Zvan B, Sabovic M, Pogacnik T. Cerebrovascular reactivity to l-arginine in patients with lacunar infarctions. Cerebrovasc Dis. 2006;21(3):180–6.

    Article  PubMed  CAS  Google Scholar 

  193. Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38(3):399–403.

    Article  PubMed  CAS  Google Scholar 

  194. Virdis A, Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens. 2003;12(2):181–7.

    Article  PubMed  CAS  Google Scholar 

  195. Bath P. High blood pressure as risk factor and prognostic predictor in acute ischaemic stroke: when and how to treat it? Cerebrovasc Dis. 2004;17 Suppl 1:51–7.

    Article  PubMed  CAS  Google Scholar 

  196. Parissis JT, Korovesis S, Giazitzoglou E, Kalivas P, Katritsis D. Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. Int J Cardiol. 2002;83(1):13–21.

    Article  PubMed  Google Scholar 

  197. Di Napoli M, Papa F. Association between blood pressure and C-reactive protein levels in acute ischemic stroke. Hypertension. 2003;42(6):1117–23.

    Article  PubMed  CAS  Google Scholar 

  198. Lin B, Ginsberg MD, Busto R, Li L. Hyperglycemia triggers massive neutrophil deposition in brain following transient ischemia in rats. Neurosci Lett. 2000;278(1–2):1–4.

    Article  PubMed  CAS  Google Scholar 

  199. Garg R, Chaudhuri A, Munschauer F, Dandona P. Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy. Stroke. 2006; 37(1):267–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the NIH, NINDS grants RO1 NS043316, RO1 NS 045940, The Neural Environment Cluster Supplement 3RO1 NS045940-06S1, ARRA Supplement 3RO1 NS045940-05S1, and NHLBI grant PO1 HL095488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn J. Cipolla PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palomares, S.M., Cipolla, M.J. (2012). Vascular Targets for Ischemic Stroke Treatment. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_1

Download citation

Publish with us

Policies and ethics