Skip to main content

Noise-Induced Structural Damage to the Cochlea

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 40))

Abstract

Noise-induced hearing loss (NIHL) is the most common cause of acquired hearing loss among persons younger than age 40. The major pathological basis of NIHL is mechanical stress to cochlear structures. During noise exposure, mechanical forces drive the basilar membrane to oscillate. Excessive motion of the basilar membrane causes a cascade of structural changes in cochlear sensory cells and their supporting cells, which, in turn, compromise cochlear function. Although acoustic overexposure affects both the peripheral and the central auditory systems, the peripheral organ is the primary target of acoustic exposure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrashkin, K. A., Izumikawa, M., Miyazawa, T., Wang, C. H., Crumling, M. A., Swiderski, D. L., Beyer, L. A., Gong, T. W., & Raphael, Y. (2006). The fate of outer hair cells after acoustic or ototoxic insults. Hearing Research, 218(1–2), 20–29.

    PubMed  Google Scholar 

  • Ahmad, M., Bohne, B. A., & Harding, G. W. (2003). An in vivo tracer study of noise-induced damage to the reticular lamina. Hearing Research, 175(1–2), 82–100.

    PubMed  Google Scholar 

  • Axelsson, A., & Dengerink, H. (1987). The effects of noise on histological measures of the cochlear vasculature and red blood cells: A review. Hearing Research, 31(2), 183–191.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A. (1976). Mechanisms of noise damage in the inner ear. In D. Henderson, R. P. Hamernik, D. S. Dosanjh, & J. H. Mills (Eds.), Effects of noise on hearing (pp. 41–68). New York: Raven Press.

    Google Scholar 

  • Bohne, B. A., & Clark, W. W. (1982). Growth of hearing loss and cochlear lesion with increasing duration of noise exposure. In R. Hamernik, D. Henderson & R. Salvi (Eds.), New perspectives on noise-induced hearing loss (pp. 283–302). New York: Raven Press.

    Google Scholar 

  • Bohne, B. A., & Harding, G. W. (2000). Degeneration in the cochlea after noise damage: Primary versus secondary events. American Journal of Otology, 21(4), 505–509.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A., & Rabbitt, K. D. (1983). Holes in the reticular lamina after noise exposure: Implication for continuing damage in the organ of Corti. Hearing Research, 11(1), 41–53.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A., Zahn, S. J., & Bozzay, D. G. (1985). Damage to the cochlea following interrupted exposure to low frequency noise. Annals of Otology, Rhinology, and Laryngology, 94(2 Pt 1), 122–128.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A., Yohman, L., & Gruner, M. M. (1987). Cochlear damage following interrupted exposure to high-frequency noise. Hearing Research, 29(2–3), 251–264.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A., Gruner, M. M., & Harding, G. W. (1990). Morphological correlates of aging in the chinchilla cochlea. Hearing Research, 48(1–2), 79–91.

    CAS  PubMed  Google Scholar 

  • Bohne, B. A., Harding, G. W., & Lee, S. C. (2007). Death pathways in noise-damaged outer hair cells. Hearing Research, 223(1–2), 61–70.

    PubMed  Google Scholar 

  • Borg, E., & Engström, B. (1983). Damage to sensory hairs of inner hair cells after exposure to noise in rabbits without outer hair cells. Hearing Research, 11(1), 1–6.

    CAS  PubMed  Google Scholar 

  • Borg, E., Canlon, B., & Engström, B. (1995). Noise-induced hearing loss. Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions. Scandanavian Audiology Supplementum, 40, 1–147.

    CAS  Google Scholar 

  • Canlon, B. (1987). Acoustic overstimulation alters the morphology of the tectorial membrane. Hearing Research, 30(2–3), 127–134.

    CAS  PubMed  Google Scholar 

  • Canlon, B. (1988). The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: Possible mechanisms underlying damage, recovery, and protection. Scandanavian Audiology Supplementum, 27, 1–45.

    CAS  Google Scholar 

  • Chen, G. D., McWilliams, M. L., & Fechter, L. D. (2000). Succinate dehydrogenase (SDH) activity in hair cells: A correlate for permanent threshold elevations. Hearing Resesarch, 145(1–2), 91–100.

    CAS  Google Scholar 

  • Cho, H., Sakamoto, H., Hachikawa, K., & Nakai, Y. (1991). Electron microscopic observation of communication between inner ear stereocilia under normal and noise stimulated conditions. Acta Oto-Laryngologica, 486(Supplementum), 13–18.

    CAS  Google Scholar 

  • Cho, Y., Gong, T. W., Kanicki, A., Altschuler, R. A., & Lomax, M. I. (2004). Noise overstimulation induces immediate early genes in the rat cochlea. Molecular Brain Research, 130(1–2), 134–148.

    CAS  PubMed  Google Scholar 

  • Clark, J. A., & Pickles, J. O. (1996). The effects of moderate and low levels of acoustic overstimulation on stereocilia and their tip links in the guinea pig. Hearing Research, 99(1–2), 119–128.

    CAS  PubMed  Google Scholar 

  • Cody, A. R., & Robertson, D. (1983). Variability of noise-induced damage in the guinea pig cochlea: Electrophysiological and morphological correlates after strictly controlled exposures. Hearing Research, 9(1), 55–70.

    CAS  PubMed  Google Scholar 

  • Coleman, J. W. (1976). Hair cell loss as a function of age in the normal cochlea of the guinea pig. Acta Oto-Laryngologica, 82(1–2), 33–40.

    CAS  PubMed  Google Scholar 

  • Cotanche, D. A. (1987a). Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 197–206.

    CAS  PubMed  Google Scholar 

  • Cotanche, D. A. (1987b). Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 181–195.

    CAS  PubMed  Google Scholar 

  • Dolan, T. R., Ades, H. W., Bredberg, G., & Neff, W. D. (1975). Inner ear damage and hearing loss after exposure to tones of high intensity. Acta Oto-Laryngologica, 80(5–6), 343–352.

    CAS  PubMed  Google Scholar 

  • Duvall, A. J., 3 rd, & Rhodes, V. T. (1967). Ultrastructure of the organ of Corti following intermixing of cochlear fluids. Annals of Otology, Rhinology, and Laryngology, 76(3), 688–708.

    PubMed  Google Scholar 

  • Duvall, A. J., 3 rd, Sutherland, C. R., & Rhodes, V. T. (1969). Ultrastructural changes in the cochlear duct following mechanical disruption of the organ of Corti., Annals of Otology, Rhinology, and Laryngology 78(2), 342–357.

    PubMed  Google Scholar 

  • Engström, B. (1983). Stereocilia of sensory cells in normal and hearing impaired ears. A morphological, physiological and behavioural study. Scandanavian Audiology Supplementum, 19, 1–34.

    Google Scholar 

  • Engström, B. (1984). Fusion of stereocilia on inner hair cells in man and in the rabbit, rat and guinea pig. Scandanavian Audiology, 13(2), 87–92.

    Google Scholar 

  • Engström, B., & Borg, E. (1981). Lesions to cochlear inner hair cells induced by noise. Archives of Oto-Rhino-Laryngology, 230(3), 279–284.

    PubMed  Google Scholar 

  • Engström, B., Flock, A., & Borg, E. (1983). Ultrastructural studies of stereocilia in noise-exposed rabbits. Hearing Research, 12(2), 251–264.

    PubMed  Google Scholar 

  • Erlandsson, B., Hakanson, H., Ivarsson, A., Nilsson, P., & Wersall, J. (1980). Hair cell damage in the guinea pig due to different kinds of noise. Acta Oto-Laryngologica, 357 (Supplementum), 1–43.

    Google Scholar 

  • Fredelius, L., & Rask-Andersen, H. (1990). The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation. Acta Oto-Laryngologica, 109(1–2), 76–82.

    CAS  PubMed  Google Scholar 

  • Fredelius, L., & Wersall, J. (1992). Hair cell damage after continuous and interrupted pure tone overstimulation: A scanning electron microscopic study in the guinea pig. Hearing Research, 62(2), 194–198.

    CAS  PubMed  Google Scholar 

  • Fredelius, L., Rask-Andersen, H., Johansson, B., Urquiza, R., Bagger-Sjoback, D., & Wersall, J. (1988). Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A light microscopical and electrophysiological investigation in the guinea pig. Acta Oto-Laryngologica, 106(1–2), 81–93.

    CAS  PubMed  Google Scholar 

  • Fridberger, A., Flock, A., Ulfendahl, M., & Flock, B. (1998). Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proceedings of the National Academy of Sciences of the USA, 95(12), 7127–7132.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujioka, M., Kanzaki, S., Okano, H. J., Masuda, M., Ogawa, K., & Okano, H. (2006). Proinflammatory cytokines expression in noise-induced damaged cochlea. Journal of Neuroscience Research, 83(4), 575–583.

    CAS  PubMed  Google Scholar 

  • Gao, W. Y., Ding, D. L., Zheng, X. Y., Ruan, F. M., & Liu, Y. J. (1992). A comparison of changes in the stereocilia between temporary and permanent hearing losses in acoustic trauma. Hearing Research, 62(1), 27–41.

    CAS  PubMed  Google Scholar 

  • Goulios, H., & Robertson, D. (1983). Noise-induced cochlear damage assessed using electrophysiological and morphological criteria: an examination of the equal energy principle. Hearing Research, 11(3), 327–341.

    CAS  PubMed  Google Scholar 

  • Gulley, R. L., & Reese, T. S. (1976). Intercellular junctions in the reticular lamina of the organ of Corti. Journal of Neurocytology, 5(4), 479–507.

    CAS  PubMed  Google Scholar 

  • Hamernik, R. P., Turrentine, G., Roberto, M., Salvi, R., & Henderson, D. (1984). Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hearing Research, 13(3), 229–247.

    CAS  PubMed  Google Scholar 

  • Hamernik, R. P., Patterson, J. H., Turrentine, G. A., & Ahroon, W. A. (1989). The quantitative relation between sensory cell loss and hearing thresholds. Hearing Research, 38(3), 199–211.

    CAS  PubMed  Google Scholar 

  • Han, W., Shi, X., & Nuttall, A. L. (2006). AIF and endoG translocation in noise exposure induced hair cell death. Hearing Research, 211(1–2), 85–95.

    CAS  PubMed  Google Scholar 

  • Harding, G. W., & Bohne, B. A. (2007). Distribution of focal lesions in the chinchilla organ of Corti following exposure to a 4–kHz or a 0.5–kHz octave band of noise. Hearing Research, 225(1–2), 50–59.

    PubMed  Google Scholar 

  • Harding, G. W., & Bohne, B. A. (2009). Relation of focal hair-cell lesions to noise-exposure parameters from a 4- or a 0.5-kHz octave band of noise. Hearing Research, 254(1–2), 54–63.

    PubMed  Google Scholar 

  • Hawkins, J. E., Jr., Johnsson, L. G., Stebbins, W. C., Moody, D. B., & Coombs, S. L. (1976). Hearing loss and cochlear pathology in monkeys after noise exposure. Acta Oto-Laryngologica, 81(3–4), 337–343.

    PubMed  Google Scholar 

  • Henderson, D., & Hamernik, R. P. (1986). Impulse noise: critical review. Journal of the Acoustical Society of America, 80(2), 569–584.

    CAS  PubMed  Google Scholar 

  • Henderson, D., Subramaniam, M., Gratton, M. A., & Saunders, S. S. (1991). Impact noise: the importance of level, duration, and repetition rate. Journal of the Acoustical Society of America, 89(3), 1350–1357.

    CAS  PubMed  Google Scholar 

  • Hirose, K., Discolo, C. M., Keasler, J. R., & Ransohoff, R. (2005). Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. Journal of Comparative Neurology, 489(2), 180–194.

    PubMed  Google Scholar 

  • Hu, B. H., & Zheng, G. L. (2008). Membrane disruption: An early event of hair cell apoptosis induced by exposure to intense noise. Brain Research, 1239, 107–118.

    CAS  PubMed  Google Scholar 

  • Hu, B. H., Guo, W., Wang, P. Y., Henderson, D., & Jiang, S. C. (2000). Intense noise-induced apoptosis in hair cells of guinea pig cochleae. Acta Oto-Laryngologica, 120(1), 19–24.

    CAS  PubMed  Google Scholar 

  • Hu, B. H., Henderson, D., & Nicotera, T. M. (2002a). Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hearing Research, 166(1–2), 62–71.

    PubMed  Google Scholar 

  • Hu, B. H., Henderson, D., & Nicotera, T. M. (2002b). F-actin cleavage in apoptotic outer hair cells in chinchilla cochleas exposed to intense noise. Hearing Research, 172(1–2), 1–9.

    CAS  PubMed  Google Scholar 

  • Hu, B. H., Henderson, D., & Nicotera, T. M. (2006). Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise. Hearing Research, 211(1–2), 16–25.

    PubMed  Google Scholar 

  • Hu, B. H., Cai, Q., Manohar, S., Jiang, H., Ding, D., Coling, D. E., Zheng, G., & Salvi, R. (2009). Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience, 161(3), 915–925.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hultcrantz, E., Angelborg, C., & Beausang-Linder, M. (1979). Noise and cochlear blood flow. Archives of Oto-Rhino-Laryngology, 224(1–2), 103–106.

    CAS  PubMed  Google Scholar 

  • Hunter-Duvar, I. (1977). Inner ear correlates in acoustic trauma. Transactions. Section on Otolaryngology. American Academy of Ophthalmology and Otolaryngology, 84(2), 422.

    CAS  Google Scholar 

  • Hunter-Duvar, M. (1978). Reissner’s membrane and endocytosis of cell debris. Acta Oto-Laryngologica, 351(Supplementum), 24–32.

    CAS  Google Scholar 

  • Ishida, M. (1978). [Lactate dehydrogenase (LDH) in the inner ear during acoustic stimulation]. Acta Otolaryngologica, 85(1–2), 17–23.

    CAS  Google Scholar 

  • Ishii, D., Takahashi, T., & Balogh, K. (1969). Glycogen in the inner ear after acoustic stimulation. A light and electron microscopic study. Acta Oto-Laryngologica, 67(6), 573–582.

    CAS  PubMed  Google Scholar 

  • Jia, S., Yang, S., Guo, W., & He, D. Z. (2009). Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia. Journal of Neuroscience, 29(48), 15277–15285.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaltenbach, J. A., Schmidt, R. N., & Kaplan, C. R. (1992). Tone-induced stereocilia lesions as a function of exposure level and duration in the hamster cochlea. Hearing Research, 60(2), 205–215.

    CAS  PubMed  Google Scholar 

  • Kikuchi, T., Kimura, R. S., Paul, D. L., Takasaka, T., & Adams, J. C. (2000). Gap junction systems in the mammalian cochlea. Brain Research Reviews, 32(1), 163–166.

    CAS  PubMed  Google Scholar 

  • Kirkegaard, M., Murai, N., Risling, M., Suneson, A., Jarlebark, L., & Ulfendahl, M. (2006). Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience, 142(2), 425–435.

    CAS  PubMed  Google Scholar 

  • Kronester-Frei, A. (1978). Ultrastructure of the different zones of the tectorial membrane. Cell Tissue Research, 193(1), 11–23.

    CAS  PubMed  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. Journal of Neuroscience, 26(7), 2115–2123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077–14085.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lahne, M., & Gale, J. E. (2008). Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. Journal of Neuroscience, 28(19), 4918–4928.

    CAS  PubMed  Google Scholar 

  • Liberman, M. C. (1987). Chronic ultrastructural changes in acoustic trauma: Serial-section reconstruction of stereocilia and cuticular plates. Hearing Research, 26(1), 65–88.

    CAS  PubMed  Google Scholar 

  • Liberman, M. C., & Dodds, L. W. (1987). Acute ultrastructural changes in acoustic trauma: Serial-section reconstruction of stereocilia and cuticular plates. Hearing Research, 26(1), 45–64.

    CAS  PubMed  Google Scholar 

  • Liberman, M. C., & Kiang, N. Y. (1978). Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Oto-Laryngologica, 358(Supplementum), 1–63.

    CAS  Google Scholar 

  • Liberman, M. C., & Mulroy, M. J. (1982). Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory-nerve pathophysiology. In R. Hamernik, D. Henderson & R. Salvi (Eds.), New perspectives on noise-induced hearing loss (pp. 105–135). New York: Raven Press.

    Google Scholar 

  • Lim, D. J. (1976). Ultrastructural cochlear changes following acoustic hyperstimulation and ototoxicity. Annals of Otology, Rhinology and Laryngology, 85(6 Pt. 1), 740–751.

    CAS  Google Scholar 

  • Lim, D. J., & Melnick, W. (1971). Acoustic damage of the cochlea. A scanning and transmission electron microscopic observation. Archive of Otolaryngology, 94(4), 294–305.

    CAS  Google Scholar 

  • Lipscomb, D. M., Axelsson, A., Vertes, D., Roettger, R., & Carrol, J. (1977). The effect of high level sound on hearing sensitivity, cochlear sensorineuroepithelium and vasculature of the chinchilla. Acta Oto-Laryngologica, 84(1–2), 44–56.

    CAS  PubMed  Google Scholar 

  • Lo, A. C., Houenou, L. J., & Oppenheim, R. W. (1995). Apoptosis in the nervous system: Morphological features, methods, pathology, and prevention. Archives of Histology and Cytology, 58(2), 139–149.

    CAS  PubMed  Google Scholar 

  • Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. The American Journal of Pathology, 146(1), 3–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunobu, T., Ogita, K., & Schacht, J. (2004). Modulation of activator protein 1/DNA binding activity by acoustic overstimulation in the guinea-pig cochlea. Neuroscience, 123(4), 1037–1043.

    CAS  PubMed  Google Scholar 

  • Maurer, J., Heinrich, U. R., Hinni, M., & Mann, W. (1999). Alteration of the calcium content in inner hair cells of the cochlea of the guinea pig after acute noise trauma with and without application of the organic calcium channel blocker diltiazem. Journal of Oto-Rhino-Laryngology and Its Related Specialties, 61(6), 328–333.

    CAS  Google Scholar 

  • Morisaki, N., Nakai, Y., Cho, H., & Shibata, S. (1991). Imprints of the tectorial membrane following acoustic overstimulation and kanamycin treatment. Acta Oto-Laryngologica, 486(Supplementum), 486, 19–31.

    Google Scholar 

  • Mulroy, M. J., & Curley, F. J. (1982). Stereociliary pathology and noise-induced threshold shift: A scanning electron microscopic study. Scanning Electron Microscopy (Pt 4), 1753–1762.

    Google Scholar 

  • Mulroy, M. J., Henry, W. R., & McNeil, P. L. (1998). Noise-induced transient microlesions in the cell membranes of auditory hair cells. Hearing Research, 115(1–2), 93–100.

    CAS  PubMed  Google Scholar 

  • Nadol, J. B., Jr. (1978). Intercellular junctions in the organ of Corti. Annals of Otology, Rhinology and Laryngology, 87(1 Pt. 1), 70–80.

    Google Scholar 

  • Nicotera, T. M., Hu, B. H., & Henderson, D. (2003). The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. Journal of the Association for Research in Otolaryngology, 4(4), 466–477.

    PubMed Central  PubMed  Google Scholar 

  • Nuttall, A. L. (1999). Sound-induced cochlear ischemia/hypoxia as a mechanism of hearing loss. Noise and Health, 2(5), 17–32.

    PubMed  Google Scholar 

  • Omata, T., Ohtani, I., Ohtsuki, K., Ogawa, Y., & Ouchi, J. (1979). Electron microscopical and histochemical studies of outer hair cells in acoustically exposed rabbits. Archives of Oto-Rhino-Laryngology, 222(2), 127–132.

    CAS  PubMed  Google Scholar 

  • Pickles, J. O., Comis, S. D., & Osborne, M. P. (1984). Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Research, 15(2), 103–112.

    CAS  PubMed  Google Scholar 

  • Pickles, J. O., Osborne, M. P., & Comis, S. D. (1987). Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hearing Research, 25(2–3), 173–183.

    CAS  PubMed  Google Scholar 

  • Pirvola, U., Xing-Qun, L., Virkkala, J., Saarma, M., Murakata, C., Camoratto, A. M., Walton, K. M., & Yikoski, J. (2000). Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. Journal of Neuroscience, 20(1), 43–50.

    CAS  PubMed  Google Scholar 

  • Poche, L. B., Jr., Stockwell, C. W., & Ades, H. W. (1969). Cochlear hair-cell damage in guinea pigs after exposure to impulse noise. Journal of the Acoustical Society of America, 46(4), 947–951.

    PubMed  Google Scholar 

  • Prijs, V. F., Keijzer, J., Versnel, H., & Schoonhoven, R. (1993). Recovery characteristics of auditory nerve fibres in the normal and noise-damaged guinea pig cochlea. Hearing Research, 71(1–2), 190–201.

    CAS  PubMed  Google Scholar 

  • Puel, J. L., Ruel, J., Gervais d’Aldin, C., & Pujol, R. (1998). Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport, 9(9), 2109–2114.

    Google Scholar 

  • Pye, A. (1981). Acoustic trauma effects with varying exposure times. Archives of Oto-Rhino-Laryngology, 230(3), 265–271.

    CAS  PubMed  Google Scholar 

  • Pye, A. (1984). The effects of short noise exposures in the guinea pig. Archives of Oto-Rhino-Laryngology, 240(2), 107–114.

    CAS  PubMed  Google Scholar 

  • Raphael, Y., & Altschuler, R. A. (1991). Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motility and the Cytoskeleton, 18(3), 215–227.

    CAS  PubMed  Google Scholar 

  • Roberto, M., & Zito, F. (1988). Scar formation following impulse noise-induced mechanical damage to the organ of Corti. The Journal of Laryngology and Otology, 102(1), 2–9.

    CAS  PubMed  Google Scholar 

  • Robertson, D. (1981). Combined electrophysiology and ultrastructure of acoustic trauma in the guinea pig cochlea. Archives of Oto-Rhino-Laryngology, 230(3), 257–263.

    CAS  PubMed  Google Scholar 

  • Robertson, D. (1982). Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea. Hearing Research, 7(1), 55–74.

    CAS  PubMed  Google Scholar 

  • Robertson, D. (1983). Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hearing Research, 9(3), 263–278.

    CAS  PubMed  Google Scholar 

  • Robertson, D., Johnstone, B. M., & McGill, T. J. (1980). Effects of loud tones on the inner ear: a combined electrophysiological and ultrastructural study. Hearing Research, 2(1), 39–43.

    CAS  PubMed  Google Scholar 

  • Rydmarker, S., & Nilsson, P. (1987). Effects on the inner and outer hair cells. Acta Oto-Laryngologica, 441(Supplementum), 25–43.

    CAS  Google Scholar 

  • Saunders, J. C., Dear, S. P., & Schneider, M. E. (1985). The anatomical consequences of acoustic injury: A review and tutorial. Journal of the Acoustical Society of America, 78(3), 833–860.

    CAS  PubMed  Google Scholar 

  • Sha, S. H., Taylor, R., Forge, A., & Schacht, J. (2001). Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hearing Research, 155(1–2), 1–8.

    CAS  PubMed  Google Scholar 

  • Shen, H., Zhang, B., Shin, J. H., Lei, D., Du, Y., Gao, X., Wang, Q., Ohlemiller, K. K., Piccirillo, J., & Bao, J. (2007). Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss. Hearing Research, 226(1–2), 52–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slepecky, N. (1986). Overview of mechanical damage to the inner ear: Noise as a tool to probe cochlear function. Hearing Research, 22, 307–321.

    CAS  PubMed  Google Scholar 

  • Slepecky, N., Hamernik, R., Henderson, D., & Coling, D. (1981). Ultrastructural changes to the cochlea resulting from impulse noise. Archives of Oto-Rhino-Laryngology, 230(3), 273–278.

    CAS  PubMed  Google Scholar 

  • Slepecky, N., Hamernik, R., Henderson, D., & Coling, D. (1982). Correlation of audiometric data with changes in cochlear hair cell stereocilia resulting from impulse noise trauma. Acta Oto-Laryngologica, 93(5–6), 329–340.

    CAS  PubMed  Google Scholar 

  • Spoendlin, H. (1976). Anatomical changes following various noise exposures. In D. Henderson, R. P. Hamernik, D. S. Dosanjh, & J. H. Mills (Eds.), Effects of Noise on Hearing (pp. 69–89). New York: Raven Press.

    Google Scholar 

  • Spoendlin, H. (1985). Anatomy of cochlear innervation. American Journal of Otolaryngology, 6(6), 453–467.

    CAS  PubMed  Google Scholar 

  • Spongr, V. P., Henderson, D., & McFadden, S. L. (1998). Confocal microscopic analysis of the chinchilla organ of Corti following exposure to high-level impact noise. Scandanavian Audiology Supplementum, 48, 15–25.

    CAS  Google Scholar 

  • Stebbins, W. C., Hawkins, J. E., Jr., Johnson, L. G., & Moody, D. B. (1979). Hearing thresholds with outer and inner hair cell loss. American Journal of Otolaryngology, 1(1), 15–27.

    CAS  PubMed  Google Scholar 

  • Taggart, R. T., McFadden, S. L., Ding, D. L., Henderson, D., Jin, X., Sun, W., & Salvi, R. (2001). Gene expression changes in chinchilla cochlea from noise-induced temporary threshold shift. Noise and Health, 3(11), 1–18.

    PubMed  Google Scholar 

  • Thorne, P. R., & Gavin, J. B. (1985). Changing relationships between structure and function in the cochlea during recovery from intense sound exposure. Annals of Otology, Rhinology and Laryngology, 94(1 Pt. 1), 81–86.

    CAS  Google Scholar 

  • Thorne, P. R., Gavin, J. B., & Herdson, P. B. (1984). A quantitative study of the sequence of topographical changes in the organ of Corti following acoustic trauma. Acta Oto-Laryngologica, 97(1–2), 69–81.

    CAS  PubMed  Google Scholar 

  • Thorne, P. R., Duncan, C. E., & Gavin, J. B. (1986). The pathogenesis of stereocilia abnormalities in acoustic trauma. Hearing Research, 21(1), 41–49.

    CAS  PubMed  Google Scholar 

  • Tilney, L. G., Saunders, J. C., Egelman, E., & DeRosier, D. J. (1982). Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae. Hearing Research, 7(2), 181–197.

    CAS  PubMed  Google Scholar 

  • Tonndorf, J. (1981). Stereociliary dysfunction, a case of sensory hearing loss, recruitment, poor speech discrimination and tinnitus. Acta Oto-Laryngologica, 91(5–6), 469–479.

    CAS  PubMed  Google Scholar 

  • Tsuprun, V., Schachern, P. A., Cureoglu, S., & Paparella, M. (2003). Structure of the stereocilia side links and morphology of auditory hair bundle in relation to noise exposure in the chinchilla. Journal of Neurocytology, 32(9), 1117–1128.

    PubMed  Google Scholar 

  • Vertes, D., Nilsson, P., Wersall, J., Axelsson, A., & Bjorkroth, B. (1982). Cochlear hair cell and vascular changes in the guinea pig following high level pure-tone exposures. Acta Oto-Laryngologica, 94(5–6), 403–411.

    CAS  PubMed  Google Scholar 

  • Vertes, D., Axelsson, A., Hornstrand, C., & Nilsson, P. (1984). The effect of impulse noise on cochlear vessels. Archives of Otolaryngology, 110(2), 111–115.

    CAS  PubMed  Google Scholar 

  • Vicente-Torres, M. A., & Schacht, J. (2006). A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. Journal of Neuroscience Research, 83(8), 1564–1572.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright, C. G. (1976). Neural damage in the guinea pig cochlea after noise exposure. A light microscopic study. Acta Oto-Laryngologica, 82(1–2), 82–94.

    CAS  PubMed  Google Scholar 

  • Yamashita, D., Miller, J. M., Jiang, H. Y., Minami, S. B., & Schacht, J. (2004). AIF and EndoG in noise-induced hearing loss. NeuroReport, 15(18), 2719–2722.

    PubMed  Google Scholar 

  • Yamashita, D., Minami, S. B., Kanzaki, S., Ogawa, K., & Miller, J. M. (2008). Bcl-2 genes regulate noise-induced hearing loss. Journal of Neuroscience Research, 86(4), 920–928.

    CAS  PubMed  Google Scholar 

  • Yang, W. P., Henderson, D., Hu, B. H., & Nicotera, T. M. (2004). Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hearing Research, 196(1–2), 69–76.

    PubMed  Google Scholar 

  • Yokoi, H., & Yanagita, N. (1984). Blast injury to sensory hairs: A study in the guinea pig using scanning electron microscopy. Archives of Oto-Rhino-Laryngology, 240(3), 263–270.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hu, B. (2012). Noise-Induced Structural Damage to the Cochlea. In: Le Prell, C.G., Henderson, D., Fay, R.R., Popper, A.N. (eds) Noise-Induced Hearing Loss. Springer Handbook of Auditory Research, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9523-0_5

Download citation

Publish with us

Policies and ethics