Skip to main content

The Calyx of Held Synapse

  • Chapter
  • First Online:
Synaptic Mechanisms in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 41))

Abstract

Specialized synapses are employed in the central auditory system to preserve timing information, often transmitting at the high firing frequencies that typically accompany sound transduction in the periphery. A unique example of such a specialized synapse is the calyx of Held synapse. It is a giant axosomatic synapse within the superior olivary complex (SOC) that functions as a fast sign-inverting relay, providing inhibition to most auditory nuclei of the auditory brainstem. Because of its size – it could well be the largest terminal in the mammalian brain – it has become a popular model system to study mechanisms of transmitter release. Figure 5.1 illustrates the most important property that allows it to act as a relay: it harbors hundreds of synaptic active zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman, J., & Bayer, S. A. (1980). Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla. Journal of Comparative Neurology, 194(4), 877–904.

    CAS  Google Scholar 

  • Awatramani, G. B., Turecek, R., & Trussell, L. O. (2004). Inhibitory control at a synaptic relay. Journal of Neuroscience, 24(11), 2643–2647.

    PubMed  CAS  Google Scholar 

  • Awatramani, G. B., Price, G. D., & Trussell, L. O. (2005). Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron, 48(1), 109–121.

    PubMed  CAS  Google Scholar 

  • Banks, M. I., & Smith, P. H. (1992). Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. Journal of Neuroscience, 12(7), 2819–2837.

    PubMed  CAS  Google Scholar 

  • Barnes-Davies, M., & Forsythe, I. D. (1995). Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. Journal of Physiology, 488(2), 387–406.

    PubMed  CAS  Google Scholar 

  • Bergsman, J. B., De Camilli, P., & McCormick, D. A. (2004). Multiple large inputs to principal cells in the mouse medial nucleus of the trapezoid body. Journal of Neurophysiology, 92(1), 545–552.

    PubMed  Google Scholar 

  • Billups, B., & Forsythe, I. D. (2002). Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. Journal of Neuroscience, 22(14), 5840–5847.

    PubMed  CAS  Google Scholar 

  • Billups, B., Graham, B. P., Wong, A. Y. C., & Forsythe, I. D. (2005). Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS. Journal of Physiology, 565(Pt. 3), 885–896.

    PubMed  CAS  Google Scholar 

  • Bollmann, J. H., & Sakmann, B. (2005). Control of synaptic strength and timing by the release-site Ca2+ signal. Nature Neuroscience, 8(4), 426–434.

    PubMed  CAS  Google Scholar 

  • Bollmann, J. H., Sakmann, B., & Borst, J. G. G. (2000). Calcium sensitivity of glutamate release in a calyx-type terminal. Science, 289(5481), 953–957.

    PubMed  CAS  Google Scholar 

  • Borst, J. G. G., & Sakmann, B. (1996). Calcium influx and transmitter release in a fast CNS synapse. Nature, 383(6599), 431–434.

    PubMed  CAS  Google Scholar 

  • Borst, J. G. G., & Sakmann, B. (1998a). Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. Journal of Physiology, 506, 143–157.

    PubMed  CAS  Google Scholar 

  • Borst, J. G. G., & Sakmann, B. (1998b). Facilitation of presynaptic calcium currents in the rat brainstem. Journal of Physiology, 513, 149–155.

    PubMed  CAS  Google Scholar 

  • Borst, J. G. G., & Sakmann, B. (1999a). Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. Journal of Physiology, 521, 123–133.

    PubMed  CAS  Google Scholar 

  • Borst, J. G. G., & Sakmann, B. (1999b). Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1381), 347–355.

    PubMed  CAS  Google Scholar 

  • Borst, J. G. G., Helmchen, F., & Sakmann, B. (1995). Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. Journal of Physiology, 489(Pt. 3), 825–840.

    PubMed  CAS  Google Scholar 

  • Boudreau, J. C., & Tsuchitani, C. (1968). Binaural interaction in the cat superior olive S segment. Journal of Neurophysiology, 31(3), 442–454.

    PubMed  CAS  Google Scholar 

  • Brew, H. M., & Forsythe, I. D. (1995). Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. Journal of Neuroscience, 15(12), 8011–8022.

    PubMed  CAS  Google Scholar 

  • Brew, H. M., & Forsythe, I. D. (2005). Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body. Hearing Research, 206(1–2), 116–132.

    PubMed  CAS  Google Scholar 

  • Brown, M. R., Kronengold, J., Gazula, V.-R., Chen, Y., Strumbos, J. G., Sigworth, F. J., Navaratnam, D., & Kaczmarek, L. K. (2010). Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nature Neuroscience, 13(7), 819–821.

    PubMed  CAS  Google Scholar 

  • Caicedo, A., & Eybalin, M. (1999). Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. European Journal of Neuroscience, 11(1), 51–74.

    PubMed  CAS  Google Scholar 

  • Casey, M. A., & Feldman, M. L. (1982). Aging in the rat medial nucleus of the trapezoid body. I. Light microscopy. Neurobiology of Aging, 3(3), 187–195.

    CAS  Google Scholar 

  • Casey, M. A., & Feldman, M. L. (1985). Aging in the rat medial nucleus of the trapezoid body. II. Electron microscopy. Journal of Comparative Neurology, 232(3), 401–413.

    CAS  Google Scholar 

  • Casey, M. A., & Feldman, M. L. (1988). Age-related loss of synaptic terminals in the rat medial nucleus of the trapezoid body. Neuroscience, 24(1), 189–194.

    PubMed  CAS  Google Scholar 

  • Chuhma, N., & Ohmori, H. (1998). Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. Journal of Neuroscience, 18(1), 512–520.

    PubMed  CAS  Google Scholar 

  • Chuhma, N., & Ohmori, H. (2001). Differential development of Ca2+ dynamics in presynaptic terminal and postsynaptic neuron of the rat auditory synapse. Brain Research, 904(2), 341–344.

    PubMed  CAS  Google Scholar 

  • Cuttle, M. F., Tsujimoto, T., Forsythe, I. D., & Takahashi, T. (1998). Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. Journal of Physiology, 512(3), 723–729.

    PubMed  CAS  Google Scholar 

  • Cuttle, M. F., Rusznák, Z., Wong, A. Y., Owens, S., & Forsythe, I. D. (2001). Modulation of a presynaptic hyperpolarization-activated cationic current (I h) at an excitatory synaptic terminal in the rat auditory brainstem. Journal of Physiology, 534(Pt. 3), 733–744.

    PubMed  CAS  Google Scholar 

  • de Lange, R. P. J., de Roos, A. D. G., & Borst, J. G. G. (2003). Two modes of vesicle recycling in the rat calyx of Held. Journal of Neuroscience, 23(31), 10164–10173.

    PubMed  Google Scholar 

  • Dittman, J., & Ryan, T. A. (2009). Molecular circuitry of endocytosis at nerve terminals. Annual Review of Cell and Developmental Biology, 25, 133–160.

    PubMed  CAS  Google Scholar 

  • Dodson, P. D., Barker, M. C., & Forsythe, I. D. (2002). Two heteromeric Kv1 potassium channels differentially regulate action potential firing. Journal of Neuroscience, 22(16), 6953–6961.

    PubMed  CAS  Google Scholar 

  • Dodson, P. D., Billups, B., Rusznák, Z., Szûcs, G., Barker, M. C., & Forsythe, I. D. (2003). Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. Journal of Physiology, 550(Pt. 1), 27–33.

    PubMed  CAS  Google Scholar 

  • Dondzillo, A., Sätzler, K., Horstmann, H., Altrock, W. D., Gundelfinger, E. D., & Kuner, T. (2010). Targeted three-dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing. Journal of Comparative Neurology, 518(7), 1008–1029.

    PubMed  CAS  Google Scholar 

  • Elezgarai, I., Benítez, R., Mateos, J. M., Lázaro, E., Osorio, A., Azkue, J. J., Bilbao, A., Lingenhoehl, K., Van Der Putten, H., Hampson, D. R., Kuhn, R., Knöpfel, T., & Grandes, P. (1999). Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat. Journal of Comparative Neurology, 411(3), 431–440.

    PubMed  CAS  Google Scholar 

  • Elezgarai, I., Bilbao, A., Mateos, J. M., Azkue, J. J., Benítez, R., Osorio, A., Diez, J., Puente, N., Doñate-Oliver, F., & Grandes, P. (2001). Group II metabotropic glutamate receptors are differentially expressed in the medial nucleus of the trapezoid body in the developing and adult rat. Neuroscience, 104(2), 487–498.

    PubMed  CAS  Google Scholar 

  • Elezgarai, I., Díez, J., Puente, N., Azkue, J. J., Benítez, R., Bilbao, A., Knöpfel, T., Doñate-Oliver, F., & Grandes, P. (2003). Subcellular localization of the voltage-dependent potassium channel Kv3.1b in postnatal and adult rat medial nucleus of the trapezoid body. Neuroscience, 118(4), 889–898.

    PubMed  CAS  Google Scholar 

  • Englitz, B., Tolnai, S., Typlt, M., Jost, J., & Rübsamen, R. (2009). Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS One, 4(10), e7014.

    PubMed  Google Scholar 

  • Erazo-Fischer, E., Striessnig, J., & Taschenberger, H. (2007). The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse. Journal of Neuroscience, 27(7), 1725–1737.

    PubMed  CAS  Google Scholar 

  • Fedchyshyn, M. J., & Wang, L.-Y. (2005). Developmental transformation of the release modality at the calyx of Held synapse. Journal of Neuroscience, 25(16), 4131–4140.

    PubMed  CAS  Google Scholar 

  • Fedchyshyn, M. J., & Wang, L.-Y. (2007). Activity-dependent changes in temporal components of neurotransmission at the juvenile mouse calyx of Held synapse. Journal of Physiology, 581(Pt. 2), 581–602.

    PubMed  Google Scholar 

  • Felmy, F., & Schneggenburger, R. (2004). Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice. European Journal of Neuroscience, 20(6), 1473–1482.

    PubMed  Google Scholar 

  • Felmy, F., Neher, E., & Schneggenburger, R. (2003). Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron, 37(5), 801–811.

    PubMed  CAS  Google Scholar 

  • Ford, M. C., Grothe, B., & Klug, A. (2009). Fenestration of the calyx of Held occurs sequentially along the tonotopic axis, is influenced by afferent activity, and facilitates glutamate clearance. Journal of Comparative Neurology, 514(1), 92–106.

    PubMed  CAS  Google Scholar 

  • Forsythe, I. D. (1994). Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. Journal of Physiology, 479(3), 381–387.

    PubMed  Google Scholar 

  • Forsythe, I. D., & Barnes-Davies, M. (1993). The binaural auditory pathway: Excitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body. Proceedings of the Royal Society B, 251(1331), 151–157.

    PubMed  CAS  Google Scholar 

  • Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. F., & Takahashi, T. (1998). Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron, 20(4), 797–807.

    PubMed  CAS  Google Scholar 

  • Futai, K., Okada, M., Matsuyama, K., & Takahashi, T. (2001). High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. Journal of Neuroscience, 21(10), 3342–3349.

    PubMed  CAS  Google Scholar 

  • Galambos, R., Schwartzkopff, J., & Rupert, A. (1959). Microelectrode study of superior olivary nuclei. American Journal of Physiology, 197, 527–536.

    PubMed  CAS  Google Scholar 

  • Gazula, V.-R., Strumbos, J. G., Mei, X., Chen, H., Rahner, C., & Kaczmarek, L. K. (2010). Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. Journal of Comparative Neurology, 518(16), 3205–3220.

    PubMed  CAS  Google Scholar 

  • Geal-Dor, M., Freeman, S., Li, G., & Sohmer, H. (1993). Development of hearing in neonatal rats: Air and bone conducted ABR thresholds. Hearing Research, 69(1–2), 236–242.

    PubMed  CAS  Google Scholar 

  • Geiger, J. R. P., Melcher, T., Koh, D.-S., Sakmann, B., Seeburg, P. H., Jonas, P., & Monyer, H. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1), 193–204.

    PubMed  CAS  Google Scholar 

  • Glendenning, K. K., Brunso-Bechtold, J. K., Thompson, G. C., & Masterton, R. B. (1981). Ascending auditory afferents to the nuclei of the lateral lemniscus. Journal of Comparative Neurology, 197(4), 673–703.

    PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1968). Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study. Journal of Neurophysiology, 31(4), 639–656.

    PubMed  CAS  Google Scholar 

  • Green, J. S., & Sanes, D. H. (2005). Early appearance of inhibitory input to the MNTB supports binaural processing during development. Journal of Neurophysiology, 94(6), 3826–3835.

    PubMed  Google Scholar 

  • Groffen, A. J., Martens, S., Arazola, R. D., Cornelisse, L. N., Lozovaya, N., de Jong, A. P. H., Goriounova, N. A., Habets, R. L. P., Takai, Y., Borst, J. G. G., Brose, N., McMahon, H. T., & Verhage, M. (2010). Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science, 327(5973), 1614–1618.

    PubMed  CAS  Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    PubMed  CAS  Google Scholar 

  • Guinan, J. J. Jr., & Li, R. Y.-S. (1990). Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hearing Research, 49(1–3), 321–334.

    PubMed  Google Scholar 

  • Guinan, J. J. Jr., Guinan, S. S., & Norris, B. E. (1972a). Single auditory units in the superior olive complex I: Responses to sounds and classifications based on physiological properties. International Journal of Neuroscience, 4, 101–120.

    Google Scholar 

  • Guinan, J. J. Jr., Norris, B. E., & Guinan, S. S. (1972b). Single auditory units in the superior olive complex II: Tonotopic organization and locations of unit categories. International Journal of Neuroscience, 4, 147–166.

    Google Scholar 

  • Habets, R. L. P., & Borst, J. G. G. (2005). Post-tetanic potentiation in the rat calyx of Held synapse. Journal of Physiology, 564(Pt. 1), 173–187.

    PubMed  CAS  Google Scholar 

  • Habets, R. L. P., & Borst, J. G. G. (2006). An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. Journal of Neurophysiology, 96(6), 2868–2876.

    PubMed  CAS  Google Scholar 

  • Habets, R. L. P., & Borst, J. G. G. (2007). Dynamics of the readily releasable pool during post-tetanic potentiation in the rat calyx of Held synapse. Journal of Physiology, 581(Pt. 2), 467–478.

    PubMed  Google Scholar 

  • Hamann, M., Billups, B., & Forsythe, I. D. (2003). Non-calyceal excitatory inputs mediate low fidelity synaptic transmission in rat auditory brainstem slices. European Journal of Neuroscience, 18(10), 2899–2902.

    PubMed  Google Scholar 

  • Hardman, R. M., & Forsythe, I. D. (2009). Ether-à-go-go–related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons. Journal of Physiology, 587(Pt. 11), 2487–2497.

    PubMed  CAS  Google Scholar 

  • Harrison, J. M., & Irving, R. (1964). Nucleus of the trapezoid body: Dual afferent innervation. Science, 143, 473–474.

    PubMed  CAS  Google Scholar 

  • Harrison, J. M., & Warr, W. B. (1962). A study of the cochlear nuclei and ascending auditory pathways of the medulla. Journal of Comparative Neurology, 119, 341–378.

    PubMed  CAS  Google Scholar 

  • Härtig, W., Singer, A., Grosche, J., Brauer, K., Ottersen, O. P., & Brückner, G. (2001). Perineuronal nets in the rat medial nucleus of the trapezoid body surround neurons immunoreactive for various amino acids, calcium-binding proteins and the potassium channel subunit Kv3.1b. Brain Research, 899(1–2), 123–133.

    PubMed  Google Scholar 

  • He, L., & Wu, L.-G. (2007). The debate on the kiss-and-run fusion at synapses. Trends in Neurosciences, 30(9), 447–455.

    PubMed  CAS  Google Scholar 

  • He, L., Xue, L., Xu, J., McNeil, B. D., Bai, L., Melicoff, E., Adachi, R., & Wu, L.-G. (2009). Compound vesicle fusion increases quantal size and potentiates synaptic transmission. Nature, 459(7243), 93–97.

    PubMed  CAS  Google Scholar 

  • Held, H. (1893). Die centrale Gehorleitung. Archiv fur Anatomie und Physiologie, Anatomie Abtheil, 201–248.

    Google Scholar 

  • Helmchen, F., Borst, J. G. G., & Sakmann, B. (1997). Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophysical Journal, 72(3), 1458–1471.

    PubMed  CAS  Google Scholar 

  • Hermida, D., Elezgarai, I., Puente, N., Alonso, V., Anabitarte, N., Bilbao, A., Doñate-Oliver, F., & Grandes, P. (2006). Developmental increase in postsynaptic alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid receptor compartmentalization at the calyx of Held synapse. Journal of Comparative Neurology, 495(5), 624–634.

    PubMed  CAS  Google Scholar 

  • Hermida, D., Mateos, J. M., Elezgarai, I., Puente, N., Bilbao, A., Bueno-López, J. L., Streit, P., & Grandes, P. (2010). Spatial compartmentalization of AMPA glutamate receptor subunits at the calyx of Held synapse. Journal of Comparative Neurology, 518(2), 163–174.

    PubMed  CAS  Google Scholar 

  • Hilbig, H., Beil, B., Hilbig, H., Call, J., & Bidmon, H.-J. (2009). Superior olivary complex organization and cytoarchitecture may be correlated with function and catarrhine primate phylogeny. Brain Structure and Function, 213(4–5), 489–497.

    PubMed  Google Scholar 

  • Hoffpauir, B. K., Grimes, J. L., Mathers, P. H., & Spirou, G. A. (2006). Synaptogenesis of the calyx of Held: Rapid onset of function and one-to-one morphological innervation. Journal of Neuroscience, 26(20), 5511–5523.

    PubMed  CAS  Google Scholar 

  • Hori, T., Takai, Y., & Takahashi, T. (1999). Presynaptic mechanism for phorbol ester–induced synaptic potentiation. Journal of Neuroscience, 19(17), 7262–7267.

    PubMed  CAS  Google Scholar 

  • Hosoi, N., Sakaba, T., & Neher, E. (2007). Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse. Journal of Neuroscience, 27(52), 14286–14298.

    PubMed  CAS  Google Scholar 

  • Hosoi, N., Holt, M., & Sakaba, T. (2009). Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron, 63(2), 216–229.

    PubMed  CAS  Google Scholar 

  • Hsieh, C. Y., Nakamura, P. A., Luk, S. O., Miko, I. J., Henkemeyer, M., & Cramer, K. S. (2010). Ephrin-B reverse signaling is required for formation of strictly contralateral auditory brainstem pathways. Journal of Neuroscience, 30(29), 9840–9849.

    PubMed  CAS  Google Scholar 

  • Huang, H., & Trussell, L. O. (2008). Control of presynaptic function by a persistent Na+ current. Neuron, 60(6), 975–979.

    PubMed  CAS  Google Scholar 

  • Inchauspe, C. G., Martini, F. J., Forsythe, I. D., & Uchitel, O. D. (2004). Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal. Journal of Neuroscience, 24(46), 10379–10383.

    PubMed  CAS  Google Scholar 

  • Inchauspe, C. G., Forsythe, I. D., & Uchitel, O. D. (2007). Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels. Journal of Physiology, 584(Pt. 3), 835–851.

    PubMed  CAS  Google Scholar 

  • Irving, R., & Harrison, J. M. (1967). The superior olivary complex and audition: A comparative study. Journal of Comparative Neurology, 130(1), 77–86.

    PubMed  CAS  Google Scholar 

  • Isaacson, J. S. (1998). GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. Journal of Neurophysiology, 80(3), 1571–1576.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Sahara, Y., & Takahashi, T. (2002). A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron, 34(4), 613–621.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Nakamura, Y., Saitoh, N., Li, W.-B., Iwasaki, S., & Takahashi, T. (2003). Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. Journal of Neuroscience, 23(32), 10445–10453.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Kaneko, M., Shin, H. S., & Takahashi, T. (2005). Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. Journal of Physiology, 568(Pt. 1), 199–209.

    PubMed  CAS  Google Scholar 

  • Iwasaki, S., & Takahashi, T. (2001). Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. Journal of Physiology, 534(Pt. 3), 861–871.

    PubMed  CAS  Google Scholar 

  • Iwasaki, S., Momiyama, A., Uchitel, O. D., & Takahashi, T. (2000). Developmental changes in calcium channel types mediating central synaptic transmission. Journal of Neuroscience, 20(1), 59–65.

    PubMed  CAS  Google Scholar 

  • Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.

    PubMed  CAS  Google Scholar 

  • Johnston, J., Griffin, S. J., Baker, C., Skrzypiec, A., Chernova, T., & Forsythe, I. D. (2008). Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. Journal of Physiology, 586(14), 3493–3509.

    PubMed  CAS  Google Scholar 

  • Joris, P. X., & Yin, T. C. T. (1995). Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. Journal of Neurophysiology, 73(3), 1043–1062.

    CAS  Google Scholar 

  • Joris, P., & Yin, T. C. T. (2007). A matter of time: Internal delays in binaural processing. Trends in Neurosciences, 30(2), 70–78.

    PubMed  CAS  Google Scholar 

  • Joshi, I., & Wang, L.-Y. (2002). Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. Journal of Physiology, 540(Pt. 3), 861–873.

    PubMed  CAS  Google Scholar 

  • Joshi, I., Shokralla, S., Titis, P., & Wang, L.-Y. (2004). The role of AMPA receptor gating in the development of high-fidelity neurotransmission at the calyx of Held synapse. Journal of Neuroscience, 24(1), 183–196.

    PubMed  CAS  Google Scholar 

  • Kadner, A., & Berrebi, A. S. (2008). Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience, 151(3), 868–887.

    PubMed  CAS  Google Scholar 

  • Kadner, A., Kulesza, R. J. Jr., & Berrebi, A. S. (2006). Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. Journal of Neurophysiology, 95(3), 1499–1508.

    PubMed  Google Scholar 

  • Kajikawa, Y., Saitoh, N., & Takahashi, T. (2001). GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 8054–8058.

    PubMed  CAS  Google Scholar 

  • Kandler, K., & Friauf, E. (1993). Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. Journal of Comparative Neurology, 328(2), 161–184.

    PubMed  CAS  Google Scholar 

  • Kaneko, M., & Takahashi, T. (2004). Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. Journal of Neuroscience, 24(22), 5202–5208.

    PubMed  CAS  Google Scholar 

  • Katz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. Journal of Physiology, 195(2), 481–492.

    PubMed  CAS  Google Scholar 

  • Kay, A. R., Alfonso, A., Alford, S., Cline, H. T., Holgado, A. M., Sakmann, B., Snitsarev, V. A., Stricker, T. P., Takahashi, M., & Wu, L.-G. (1999). Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron, 24(4), 809–817.

    PubMed  CAS  Google Scholar 

  • Kil, J., Kageyama, G. H., Semple, M. N., & Kitzes, L. M. (1995). Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil. Journal of Comparative Neurology, 353(3), 317–340.

    PubMed  CAS  Google Scholar 

  • Kim, M.-H., Korogod, N., Schneggenburger, R., Ho, W.-K., & Lee, S.-H. (2005). Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. Journal of Neuroscience, 25(26), 6057–6065.

    PubMed  CAS  Google Scholar 

  • Kim, J. H., Sizov, I., Dobretsov, M., & von Gersdorff, H. (2007). Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase. Nature Neuroscience, 10(2), 196–205.

    PubMed  CAS  Google Scholar 

  • Kimura, M., Saitoh, N., & Takahashi, T. (2003). Adenosine A1 receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. Journal of Physiology, 553(Pt. 2), 415–426.

    PubMed  CAS  Google Scholar 

  • Klug, A., & Trussell, L. O. (2006). Activation and deactivation of voltage-dependent K+ channels during synaptically driven action potentials in the MNTB. Journal of Neurophysiology, 96(3), 1547–1555.

    PubMed  CAS  Google Scholar 

  • Kochubey, O., Han, Y., & Schneggenburger, R. (2009). Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held. Journal of Physiology, 587(Pt. 12), 3009–3023.

    PubMed  CAS  Google Scholar 

  • Koike-Tani, M., Saitoh, N., & Takahashi, T. (2005). Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. Journal of Neuroscience, 25(1), 199–207.

    PubMed  CAS  Google Scholar 

  • Koike-Tani, M., Kanda, T., Saitoh, N., Yamashita, T., & Takahashi, T. (2008). Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats. Journal of Physiology, 586(9), 2263–2275.

    PubMed  CAS  Google Scholar 

  • Kopp-Scheinpflug, C., Fuchs, K., Lippe, W. R., Tempel, B. L., & Rübsamen, R. (2003a). Decreased temporal precision of auditory signaling in Kcna1-null mice: An electrophysiological study in vivo. Journal of Neuroscience, 23(27), 9199–9207.

    PubMed  CAS  Google Scholar 

  • Kopp-Scheinpflug, C., Lippe, W. R., Dorrscheidt, G. J., & Rübsamen, R. (2003b). The medial nucleus of the trapezoid body in the gerbil is more than a relay: Comparison of pre- and postsynaptic activity. Journal of the Association for Research in Otolaryngology, 4(1), 1–23.

    PubMed  Google Scholar 

  • Kopp-Scheinpflug, C., Tolnai, S., Malmierca, M. S., & Rübsamen, R. (2008). The medial nucleus of the trapezoid body: Comparative physiology. Neuroscience, 154(1), 160–170.

    PubMed  CAS  Google Scholar 

  • Korogod, N., Lou, X., & Schneggenburger, R. (2005). Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held. Journal of Neuroscience, 25(21), 5127–5137.

    PubMed  CAS  Google Scholar 

  • Korogod, N., Lou, X., & Schneggenburger, R. (2007). Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15923–15928.

    PubMed  CAS  Google Scholar 

  • Kulesza, R. J. Jr. (2008). Cytoarchitecture of the human superior olivary complex: Nuclei of the trapezoid body and posterior tier. Hearing Research, 241(1–2), 52–63.

    PubMed  Google Scholar 

  • Kulesza, R. J. Jr., Viñuela, A., Saldaña, E., & Berrebi, A. S. (2002). Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hearing Research, 168(1–2), 12–24.

    PubMed  Google Scholar 

  • Kulesza, R. J. Jr., Spirou, G. A., & Berrebi, A. S. (2003). Physiological response properties of neurons in the superior paraolivary nucleus of the rat. Journal of Neurophysiology, 89(4), 2299–2312.

    PubMed  Google Scholar 

  • Kulesza, R. J. Jr., Kadner, A., & Berrebi, A. S. (2007). Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. Journal of Neurophysiology, 97(2), 1610–1620.

    PubMed  CAS  Google Scholar 

  • Kuwabara, N., & Zook, J. M. (1991). Classification of the principal cells of the medial nucleus of the trapezoid body. Journal of Comparative Neurology, 314(4), 707–720.

    PubMed  CAS  Google Scholar 

  • Kuwabara, N., DiCaprio, R. A., & Zook, J. M. (1991). Afferents to the medial nucleus of the trapezoid body and their collateral projections. Journal of Comparative Neurology, 314(4), 684–706.

    PubMed  CAS  Google Scholar 

  • Leão, R. M., & von Gersdorff, H. (2002). Noradrenaline increases high-frequency firing at the calyx of Held synapse during development by inhibiting glutamate release. Journal of Neurophysiology, 87(5), 2297–2306.

    PubMed  Google Scholar 

  • Leão, R. N., Berntson, A., Forsythe, I. D., & Walmsley, B. (2004). Reduced low-voltage activated K+ conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse. Journal of Physiology, 559(Pt. 1), 25–33.

    PubMed  Google Scholar 

  • Leão, R. M., Kushmerick, C., Pinaud, R., Renden, R., Li, G.-L., Taschenberger, H., Spirou, G., Levinson, S. R., & von Gersdorff, H. (2005a). Presynaptic Na+ channels: Locus, development, and recovery from inactivation at a high-fidelity synapse. Journal of Neuroscience, 25(14), 3724–3738.

    PubMed  Google Scholar 

  • Leão, R. N., Svahn, K., Berntson, A., & Walmsley, B. (2005b). Hyperpolarization-activated (I h) currents in auditory brainstem neurons of normal and congenitally deaf mice. European Journal of Neuroscience, 22(1), 147–157.

    PubMed  Google Scholar 

  • Leão, R. N., Sun, H., Svahn, K., Berntson, A., Youssoufian, M., Paolini, A. G., Fyffe, R. E. W., & Walmsley, B. (2006). Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. Journal of Physiology, 571(Pt. 3), 563–578.

    PubMed  Google Scholar 

  • Leão, R. N., Leão, R. M., da Costa, L. F., Rock Levinson, S., & Walmsley, B. (2008). A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing. European Journal of Neuroscience, 27(12), 3095–3108.

    PubMed  Google Scholar 

  • Lee, J. S., Kim, M.-H., Ho, W.-K., & Lee, S.-H. (2008). Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse. Journal of Neuroscience, 28(32), 7945–7953.

    PubMed  CAS  Google Scholar 

  • Lee, J. S., Ho, W.-K., & Lee, S.-H. (2010). Post-tetanic increase in the fast-releasing synaptic vesicle pool at the expense of the slowly releasing pool. Journal of General Physiology, 136(3), 259–272.

    PubMed  CAS  Google Scholar 

  • Lenn, N. J., & Reese, T. S. (1966). The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. American Journal of Anatomy, 118(2), 375–390.

    PubMed  CAS  Google Scholar 

  • Li, W., Kaczmarek, L. K., & Perney, T. M. (2001). Localization of two high-threshold potassium channel subunits in the rat central auditory system. Journal of Comparative Neurology, 437(2), 196–218.

    PubMed  CAS  Google Scholar 

  • Lohmann, C., & Friauf, E. (1996). Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. Journal of Comparative Neurology, 367(1), 90–109.

    PubMed  CAS  Google Scholar 

  • Lohmann, C., Ilic, V., & Friauf, E. (1998). Development of a topographically organized auditory network in slice culture is calcium dependent. Journal of Neurobiology, 34(2), 97–112.

    PubMed  CAS  Google Scholar 

  • Lorteije, J. A. M., Rusu, S. I., Kushmerick, C., & Borst, J. G. G. (2009). Reliability and precision of the mouse calyx of Held synapse. Journal of Neuroscience, 29(44), 13770–13784.

    PubMed  CAS  Google Scholar 

  • Lou, X., Scheuss, V., & Schneggenburger, R. (2005). Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature, 435(7041), 497–501.

    PubMed  CAS  Google Scholar 

  • Lou, X., Korogod, N., Brose, N., & Schneggenburger, R. (2008a). Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C. Journal of Neuroscience, 28(33), 8257–8267.

    PubMed  CAS  Google Scholar 

  • Lou, X., Paradise, S., Ferguson, S. M., & De Camilli, P. (2008b). Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17555–17560.

    PubMed  CAS  Google Scholar 

  • Matveev, V., Zucker, R. S., & Sherman, A. (2004). Facilitation through buffer saturation: Constraints on endogenous buffering properties. Biophysical Journal, 86(5), 2691–2709.

    PubMed  CAS  Google Scholar 

  • McLaughlin, M., van der Heijden, M., & Joris, P. X. (2008). How secure is in vivo synaptic transmission at the calyx of Held? Journal of Neuroscience, 28(41), 10206–10219.

    CAS  Google Scholar 

  • Meinrenken, C. J., Borst, J. G. G., & Sakmann, B. (2002). Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. Journal of Neuroscience, 22(5), 1648–1667.

    PubMed  CAS  Google Scholar 

  • Mizutani, H., Hori, T., & Takahashi, T. (2006). 5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. European Journal of Neuroscience, 24(7), 1946–1954.

    PubMed  Google Scholar 

  • Moore, J. K. (1987). The human auditory brain stem: A comparative view. Hearing Research, 29(1), 1–32.

    PubMed  CAS  Google Scholar 

  • Moore, M. J., & Caspary, D. M. (1983). Strychnine blocks binaural inhibition in lateral superior olivary neurons. Journal of Neuroscience, 3(1), 237–242.

    PubMed  CAS  Google Scholar 

  • Moore, J. K., & Moore, R. Y. (1987). Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. Journal of Comparative Neurology, 260(2), 157–174.

    PubMed  CAS  Google Scholar 

  • Morest, D. K. (1968a). The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Research, 9(2), 288–311.

    PubMed  CAS  Google Scholar 

  • Morest, D. K. (1968b). The growth of synaptic endings in the mammalian brain: A study of the calyces of the trapezoid body. Zeitschrift fur Anatomie und Entwicklungsgeschichte, 127(3), 201–220.

    PubMed  CAS  Google Scholar 

  • Müller, M., Felmy, F., Schwaller, B., & Schneggenburger, R. (2007). Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation. Journal of Neuroscience, 27(9), 2261–2271.

    PubMed  Google Scholar 

  • Müller, M., Felmy, F., & Schneggenburger, R. (2008). A limited contribution of Ca2+ current facilitation to paired-pulse facilitation of transmitter release at the rat calyx of Held. Journal of Physiology, 586(Pt. 22), 5503–5520.

    PubMed  Google Scholar 

  • Müller, J., Reyes-Haro, D., Pivneva, T., Nolte, C., Schaette, R., Lübke, J., & Kettenmann, H. (2009). The principal neurons of the medial nucleus of the trapezoid body and NG2+ glial cells receive coordinated excitatory synaptic input. Journal of General Physiology, 134(2), 115–127.

    PubMed  Google Scholar 

  • Müller, M., Goutman, J. D., Kochubey, O., & Schneggenburger, R. (2010). Interaction between facilitation and depression at a large CNS synapse reveals mechanisms of short-term plasticity. Journal of Neuroscience, 30(6), 2007–2016.

    PubMed  Google Scholar 

  • Nakajima, Y. (1971). Fine structure of the medial nucleus of the trapezoid body of the bat with special reference to two types of synaptic endings. Journal of Cell Biology, 50(1), 121–134.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., & Takahashi, T. (2007). Developmental changes in potassium currents at the rat calyx of Held presynaptic terminal. Journal of Physiology, 581(Pt. 3), 1101–1112.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., Yamashita, T., Saitoh, N., & Takahashi, T. (2008). Developmental changes in calcium/calmodulin-dependent inactivation of calcium currents at the rat calyx of Held. Journal of Physiology, 586(9), 2253–2261.

    PubMed  CAS  Google Scholar 

  • Neher, E., & Sakaba, T. (2001). Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of Held. Journal of Neuroscience, 21(2), 444–461.

    PubMed  CAS  Google Scholar 

  • Neher, E., & Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron, 59(6), 861–872.

    PubMed  CAS  Google Scholar 

  • Oleskevich, S., Youssoufian, M., & Walmsley, B. (2004). Presynaptic plasticity at two giant auditory synapses in normal and deaf mice. Journal of Physiology, 560(Pt. 3), 709–719.

    PubMed  CAS  Google Scholar 

  • Palmer, M. J., Taschenberger, H., Hull, C., Tremere, L., & von Gersdorff, H. (2003). Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. Journal of Neuroscience, 23(12), 4831–4841.

    PubMed  CAS  Google Scholar 

  • Pan, B., & Zucker, R. S. (2009). A general model of synaptic transmission and short-term plasticity. Neuron, 62(4), 539–554.

    PubMed  CAS  Google Scholar 

  • Paolini, A. G., FitzGerald, J. V., Burkitt, A. N., & Clark, G. M. (2001). Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hearing Research, 159(1–2), 101–116.

    PubMed  CAS  Google Scholar 

  • Perkins, G. A., Tjong, J., Brown, J. M., Poquiz, P. H., Scott, R. T., Kolson, D. R., Ellisman, M. H., & Spirou, G. A. (2010). The micro-architecture of mitochondria at active zones: Electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. Journal of Neuroscience, 30(3), 1015–1026.

    PubMed  CAS  Google Scholar 

  • Price, G. D., & Trussell, L. O. (2006). Estimate of the chloride concentration in a central glutamatergic terminal: A gramicidin perforated-patch study on the calyx of Held. Journal of Neuroscience, 26(44), 11432–11436.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S. (1899, 1904). Textura del sistema nervioso del hombre y los vertebrados. Madrid: Imprenta y Liberia de Nicolas Moya.

    Google Scholar 

  • Renden, R., Taschenberger, H., Puente, N., Rusakov, D. A., Duvoisin, R., Wang, L.-Y., Lehre, K. P., & von Gersdorff, H. (2005). Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of Held synapses. Journal of Neuroscience, 25(37), 8482–8497.

    PubMed  CAS  Google Scholar 

  • Reyes-Haro, D., Müller, J., Boresch, M., Pivneva, T., Benedetti, B., Scheller, A., Nolte, C., & Kettenmann, H. (2010). Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. Journal of General Physiology.

    Google Scholar 

  • Richter, E. A., Norris, B. E., Fullerton, B. C., Levine, R. A., & Kiang, N. Y. S. (1983). Is there a medial nucleus of the trapezoid body in humans? American Journal of Anatomy, 168(2), 157–166.

    PubMed  CAS  Google Scholar 

  • Riemann, R., & Reuss, S. (1998). Projection neurons in the superior olivary complex of the rat auditory brainstem: A double retrograde tracing study. ORL: Journal of Oto-Rhino-Laryngology and Its Related Specialties, 60(5), 278–282.

    CAS  Google Scholar 

  • Robertson, D. (1985). Brainstem location of efferent neurones projecting to the guinea pig cochlea. Hearing Research, 20(1), 79–84.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Contreras, A., de Lange, R. P. J., Lucassen, P. J., & Borst, J. G. G. (2006). Branching of calyceal afferents during postnatal development in the rat auditory brainstem. Journal of Comparative Neurology, 496(2), 214–228.

    PubMed  Google Scholar 

  • Rodriguez-Contreras, A., van Hoeve, J. S., Habets, R. L. P., Locher, H., & Borst, J. G. G. (2008). Dynamic development of the calyx of Held synapse. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5603–5608.

    PubMed  CAS  Google Scholar 

  • Rowland, K. C., Irby, N. K., & Spirou, G. A. (2000). Specialized synapse-associated structures within the calyx of Held. Journal of Neuroscience, 20(24), 9135–9144.

    PubMed  CAS  Google Scholar 

  • Sakaba, T. (2006). Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of Held. Journal of Neuroscience, 26(22), 5863–5871.

    PubMed  CAS  Google Scholar 

  • Sakaba, T., & Neher, E. (2001a). Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron, 32, 1–13.

    Google Scholar 

  • Sakaba, T., & Neher, E. (2001b). Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 331–336.

    PubMed  CAS  Google Scholar 

  • Sakaba, T., & Neher, E. (2001c). Quantitative relationship between transmitter release and calcium current at the calyx of Held synapse. Journal of Neuroscience, 21(2), 462–476.

    PubMed  CAS  Google Scholar 

  • Sakaba, T., & Neher, E. (2003a). Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature, 424(6950), 775–778.

    PubMed  CAS  Google Scholar 

  • Sakaba, T., & Neher, E. (2003b). Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. Journal of Neuroscience, 23(3), 837–846.

    PubMed  CAS  Google Scholar 

  • Sakaba, T., Stein, A., Jahn, R., & Neher, E. (2005). Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science, 309(5733), 491–494.

    PubMed  CAS  Google Scholar 

  • Saldaña, E., Aparicio, M.-A., Fuentes-Santamaria, V., & Berrebi, A. S. (2009). Connections of the superior paraolivary nucleus of the rat: Projections to the inferior colliculus. Neuroscience, 163(1), 372–387.

    PubMed  Google Scholar 

  • Sanes, J. R., & Yamagata, M. (2009). Many paths to synaptic specificity. Annual Review of Cell and Developmental Biology, 25, 161–195.

    PubMed  CAS  Google Scholar 

  • Sätzler, K., Söhl, L. F., Bollmann, J. H., Borst, J. G. G., Frotscher, M., Sakmann, B., & Lübke, J. H. R. (2002). Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. Journal of Neuroscience, 22(24), 10567–10579.

    PubMed  Google Scholar 

  • Saul, S. M., Brzezinski, J. A., Altschuler, R. A., Shore, S. E., Rudolph, D. D., Kabara, L. L., Halsey, K. E., Hufnagel, R. B., Zhou, J., Dolan, D. F., & Glaser, T. (2008). Math5 expression and function in the central auditory system. Molecular and Cellular Neurosciences, 37(1), 153–169.

    PubMed  CAS  Google Scholar 

  • Schlüter, O. M., Basu, J., Südhof, T. C., & Rosenmund, C. (2006). Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. Journal of Neuroscience, 26(4), 1239–1246.

    PubMed  Google Scholar 

  • Schneggenburger, R., & Neher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature, 406(6798), 889–893.

    PubMed  CAS  Google Scholar 

  • Schneggenburger, R., Meyer, A. C., & Neher, E. (1999). Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron, 23(2), 399–409.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., Joris, P. X., & Yin, T. C. T. (1998). Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. Journal of Neurophysiology, 79(6), 3127–3142.

    PubMed  CAS  Google Scholar 

  • Sommer, I., Lingenhöhl, K., & Friauf, E. (1993). Principal cells of the rat medial nucleus of the trapezoid body: An intracellular in vivo study of their physiology and morphology. Experimental Brain Research, 95(2), 223–239.

    CAS  Google Scholar 

  • Song, P., Yang, Y., Barnes-Davies, M., Bhattacharjee, A., Hamann, M., Forsythe, I. D., Oliver, D. L., & Kaczmarek, L. K. (2005). Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nature Neuroscience, 8(10), 1335–1342.

    PubMed  CAS  Google Scholar 

  • Sonntag, M., Englitz, B., Kopp-Scheinpflug, C., & Rübsamen, R. (2009). Early postnatal development of spontaneous and acoustically evoked discharge activity of principal cells of the medial nucleus of the trapezoid body: An in vivo study in mice. Journal of Neuroscience, 29(30), 9510–9520.

    PubMed  CAS  Google Scholar 

  • Spangler, K. M., Warr, W. B., & Henkel, C. K. (1985). The projections of principal cells of the medial nucleus of the trapezoid body in the cat. Journal of Comparative Neurology, 238(3), 249–262.

    PubMed  CAS  Google Scholar 

  • Spirou, G. A., Brownell, W. E., & Zidanic, M. (1990). Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. Journal of Neurophysiology, 63(5), 1169–1190.

    PubMed  CAS  Google Scholar 

  • Spirou, G. A., Chirila, F. V., von Gersdorff, H., & Manis, P. B. (2008). Heterogeneous Ca2+ influx along the adult calyx of Held: A structural and computational study. Neuroscience, 154(1), 171–185.

    PubMed  CAS  Google Scholar 

  • Srinivasan, G., Kim, J. H., & von Gersdorff, H. (2008). The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. Journal of Neurophysiology, 99(4), 1810–1824.

    PubMed  Google Scholar 

  • Steinert, J. R., Kopp-Scheinpflug, C., Baker, C., Challiss, R. A. J., Mistry, R., Haustein, M. D., Griffin, S. J., Tong, H., Graham, B. P., & Forsythe, I. D. (2008). Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron, 60(4), 642–656.

    PubMed  CAS  Google Scholar 

  • Steinert, J. R., Postlethwaite, M., Jordan, M. D., Chernova, T., Robinson, S. W., & Forsythe, I. D. (2010). NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. Journal of Physiology, 588(Pt. 3), 447–463.

    PubMed  CAS  Google Scholar 

  • Strumbos, J. G., Brown, M. R., Kronengold, J., Polley, D. B., & Kaczmarek, L. K. (2010a). Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. Journal of Neuroscience, 30(31), 10263–10271.

    PubMed  CAS  Google Scholar 

  • Strumbos, J. G., Polley, D. B., & Kaczmarek, L. K. (2010b). Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience, 167(3), 567–572.

    PubMed  CAS  Google Scholar 

  • Südhof, T. C., & Rothman, J. E. (2009). Membrane fusion: Grappling with SNARE and SM proteins. Science, 323(5913), 474–477.

    PubMed  Google Scholar 

  • Sun, J.-Y., & Wu, L.-G. (2001). Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron, 30(1), 171–182.

    PubMed  CAS  Google Scholar 

  • Sun, J.-Y., Wu, X. S., Wu, W., Jin, S. X., Dondzillo, A., & Wu, L.-G. (2004). Capacitance measurements at the calyx of Held in the medial nucleus of the trapezoid body. Journal of Neuroscience Methods, 134(2), 121–131.

    PubMed  Google Scholar 

  • Sun, J., Pang, Z. P., Qin, D., Fahim, A. T., Adachi, R., & Südhof, T. C. (2007). A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature, 450(7170), 676–682.

    PubMed  CAS  Google Scholar 

  • Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., & Onodera, K. (1996). Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science, 274(5287), 594–597.

    PubMed  CAS  Google Scholar 

  • Takahashi, T., Kajikawa, Y., & Tsujimoto, T. (1998). G-protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. Journal of Neuroscience, 18(9), 3138–3146.

    PubMed  CAS  Google Scholar 

  • Taschenberger, H., & von Gersdorff, H. (2000). Fine-tuning an auditory synapse for speed and fidelity: Developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. Journal of Neuroscience, 20(24), 9162–F9173.

    PubMed  CAS  Google Scholar 

  • Taschenberger, H., Leão, R. M., Rowland, K. C., Spirou, G. A., & von Gersdorff, H. (2002). Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron, 36(6), 1127–1143.

    PubMed  CAS  Google Scholar 

  • Taschenberger, H., Scheuss, V., & Neher, E. (2005). Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS. Journal of Physiology, 568(Pt. 2), 513–537.

    PubMed  CAS  Google Scholar 

  • Tatsuoka, H., & Reese, T. S. (1989). New structural features of synapses in the anteroventral cochlear nucleus prepared by direct freezing and freeze-substitution. Journal of Comparative Neurology, 290(3), 343–357.

    PubMed  CAS  Google Scholar 

  • Thompson, A. M., & Schofield, B. R. (2000). Afferent projections of the superior olivary complex. Microscopy Research and Technique, 51(4), 330–354.

    PubMed  CAS  Google Scholar 

  • Tollin, D. J., & Yin, T. C. T. (2005). Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. Journal of Neuroscience, 25(46), 10648–10657.

    PubMed  CAS  Google Scholar 

  • Tolnai, S., Englitz, B., Scholbach, J., Jost, J., & Rübsamen, R. (2009). Spike transmission delay at the calyx of Held in vivo: Rate dependence, phenomenological modeling, and relevance for sound localization. Journal of Neurophysiology, 102(2), 1206–1217.

    PubMed  Google Scholar 

  • Tong, H., Steinert, J. R., Robinson, S. W., Chernova, T., Read, D. J., Oliver, D. L., & Forsythe, I. D. (2010). Regulation of Kv channel expression and neuronal excitability in rat medial nucleus of the trapezoid body maintained in organotypic culture. Journal of Physiology, 588(Pt. 9), 1451–1468.

    PubMed  CAS  Google Scholar 

  • Tritsch, N. X., Rodríguez-Contreras, A., Crins, T. T. H., Wang, H. C., Borst, J. G. G., & Bergles, D. E. (2010). Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nature Neuroscience, 13(9), 1050–1052.

    PubMed  CAS  Google Scholar 

  • Tsuchitani, C., & Boudreau, J. C. (1966). Single unit analysis of cat superior olive S segment with tonal stimuli. Journal of Neurophysiology, 29(4), 684–697.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, T., Jeromin, A., Saitoh, N., Roder, J. C., & Takahashi, T. (2002). Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science, 295(5563), 2276–2279.

    PubMed  CAS  Google Scholar 

  • Turecek, R., & Trussell, L. O. (2001). Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature, 411(6837), 587–590.

    PubMed  CAS  Google Scholar 

  • Turecek, R., & Trussell, L. O. (2002). Reciprocal developmental regulation of presynaptic ionotropic receptors. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13884–13889.

    PubMed  CAS  Google Scholar 

  • Vater, M., & Feng, A. S. (1990). Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. Journal of Comparative Neurology, 292(3), 373–395.

    PubMed  CAS  Google Scholar 

  • Voiculescu, O., Charnay, P., & Schneider-Maunoury, S. (2000). Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis, 26(2), 123–126.

    PubMed  CAS  Google Scholar 

  • von Gersdorff, H., Schneggenburger, R., Weis, S., & Neher, E. (1997). Presynaptic depression at a calyx synapse: The small contribution of metabotropic glutamate receptors. Journal of Neuroscience, 17(21), 8137–8146.

    Google Scholar 

  • von Hehn, C. A., Bhattacharjee, A., & Kaczmarek, L. K. (2004). Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice. Journal of Neuroscience, 24(8), 1936–1940.

    Google Scholar 

  • Wadel, K., Neher, E., & Sakaba, T. (2007). The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron, 53(4), 563–575.

    PubMed  CAS  Google Scholar 

  • Walmsley, B., Berntson, A., Leão, R. N., & Fyffe, R. E. W. (2006). Activity-dependent regulation of synaptic strength and neuronal excitability in central auditory pathways. Journal of Physiology, 572(Pt. 2), 313–321.

    PubMed  CAS  Google Scholar 

  • Wang, L.-Y., & Kaczmarek, L. K. (1998). High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature, 394(6691), 384–388.

    PubMed  CAS  Google Scholar 

  • Wang, L.-Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. Journal of Physiology, 509(Pt. 1), 183–194.

    PubMed  CAS  Google Scholar 

  • Wang, L.-Y., Neher, E., & Taschenberger, H. (2008). Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release. Journal of Neuroscience, 28(53), 14450–14458.

    PubMed  CAS  Google Scholar 

  • Wenthold, R. J., Huie, D., Altschuler, R. A., & Reeks, K. A. (1987). Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience, 22(3), 897–912.

    PubMed  CAS  Google Scholar 

  • Wimmer, V. C., Nevian, T., & Kuner, T. (2004). Targeted in vivo expression of proteins in the calyx of Held. Pflugers Archiv: European Journal of Physiology, 449(3), 319–333.

    PubMed  CAS  Google Scholar 

  • Wimmer, V. C., Horstmann, H., Groh, A., & Kuner, T. (2006). Donut-like topology of synaptic vesicles with a central cluster of mitochondria wrapped into membrane protrusions: A novel structure-function module of the adult calyx of Held. Journal of Neuroscience, 26(1), 109–116.

    PubMed  CAS  Google Scholar 

  • Wölfel, M., Lou, X., & Schneggenburger, R. (2007). A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. Journal of Neuroscience, 27(12), 3198–3210.

    PubMed  Google Scholar 

  • Wong, A. Y., Graham, B. P., Billups, B., & Forsythe, I. D. (2003). Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. Journal of Neuroscience, 23(12), 4868–4877.

    PubMed  CAS  Google Scholar 

  • Wong, A. Y. C., Billups, B., Johnston, J., Evans, R. J., & Forsythe, I. D. (2006). Endogenous activation of adenosine A1 receptors, but not P2X receptors, during high-frequency synaptic transmission at the calyx of Held. Journal of Neurophysiology, 95(6), 3336–3342.

    PubMed  CAS  Google Scholar 

  • Wu, L. G., & Borst, J. G. G. (1999). The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron, 23(4), 821–832.

    PubMed  CAS  Google Scholar 

  • Wu, S. H., & Kelly, J. B. (1991). Physiological properties of neurons in the mouse superior olive: Membrane characteristics and postsynaptic responses studied in vitro. Journal of Neurophysiology, 65(2), 230–246.

    PubMed  CAS  Google Scholar 

  • Wu, S. H., & Kelly, J. B. (1995). Inhibition in the superior olivary complex: Pharmacological evidence from mouse brain slice. Journal of Neurophysiology, 73(1), 256–269.

    PubMed  CAS  Google Scholar 

  • Wu, W., & Wu, L.-G. (2007). Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10234–10239.

    PubMed  CAS  Google Scholar 

  • Wu, X.-S., & Wu, L.-G. (2009). Rapid endocytosis does not recycle vesicles within the readily releasable pool. Journal of Neuroscience, 29(35), 11038–11042.

    PubMed  CAS  Google Scholar 

  • Wu, L.-G., Westenbroek, R. E., Borst, J. G. G., Catterall, W. E., & Sakmann, B. (1999). Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. Journal of Neuroscience, 19, 726–736.

    PubMed  CAS  Google Scholar 

  • Wu, L.-G., Ryan, T. A., & Lagnado, L. (2007). Modes of vesicle retrieval at ribbon synapses, calyx-type synapses, and small central synapses. Journal of Neuroscience, 27(44), 11793–11802.

    PubMed  CAS  Google Scholar 

  • Wu, X. S., McNeil, B. D., Xu, J., Fan, J., Xue, L., Melicoff, E., Adachi, R., Bai, L., & Wu, L.-G. (2009). Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nature Neuroscience, 12(8), 1003–1010.

    PubMed  CAS  Google Scholar 

  • Xiao, L., Han, Y., Runne, H., Murray, H., Kochubey, O., Luthi-Carter, R., & Schneggenburger, R. (2010). Developmental expression of Synaptotagmin isoforms in single calyx of Held–generating neurons. Molecular and Cellular Neurosciences.

    Google Scholar 

  • Xu, J., & Wu, L.-G. (2005). The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron, 46(4), 633–645.

    PubMed  CAS  Google Scholar 

  • Xu, J., Mashimo, T., & Südhof, T. C. (2007). Synaptotagmin-1, -2, and −9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron, 54(4), 567–581.

    PubMed  CAS  Google Scholar 

  • Xu, J., McNeil, B., Wu, W., Nees, D., Bai, L., & Wu, L.-G. (2008). GTP-independent rapid and slow endocytosis at a central synapse. Nature Neuroscience, 11(1), 45–53.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., Hige, T., & Takahashi, T. (2005). Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science, 307(5706), 124–127.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., Eguchi, K., Saitoh, N., von Gersdorff, H., & Takahashi, T. (2010). Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nature Neuroscience, 13(7), 838–844.

    PubMed  CAS  Google Scholar 

  • Yang, Y.-M., & Wang, L.-Y. (2006). Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse. Journal of Neuroscience, 26(21), 5698–5708.

    PubMed  CAS  Google Scholar 

  • Yang, B., Desai, R., & Kaczmarek, L. K. (2007). Slack and slick KNa channels regulate the accuracy of timing of auditory neurons. Journal of Neuroscience, 27(10), 2617–2627.

    PubMed  CAS  Google Scholar 

  • Yang, Y.-M., Fedchyshyn, M. J., Grande, G., Aitoubah, J., Tsang, C. W., Xie, H., Ackerley, C. A., Trimble, W. S., & Wang, L.-Y. (2010). Septins regulate developmental switching from microdomain to nanodomain coupling of Ca2+ influx to neurotransmitter release at a central synapse. Neuron, 67(1), 100–115.

    PubMed  CAS  Google Scholar 

  • Young, S. M. Jr., & Neher, E. (2009). Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron, 63(4), 482–496.

    PubMed  CAS  Google Scholar 

  • Youssoufian, M., Oleskevich, S., & Walmsley, B. (2005). Development of a robust central auditory synapse in congenital deafness. Journal of Neurophysiology, 94(5), 3168–3180.

    PubMed  CAS  Google Scholar 

  • Youssoufian, M., Couchman, K., Shivdasani, M. N., Paolini, A. G., & Walmsley, B. (2008). Maturation of auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse. Journal of Comparative Neurology, 506(3), 442–451.

    PubMed  Google Scholar 

  • Zhou, Y., Carney, L. H., & Colburn, H. S. (2005). A model for interaural time difference sensitivity in the medial superior olive: Interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. Journal of Neuroscience, 25(12), 3046–3058.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Larry Trussell for helpful comments on an earlier version of this chapter. The research was supported by ALW-NWO (Moving vesicles, 814.02.004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. G. Borst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Borst, J.G.G., Rusu, S.I. (2012). The Calyx of Held Synapse. In: Trussell, L., Popper, A., Fay, R. (eds) Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9517-9_5

Download citation

Publish with us

Policies and ethics