Skip to main content

Existence Results For Some Second-Order Stochastic Differential Equations

  • Chapter
  • First Online:
  • 1067 Accesses

Abstract

The impetus of the work done in this chapter comes from two main sources from the deterministic setting. The first one is the work of Mawhin [139], in which the dissipativeness and the existence of bounded solutions on the whole real number line to the second-order differential equations given by

$$u^{\prime \prime}(t) + cu^{\prime} + Au + g(t, u) = 0, \ \ t \in \mathbb{R},$$

where \(A : D(A) \subset \mathbb{H} \to \mathbb{H}\) is a self-adjoint operator on a Hilbert space \(\mathbb{H}\), which is semipositive definite and has a compact resolvent,\(c>0, \ {\rm and} \ g : \mathbb{R} \times \mathbb{H} \to \mathbb{H}\) is bounded, sufficiently regular, and satisfies some semi-coercivity condition, was established. The abstract results in [139] were subsequently utilized to study the existence of bounded solutions to the so-called nonlinear telegraph equation subject to some Neumann boundary conditions. Unfortunately, the main result of this chapter does not apply to the telegraph equation as the linear operator presented in [139], which involves Neumann boundary boundary conditions, lacks exponential dichotomy.

The second source is the work by Leiva [118], in which the existence of (exponentially stable) bounded solutions and almost periodic solutions to the second-order systems of differential equations given by

$$u^{\prime\prime}(t) + cu^{\prime}(t) + dAu +kH(u)=P(t),\quad u\in \mathbb{R}^n, \quad t\in \mathbb{R},$$

where \(A \ {\rm is \ an} \ n \times n\)-matrix whose eigenvalues are positive, c, d, k are positive constants, \(H : \mathbb{R}^n \to \mathbb{R}^n\) is a locally Lipschitz function, \(P : \mathbb{R} \to \mathbb{R}^n\) is a bounded continuous function, was established.

In this chapter, using slightly different techniques as in [118, 139], we study and obtain some reasonable sufficient conditions, which do guarantee the existence of square-mean almost periodic solutions to the classes of nonautonomous second-order stochastic differential equations

$$\begin{array}{lll}dX^{\prime}(\omega, t) + a(t) dX(\omega, t) & = & \left[ -b(t) \mathcal{A}X(\omega, t) + f_1(t, X(\omega, t))\right]dt \\ {} & {} & +f_2(t, X(\omega, t)) d\mathbb{W}(\omega, t), \end{array}$$

for all \(\omega \in \Omega \ {\rm and} \ t\in \mathbb{R}, \ {\rm where} \ \mathcal{A} : D(\mathcal{A}) \subset \mathbb{H} \to \mathbb{H}\) is a self-adjoint linear operator whose spectrum consists of isolated eigenvalues \(0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n \to \infty\) with each eigenvalue having a finite multiplicity \(\gamma_j\) equals to the multiplicity of the corresponding eigenspace, the functions \(a, b : \mathbb{R} \to (0, \infty)\) are almost periodic functions, and the function \(f_i(i = 1, 2) : \mathbb{R} \times L^2(\Omega, \mathbb{H}) \to L^2(\Omega, \mathbb{H}) \) are jointly continuous functions satisfying some additional conditions and \(\mathbb{W}\) is a one dimensional Brownian motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Bezandry .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bezandry, P.H., Diagana, T. (2011). Existence Results For Some Second-Order Stochastic Differential Equations. In: Almost Periodic Stochastic Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9476-9_7

Download citation

Publish with us

Policies and ethics