Skip to main content

Signaling in Hypertrophy and Heart Failure

  • Chapter
  • First Online:
Signaling in the Heart
  • 1160 Accesses

Abstract

In human, clinical cardiac hypertrophy is ­characterized by increased myocardial mass secondary to cardiomyocyte proliferation. At the cellular level, on the other hand, cardiac hypertrophy is characterized by increased cardiomyocyte size. In the mammalian embryo, cardiac myocytes rapidly proliferate but shortly after birth irreversibly exit the cell cycle, shifting the predominant form of growth from hyperplasia (proliferation) to hypertrophy (increase in size). Significant research efforts have been directed to identify the mitogenic stimuli, and the signaling pathways that mediate these distinct growth processes not only in isolated cells, but also in in vivo hearts; however, at this point if cardiac hypertrophy is a “good” mechanism to stimulate or a “bad” process to prevent remains a matter of discussion. A broad analysis of the cardiovascular signaling pathways that play a central role in hypertrophy, either functioning singly or in synchronous mode, is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houser SR, Margulies KB. Is depressed myocyte contractility centrally involved in heart failure? Circ Res. 2003;92:350–8.

    Article  PubMed  CAS  Google Scholar 

  2. Davies CH, Davia K, Bennett JG, Pepper JR, Poole-Wilson PA, Harding SE. Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation. 1995;92:2540–9.

    PubMed  CAS  Google Scholar 

  3. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287:1308–20.

    Article  PubMed  Google Scholar 

  4. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.

    PubMed  CAS  Google Scholar 

  5. Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF. Energy metabolism in the hypertrophied heart. Heart Fail Rev. 2002;7:161–73.

    Article  PubMed  CAS  Google Scholar 

  6. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367:356–67.

    Article  PubMed  Google Scholar 

  7. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  PubMed  CAS  Google Scholar 

  8. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–82.

    Article  PubMed  CAS  Google Scholar 

  9. Carabello BA. Concentric versus eccentric remodeling. J Card Fail. 2002;8:S258–63.

    Article  PubMed  Google Scholar 

  10. Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol. 2001;280:H674–83.

    PubMed  CAS  Google Scholar 

  11. Litwin SE, Raya TE, Anderson PG, Litwin CM, Bressler R, Goldman S. Induction of myocardial hypertrophy after coronary ligation in rats decreases ventricular dilatation and improves systolic function. Circulation. 1991;84:1819–27.

    PubMed  CAS  Google Scholar 

  12. Asakura M, Kitakaze M, Takashima S, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8:35–40.

    Article  PubMed  CAS  Google Scholar 

  13. Liao JK. Shedding growth factors in cardiac hypertrophy. Nat Med. 2002;8:20–1.

    Article  PubMed  CAS  Google Scholar 

  14. Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88:1112–9.

    Article  PubMed  CAS  Google Scholar 

  15. Terracio L, Rubin K, Gullberg D, et al. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res. 1991;68:734–44.

    PubMed  CAS  Google Scholar 

  16. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.

    Article  PubMed  CAS  Google Scholar 

  17. Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure: from molecules to man (Part I). Cardiovasc Pathol. 2005;14:1–11.

    Article  PubMed  Google Scholar 

  18. Dorn 2nd GW, Hahn HS. Genetic factors in cardiac hypertrophy. Ann NY Acad Sci. 2004;1015:225–37.

    Article  PubMed  CAS  Google Scholar 

  19. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109:1580–9.

    Article  PubMed  Google Scholar 

  20. Rybin VO, Pak E, Alcott S, Steinberg SF. Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol Pharmacol. 2003;63:1338–48.

    Article  PubMed  CAS  Google Scholar 

  21. Rockman HA, Koch WJ, Milano CA, Lefkowitz RJ. Myocardial beta-adrenergic receptor signaling in vivo: insights from transgenic mice. J Mol Med. 1996;74:489–95.

    Article  PubMed  CAS  Google Scholar 

  22. Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev. 1999;51:651–90.

    PubMed  CAS  Google Scholar 

  23. O’Rourke MF, Iversen LJ, Lomasney JW, Bylund DB. Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J Pharmacol Exp Ther. 1994;271:735–40.

    PubMed  Google Scholar 

  24. Flordellis C, Manolis A, Scheinin M, Paris H. Clinical and pharmacological significance of alpha2-adrenoceptor polymorphisms in cardiovascular diseases. Int J Cardiol. 2004;97:367–72.

    Article  PubMed  Google Scholar 

  25. Penela P, Murga C, Ribas C, Tutor AS, Peregrin S, Mayor Jr F. Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res. 2006;69:46–56.

    Article  PubMed  CAS  Google Scholar 

  26. Hata JA, Koch WJ. Phosphorylation of G protein-coupled receptors: GPCR kinases in heart disease. Mol Interv. 2003;3:264–72.

    Article  PubMed  CAS  Google Scholar 

  27. Mueller EE, Grandy SA, Howlett SE. Protein kinase A-mediated phosphorylation contributes to enhanced contraction observed in mice that overexpress beta-adrenergic receptor kinase-1. J Pharmacol Exp Ther. 2006;319:1307–16.

    Article  PubMed  CAS  Google Scholar 

  28. Mondry A, Bourgeois F, Carre F, Swynghedauw B, Moalic JM. Decrease in beta 1-adrenergic and M2-muscarinic receptor mRNA levels and unchanged accumulation of mRNAs coding for G alpha i-2 and G alpha s proteins in rat cardiac hypertrophy. J Mol Cell Cardiol. 1995;27:2287–94.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Z, Shi H, Wang H. Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol. 2004;142:395–408.

    Article  PubMed  CAS  Google Scholar 

  30. Shi H, Wang H, Yang B, Xu D, Wang Z. The M3 receptor-mediated K(+) current (IKM3), a G(q) protein-coupled K(+) channel. J Biol Chem. 2004;279:21774–8.

    Article  PubMed  CAS  Google Scholar 

  31. Cimini CM, Upsher ME, Weiss HR. Myocardial O2 supply and consumption in early cardiac hypertrophy of renal hypertensive rabbits. Basic Res Cardiol. 1989;84:13–21.

    Article  PubMed  CAS  Google Scholar 

  32. Cimini CM, Weiss HR. Isoproterenol and myocardial O2 supply/consumption in hypertension-induced myocardial hypertrophy. Am J Physiol. 1990;259:H346–51.

    PubMed  CAS  Google Scholar 

  33. Brodde OE, Leineweber K. Autonomic receptor systems in the failing and aging human heart: similarities and differences. Eur J Pharmacol. 2004;500:167–76.

    Article  PubMed  CAS  Google Scholar 

  34. Scholz PM, Grover GJ, Mackenzie JW, Weiss HR. Regional oxygen supply and consumption balance in experimental left ventricular hypertrophy. Basic Res Cardiol. 1990;85:575–84.

    Article  PubMed  CAS  Google Scholar 

  35. Jakob G, Mair J, Pichler M, Puschendorf B. Ergometric exercise testing and sensitivity of cyclic guanosine 3′,5′-monophosphate (cGMP) in diagnosing asymptomatic left ventricular dysfunction. Br Heart J. 1995;73:145–50.

    Article  PubMed  CAS  Google Scholar 

  36. Lubien E, DeMaria A, Krishnaswamy P, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation. 2002;105:595–601.

    Article  PubMed  CAS  Google Scholar 

  37. Kotchi Kotchi E, Weisselberg T, Rohnert P, et al. Nitric oxide inhibits isoprenaline-induced positive inotropic effects in normal, but not in hypertrophied rat heart. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:579–83.

    Article  PubMed  CAS  Google Scholar 

  38. Morrison LK, Harrison A, Krishnaswamy P, Kazanegra R, Clopton P, Maisel A. Utility of a rapid B-natriuretic peptide assay in differentiating congestive heart failure from lung disease in patients presenting with dyspnea. J Am Coll Cardiol. 2002;39:202–9.

    Article  PubMed  CAS  Google Scholar 

  39. Guo X, Kedem J, Weiss HR, Tse J, Roitstein A, Scholz PM. Effect of cyclic GMP reduction on regional myocardial mechanics and metabolism in experimental left ventricular hypertrophy. J Cardiovasc Pharmacol. 1996;27:392–400.

    Article  PubMed  CAS  Google Scholar 

  40. Roitstein A, Kedem J, Cheinberg B, Weiss HR, Tse J, Scholz PM. The effect of intracoronary nitroprusside on cyclic GMP and regional mechanics is altered in a canine model of left ventricular hypertrophy. J Surg Res. 1994;57:584–90.

    Article  PubMed  CAS  Google Scholar 

  41. Seymour AA, Burkett DE, Asaad MM, Lanoce VM, Clemons AF, Rogers WL. Hemodynamic, renal, and hormonal effects of rapid ventricular pacing in conscious dogs. Lab Anim Sci. 1994;44:443–52.

    PubMed  CAS  Google Scholar 

  42. Tajima M, Bartunek J, Weinberg EO, Ito N, Lorell BH. Atrial natriuretic peptide has different effects on contractility and intracellular pH in normal and hypertrophied myocytes from pressure-overloaded hearts. Circulation. 1998;98:2760–4.

    PubMed  CAS  Google Scholar 

  43. Paulus WJ, Frantz S, Kelly RA. Nitric oxide and cardiac contractility in human heart failure: time for reappraisal. Circulation. 2001;104:2260–2.

    PubMed  CAS  Google Scholar 

  44. Rosenkranz AC, Hood SG, Woods RL, Dusting GJ, Ritchie RH. B-type natriuretic peptide prevents acute hypertrophic responses in the diabetic rat heart: importance of cyclic GMP. Diabetes. 2003;52:2389–95.

    Article  PubMed  CAS  Google Scholar 

  45. Silberbach M, Roberts Jr CT. Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cell Signal. 2001;13:221–31.

    Article  PubMed  CAS  Google Scholar 

  46. Simko F, Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol Res. 2000;49:37–46.

    PubMed  CAS  Google Scholar 

  47. Fagan JM, Rex SE, Hayes-Licitra SA, Waxman L. L-arginine reduces right heart hypertrophy in hypoxia-induced pulmonary hypertension. Biochem Biophys Res Commun. 1999;254:100–3.

    Article  PubMed  CAS  Google Scholar 

  48. Padilla F, Garcia-Dorado D, Agullo L, et al. Intravenous administration of the natriuretic peptide urodilatin at low doses during coronary reperfusion limits infarct size in anesthetized pigs. Cardiovasc Res. 2001;51:592–600.

    Article  PubMed  CAS  Google Scholar 

  49. Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Fail Rev. 2002;7:317–25.

    Article  PubMed  CAS  Google Scholar 

  50. Devlin AM, Brosnan MJ, Graham D, et al. Vascular smooth muscle cell polyploidy and cardiomyocyte hypertrophy due to chronic NOS inhibition in vivo. Am J Physiol. 1998;274:H52–9.

    PubMed  CAS  Google Scholar 

  51. Bubikat A, De Windt LJ, Zetsche B, et al. Local atrial natriuretic peptide signaling prevents hypertensive cardiac hypertrophy in endothelial nitric-oxide synthase-deficient mice. J Biol Chem. 2005;280:21594–9.

    Article  PubMed  CAS  Google Scholar 

  52. Takimoto E, Champion HC, Belardi D, et al. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res. 2005;96:100–9.

    Article  PubMed  CAS  Google Scholar 

  53. Su J, Zhang Q, Moalem J, Tse J, Scholz PM, Weiss HR. Functional effects of C-type natriuretic peptide and nitric oxide are attenuated in hypertrophic myocytes from pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol. 2005;288:H1367–73.

    Article  PubMed  CAS  Google Scholar 

  54. Yan L, Zhang Q, Scholz PM, Weiss HR. Cyclic GMP protein kinase activity is reduced in thyroxine-induced hypertrophic cardiac myocytes. Clin Exp Pharmacol Physiol. 2003;30:943–50.

    Article  PubMed  CAS  Google Scholar 

  55. Katz E, Zhang Q, Weiss HR, Scholz PM. T4-induced cardiac hypertrophy disrupts cyclic GMP mediated responses to brain natriuretic peptide in rabbit myocardium. Peptides. 2006;27:2276–83.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Q, Lazar M, Molino B, et al. Reduction in interaction between cGMP and cAMP in dog ventricular myocytes with hypertrophic failure. Am J Physiol Heart Circ Physiol. 2005;289:H1251–7.

    Article  PubMed  CAS  Google Scholar 

  57. Giannessi D, Del Ry S, Vitale RL. The role of endothelins and their receptors in heart failure. Pharmacol Res. 2001;43:111–26.

    Article  PubMed  CAS  Google Scholar 

  58. Sugden PH. An overview of endothelin signaling in the cardiac myocyte. J Mol Cell Cardiol. 2003;35:871–86.

    Article  PubMed  CAS  Google Scholar 

  59. Dinh DT, Frauman AG, Johnston CI, Fabiani ME. Angiotensin receptors: distribution, signalling and function. Clin Sci (Lond). 2001;100:481–92.

    Article  CAS  Google Scholar 

  60. Saito Y, Berk BC. Angiotensin II-mediated signal transduction pathways. Curr Hypertens Rep. 2002;4:167–71.

    Article  PubMed  Google Scholar 

  61. Brasier AR, Jamaluddin M, Han Y, Patterson C, Runge MS. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem. 2000;212:155–69.

    Article  PubMed  CAS  Google Scholar 

  62. Chen Y, Arrigo AP, Currie RW. Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock? Am J Physiol Heart Circ Physiol. 2004;287:H1104–14.

    Article  PubMed  CAS  Google Scholar 

  63. Clerk A, Aggeli IK, Stathopoulou K, Sugden PH. Peptide growth factors signal differentially through protein kinase C to extracellular signal-regulated kinases in neonatal cardiomyocytes. Cell Signal. 2006;18:225–35.

    Article  PubMed  CAS  Google Scholar 

  64. Coughlin SR, Camerer E. PARticipation in inflammation. J Clin Invest. 2003;111:25–7.

    PubMed  CAS  Google Scholar 

  65. Sabri A, Muske G, Zhang H, et al. Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res. 2000;86:1054–61.

    PubMed  CAS  Google Scholar 

  66. Barnes JA, Singh S, Gomes AV. Protease activated receptors in cardiovascular function and disease. Mol Cell Biochem. 2004;263:227–39.

    Article  PubMed  CAS  Google Scholar 

  67. Hamm HE. The many faces of G protein signaling. J Biol Chem. 1998;273:669–72.

    Article  PubMed  CAS  Google Scholar 

  68. Adams JW, Brown JH. G-proteins in growth and apoptosis: lessons from the heart. Oncogene. 2001;20:1626–34.

    Article  PubMed  CAS  Google Scholar 

  69. Dorn 2nd GW, Brown JH. Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc Med. 1999;9:26–34.

    Article  PubMed  CAS  Google Scholar 

  70. Clerk A, Sugden PH. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res. 2000;86:1019–23.

    PubMed  CAS  Google Scholar 

  71. Meszaros JG, Gonzalez AM, Endo-Mochizuki Y, Villegas S, Villarreal F, Brunton LL. Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). Am J Physiol Cell Physiol. 2000;278:C154–62.

    PubMed  CAS  Google Scholar 

  72. Engel FB, Schebesta M, Duong MT, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19:1175–87.

    Article  PubMed  CAS  Google Scholar 

  73. Tamamori-Adachi M, Ito H, Sumrejkanchanakij P, et al. Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circ Res. 2003;92:e12–9.

    Article  PubMed  CAS  Google Scholar 

  74. Gao MH, Lai NC, Roth DM, et al. Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation. 1999;99:1618–22.

    PubMed  CAS  Google Scholar 

  75. Lai NC, Roth DM, Gao MH, et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation. 2004;110:330–6.

    Article  PubMed  CAS  Google Scholar 

  76. Roth DM, Gao MH, Lai NC, et al. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation. 1999;99:3099–102.

    PubMed  CAS  Google Scholar 

  77. Iwami G, Kawabe J, Ebina T, Cannon PJ, Homcy CJ, Ishikawa Y. Regulation of adenylyl cyclase by protein kinase A. J Biol Chem. 1995;270:12481–4.

    Article  PubMed  CAS  Google Scholar 

  78. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312.

    Article  PubMed  CAS  Google Scholar 

  79. Wing MR, Bourdon DM, Harden TK. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3:273–80.

    Article  PubMed  CAS  Google Scholar 

  80. Tirziu D, Simons M. Endothelium-driven myocardial growth or nitric oxide at the crossroads. Trends Cardiovasc Med. 2008;18:299–305.

    Article  PubMed  CAS  Google Scholar 

  81. Burger AJ, Horton DP, LeJemtel T, et al. Effect of nesiritide (B-type natriuretic peptide) and dobutamine on ventricular arrhythmias in the treatment of patients with acutely decompensated congestive heart failure: the PRECEDENT study. Am Heart J. 2002;144:1102–8.

    Article  PubMed  CAS  Google Scholar 

  82. Winter WE, Elin RJ. The role and assessment of ventricular peptides in heart failure. Clin Lab Med. 2004;24:235–74.

    Article  PubMed  Google Scholar 

  83. Parodi O, De Maria R, Roubina E. Redox state, oxidative stress and endothelial dysfunction in heart failure: the puzzle of nitrate-thiol interaction. J Cardiovasc Med (Hagerstown). 2007;8:765–74.

    Article  Google Scholar 

  84. Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy. Bioessays. 2004;26:608–15.

    Article  PubMed  CAS  Google Scholar 

  85. Dodge KL, Khouangsathiene S, Kapiloff MS, et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001;20:1921–30.

    Article  PubMed  CAS  Google Scholar 

  86. Hulme JT, Scheuer T, Catterall WA. Regulation of cardiac ion channels by signaling complexes: role of modified leucine zipper motifs. J Mol Cell Cardiol. 2004;37:625–31.

    Article  PubMed  CAS  Google Scholar 

  87. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006;20:3347–65.

    Article  PubMed  CAS  Google Scholar 

  88. Chesley A, Lundberg MS, Asai T, et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res. 2000;87:1172–9.

    PubMed  CAS  Google Scholar 

  89. Dorn 2nd GW, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115:527–37.

    PubMed  CAS  Google Scholar 

  90. Sugden PH. Ras, Akt, and mechanotransduction in the cardiac myocyte. Circ Res. 2003;93:1179–92.

    Article  PubMed  CAS  Google Scholar 

  91. Aikawa R, Nawano M, Gu Y, et al. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation. 2000;102:2873–9.

    PubMed  CAS  Google Scholar 

  92. Gao F, Gao E, Yue TL, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation. 2002;105:1497–502.

    Article  PubMed  CAS  Google Scholar 

  93. Matsui T, Li L, del Monte F, et al. Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation. 1999;100:2373–9.

    PubMed  CAS  Google Scholar 

  94. Yamashita K, Kajstura J, Discher DJ, et al. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res. 2001;88:609–14.

    PubMed  CAS  Google Scholar 

  95. Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-kappa B. J Biol Chem. 2001;276:37621–9.

    Article  PubMed  CAS  Google Scholar 

  96. Negoro S, Oh H, Tone E, et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation. 2001;103:555–61.

    PubMed  CAS  Google Scholar 

  97. Tian B, Liu J, Bitterman P, Bache RJ. Angiotensin II modulates nitric oxide-induced cardiac fibroblast apoptosis by activation of AKT/PKB. Am J Physiol Heart Circ Physiol. 2003;285:H1105–12.

    PubMed  CAS  Google Scholar 

  98. Clerk A, Sugden PH. Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. Am J Cardiol. 1999;83:64H–9.

    Article  PubMed  CAS  Google Scholar 

  99. Krieg T, Landsberger M, Alexeyev MF, Felix SB, Cohen MV, Downey JM. Activation of Akt is essential for acetylcholine to trigger generation of oxygen free radicals. Cardiovasc Res. 2003;58:196–202.

    Article  PubMed  CAS  Google Scholar 

  100. Yin H, Chao L, Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension. 2004;43:109–16.

    Article  PubMed  CAS  Google Scholar 

  101. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem. 2000;275:4693–8.

    Article  PubMed  CAS  Google Scholar 

  102. Mockridge JW, Marber MS, Heads RJ. Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem Biophys Res Commun. 2000;270:947–52.

    Article  PubMed  CAS  Google Scholar 

  103. Matsui T, Tao J, del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. 2001;104:330–5.

    PubMed  CAS  Google Scholar 

  104. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  PubMed  CAS  Google Scholar 

  105. Shioi T, McMullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 2002;22:2799–809.

    Article  PubMed  CAS  Google Scholar 

  106. Matsui T, Li L, Wu JC, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;277:22896–901.

    Article  PubMed  CAS  Google Scholar 

  107. Wang L, Wang X, Proud CG. Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. Am J Physiol Heart Circ Physiol. 2000;278:H1056–68.

    PubMed  CAS  Google Scholar 

  108. Gao X, Zhang Y, Arrazola P, et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol. 2002;4:699–704.

    Article  PubMed  CAS  Google Scholar 

  109. Marygold SJ, Leevers SJ. Growth signaling: TSC takes its place. Curr Biol. 2002;12:R785–7.

    Article  PubMed  CAS  Google Scholar 

  110. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5:578–81.

    Article  PubMed  CAS  Google Scholar 

  111. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13:1259–68.

    Article  PubMed  CAS  Google Scholar 

  112. Badorff C, Ruetten H, Mueller S, et al. Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. J Clin Invest. 2002;109:373–81.

    PubMed  CAS  Google Scholar 

  113. Haq S, Choukroun G, Kang ZB, et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol. 2000;151:117–30.

    Article  PubMed  CAS  Google Scholar 

  114. Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem. 2000;275:14466–75.

    Article  PubMed  CAS  Google Scholar 

  115. Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA. 2002;99:907–12.

    Article  PubMed  CAS  Google Scholar 

  116. Proud CG. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res. 2004;63:403–13.

    Article  PubMed  CAS  Google Scholar 

  117. Haq S, Michael A, Andreucci M, et al. Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci USA. 2003;100:4610–5.

    Article  PubMed  CAS  Google Scholar 

  118. Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J. Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem. 2001;276:28586–97.

    Article  PubMed  CAS  Google Scholar 

  119. Xiao G, Mao S, Baumgarten G, et al. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res. 2001;89:1122–9.

    Article  PubMed  CAS  Google Scholar 

  120. Michael A, Haq S, Chen X, et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem. 2004;279:21383–93.

    Article  PubMed  CAS  Google Scholar 

  121. Liao W, Wang S, Han C, Zhang Y. 14-3-3 proteins regulate glycogen synthase 3beta phosphorylation and inhibit cardiomyocyte hypertrophy. FEBS J. 2005;272:1845–54.

    Article  PubMed  CAS  Google Scholar 

  122. Chan AY, Soltys CL, Young ME, Proud CG, Dyck JR. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem. 2004;279:32771–9.

    Article  PubMed  CAS  Google Scholar 

  123. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278:29655–60.

    Article  PubMed  CAS  Google Scholar 

  124. van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H. Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem. 2002;277:17901–5.

    Article  PubMed  CAS  Google Scholar 

  125. Sabri A, Steinberg SF. Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem. 2003;251:97–101.

    Article  PubMed  CAS  Google Scholar 

  126. Mochly-Rosen D, Wu G, Hahn H, et al. Cardiotrophic effects of protein kinase C epsilon: analysis by in vivo modulation of PKCepsilon translocation. Circ Res. 2000;86:1173–9.

    PubMed  CAS  Google Scholar 

  127. Kook H, Lepore JJ, Gitler AD, et al. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest. 2003;112:863–71.

    PubMed  CAS  Google Scholar 

  128. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest. 2005;115:538–46.

    PubMed  CAS  Google Scholar 

  129. Im SH, Rao A. Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated signaling. Mol Cells. 2004;18:1–9.

    PubMed  CAS  Google Scholar 

  130. Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10:322–8.

    Article  PubMed  CAS  Google Scholar 

  131. Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med. 2000;6:1221–7.

    Article  PubMed  CAS  Google Scholar 

  132. Zhang T, Johnson EN, Gu Y, et al. The cardiac-specific nuclear delta(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem. 2002;277:1261–7.

    Article  PubMed  CAS  Google Scholar 

  133. Zhu W, Zou Y, Shiojima I, et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem. 2000;275:15239–45.

    Article  PubMed  CAS  Google Scholar 

  134. Liang F, Wu J, Garami M, Gardner DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem. 1997;272:28050–6.

    Article  PubMed  CAS  Google Scholar 

  135. Zhang T, Maier LS, Dalton ND, et al. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003;92:912–9.

    Article  PubMed  CAS  Google Scholar 

  136. Passier R, Zeng H, Frey N, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000;105:1395–406.

    Article  PubMed  CAS  Google Scholar 

  137. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63:467–75.

    Article  PubMed  CAS  Google Scholar 

  138. Olson EN, Molkentin JD. Prevention of cardiac hypertrophy by calcineurin inhibition: hope or hype? Circ Res. 1999;84:623–32.

    PubMed  CAS  Google Scholar 

  139. Bueno OF, Brandt EB, Rothenberg ME, Molkentin JD. Defective T cell development and function in calcineurin A beta -deficient mice. Proc Natl Acad Sci USA. 2002;99:9398–403.

    Article  PubMed  CAS  Google Scholar 

  140. McKinsey TA, Olson EN. Cardiac hypertrophy: sorting out the circuitry. Curr Opin Genet Dev. 1999;9:267–74.

    Article  PubMed  CAS  Google Scholar 

  141. Haq S, Choukroun G, Lim H, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 2001;103:670–7.

    PubMed  CAS  Google Scholar 

  142. Chen M, Li X, Dong Q, Li Y, Liang W. Neuropeptide Y induces cardiomyocyte hypertrophy via calcineurin signaling in rats. Regul Pept. 2005;125:9–15.

    Article  PubMed  CAS  Google Scholar 

  143. Berridge MJ. Remodelling Ca2+ signalling systems and cardiac hypertrophy. Biochem Soc Trans. 2006;34:228–31.

    Article  PubMed  CAS  Google Scholar 

  144. Pi M, Oakley RH, Gesty-Palmer D, et al. Beta-arrestin- and G protein receptor kinase-mediated calcium-sensing receptor desensitization. Mol Endocrinol. 2005;19:1078–87.

    Article  PubMed  CAS  Google Scholar 

  145. Hata JA, Williams ML, Koch WJ. Genetic manipulation of myocardial beta-adrenergic receptor activation and desensitization. J Mol Cell Cardiol. 2004;37:11–21.

    Article  PubMed  CAS  Google Scholar 

  146. Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995;268:1350–3.

    Article  PubMed  CAS  Google Scholar 

  147. Metaye T, Gibelin H, Perdrisot R, Kraimps JL. Pathophysiological roles of G protein-coupled receptor kinases. Cell Signal. 2005;17:917–28.

    Article  PubMed  CAS  Google Scholar 

  148. Vinge LE, Oie E, Andersson Y, Grogaard HK, Andersen G, Attramadal H. Myocardial distribution and regulation of GRK and beta-arrestin isoforms in congestive heart failure in rats. Am J Physiol Heart Circ Physiol. 2001;281:H2490–9.

    PubMed  CAS  Google Scholar 

  149. Sopontammarak S, Aliharoob A, Ocampo C, Arcilla RA, Gupta MP, Gupta M. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys. 2005;43:61–76.

    Article  PubMed  CAS  Google Scholar 

  150. Streicher JM, Ren S, Herschman H, Wang Y. MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res. 2010;106:1434–43.

    Article  PubMed  CAS  Google Scholar 

  151. Pasumarthi KB, Kardami E, Cattini PA. High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res. 1996;78:126–36.

    PubMed  CAS  Google Scholar 

  152. Sheikh F, Jin Y, Pasumarthi KB, Kardami E, Cattini PA. Expression of fibroblast growth factor receptor-1 in rat heart H9c2 myoblasts increases cell proliferation. Mol Cell Biochem. 1997;176:89–97.

    Article  PubMed  CAS  Google Scholar 

  153. Sheng Z, Pennica D, Wood WI, Chien KR. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development. 1996;122:419–28.

    PubMed  CAS  Google Scholar 

  154. Kuwahara K, Saito Y, Kishimoto I, et al. Cardiotrophin-1 phosphorylates akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol. 2000;32:1385–94.

    Article  PubMed  CAS  Google Scholar 

  155. Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest. 2005;115:547–55.

    PubMed  CAS  Google Scholar 

  156. Molkentin JD, Dorn 2nd GW. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391–426.

    Article  PubMed  CAS  Google Scholar 

  157. Kilic A, Velic A, De Windt LJ, et al. Enhanced activity of the myocardial Na+/H  +  exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation. 2005;112:2307–17.

    Article  PubMed  CAS  Google Scholar 

  158. Grassot J, Mouchiroud G, Perriere G. RTKdb: database of Receptor Tyrosine Kinase. Nucleic Acids Res. 2003;31:353–8.

    Article  PubMed  CAS  Google Scholar 

  159. Lee HJ, Koh GY. Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun. 2003;304:399–404.

    Article  PubMed  CAS  Google Scholar 

  160. Zhao YY, Sawyer DR, Baliga RR, et al. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem. 1998;273:10261–9.

    Article  PubMed  CAS  Google Scholar 

  161. Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO, Skolnik EY. Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol. 2000;20:1537–45.

    Article  PubMed  CAS  Google Scholar 

  162. Lorenz K, Schmitt JP, Vidal M, Lohse MJ. Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling. Int J Biochem Cell Biol. 2009;41:2351–5.

    Article  PubMed  CAS  Google Scholar 

  163. Jones WK, Brown M, Ren X, He S, McGuinness M. NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol. 2003;3:229–54.

    Article  PubMed  CAS  Google Scholar 

  164. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95:568–78.

    Article  PubMed  CAS  Google Scholar 

  165. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–70.

    Article  PubMed  CAS  Google Scholar 

  166. van Bilsen M, van der Vusse GJ, Gilde AJ, Lindhout M, van der Lee KA. Peroxisome proliferator-activated receptors: lipid binding proteins controlling gene expression. Mol Cell Biochem. 2002;239:131–8.

    Article  PubMed  Google Scholar 

  167. Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem. 1998;273:23786–92.

    Article  PubMed  CAS  Google Scholar 

  168. Liu HR, Tao L, Gao E, et al. Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovasc Res. 2004;62:135–44.

    Article  PubMed  CAS  Google Scholar 

  169. Muoio DM, MacLean PS, Lang DB, et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. J Biol Chem. 2002;277:26089–97.

    Article  PubMed  CAS  Google Scholar 

  170. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106:847–56.

    Article  PubMed  CAS  Google Scholar 

  171. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.

    Article  PubMed  CAS  Google Scholar 

  172. Clabby ML, Robison TA, Quigley HF, Wilson DB, Kelly DP. Retinoid X receptor alpha represses GATA-4-mediated transcription via a retinoid-dependent interaction with the cardiac-enriched repressor FOG-2. J Biol Chem. 2003;278:5760–7.

    Article  PubMed  CAS  Google Scholar 

  173. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28.

    Article  PubMed  CAS  Google Scholar 

  174. Bahouth SW, Cui X, Beauchamp MJ, Park EA. Thyroid hormone induces beta1-adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J Mol Cell Cardiol. 1997;29:3223–37.

    Article  PubMed  CAS  Google Scholar 

  175. Chen S, Nakamura K, Gardner DG. 1,25-dihydroxyvitamin D inhibits human ANP gene promoter activity. Regul Pept. 2005;128:197–202.

    Article  PubMed  CAS  Google Scholar 

  176. Sladek R, Bader JA, Giguere V. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol. 1997;17:5400–9.

    PubMed  CAS  Google Scholar 

  177. Booth EA, Obeid NR, Lucchesi BR. Activation of estrogen receptor-alpha protects the in vivo rabbit heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2005;289:H2039–47.

    Article  PubMed  CAS  Google Scholar 

  178. Jankowski M, Rachelska G, Donghao W, McCann SM, Gutkowska J. Estrogen receptors activate atrial natriuretic peptide in the rat heart. Proc Natl Acad Sci USA. 2001;98:11765–70.

    Article  PubMed  CAS  Google Scholar 

  179. Nuedling S, Karas RH, Mendelsohn ME, et al. Activation of ­estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett. 2001;502:103–8.

    Article  PubMed  CAS  Google Scholar 

  180. Yang SH, Liu R, Perez EJ, et al. Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA. 2004;101:4130–5.

    Article  PubMed  CAS  Google Scholar 

  181. Romeih M, Cui J, Michaille JJ, Jiang W, Zile MH. Function of RARgamma and RARalpha2 at the initiation of retinoid signaling is essential for avian embryo survival and for distinct events in cardiac morphogenesis. Dev Dyn. 2003;228:697–708.

    Article  PubMed  CAS  Google Scholar 

  182. Sato A, Sheppard KE, Fullerton MJ, Funder JW. cAMP modulates glucocorticoid-induced protein accumulation and glucocorticoid receptor in cardiomyocytes. Am J Physiol. 1996;271:E827–33.

    PubMed  CAS  Google Scholar 

  183. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.

    PubMed  CAS  Google Scholar 

  184. Perrier E, Kerfant BG, Lalevee N, et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. Circulation. 2004;110:776–83.

    Article  PubMed  CAS  Google Scholar 

  185. Le Menuet D, Viengchareun S, Muffat-Joly M, Zennaro MC, Lombes M. Expression and function of the human mineralocorticoid receptor: lessons from transgenic mouse models. Mol Cell Endocrinol. 2004;217:127–36.

    Article  PubMed  CAS  Google Scholar 

  186. Frantz S, Kobzik L, Kim YD, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. 1999;104:271–80.

    Article  PubMed  CAS  Google Scholar 

  187. Satoh M, Nakamura M, Akatsu T, Shimoda Y, Segawa I, Hiramori K. Toll-like receptor 4 is expressed with enteroviral replication in myocardium from patients with dilated cardiomyopathy. Lab Invest. 2004;84:173–81.

    Article  PubMed  CAS  Google Scholar 

  188. Ha T, Li Y, Hua F, et al. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res. 2005;68:224–34.

    Article  PubMed  CAS  Google Scholar 

  189. Oyama J, Blais Jr C, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 2004;109:784–9.

    Article  PubMed  CAS  Google Scholar 

  190. Wang YP, Sato C, Mizoguchi K, Yamashita Y, Oe M, Maeta H. Lipopolysaccharide triggers late preconditioning against myocardial infarction via inducible nitric oxide synthase. Cardiovasc Res. 2002;56:33–42.

    Article  PubMed  CAS  Google Scholar 

  191. Tavener SA, Long EM, Robbins SM, McRae KM, Van Remmen H, Kubes P. Immune cell Toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res. 2004;95:700–7.

    Article  PubMed  CAS  Google Scholar 

  192. Nelson BD, Luciakova K, Li R, Betina S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta. 1995;1271:85–91.

    PubMed  Google Scholar 

  193. Goldenthal MJ, Weiss HR, Marin-Garcia J. Bioenergetic remodeling of heart mitochondria by thyroid hormone. Mol Cell Biochem. 2004;265:97–106.

    Article  PubMed  CAS  Google Scholar 

  194. Seiden D, Navidad P, Weiss HR. Oxygen diffusion distance in thyroxine-induced hypertrophic rabbit myocardium. J Mol Cell Cardiol. 1988;20:917–30.

    Article  PubMed  CAS  Google Scholar 

  195. Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003;284:H299–308.

    PubMed  CAS  Google Scholar 

  196. Bigard AX, Koulmann N, Bahi L, Sanchez H, Ventura-Clapier R. Thyroid hormones and muscle phenotype: involvement of new signaling pathways. J Soc Biol. 2008;202:93–100.

    Article  PubMed  CAS  Google Scholar 

  197. Abel ED. Glucose transport in the heart. Front Biosci. 2004;9:201–15.

    Article  PubMed  CAS  Google Scholar 

  198. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987;235:1492–5.

    Article  PubMed  CAS  Google Scholar 

  199. Russell 3rd RR, Li J, Coven DL, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004;114:495–503.

    PubMed  CAS  Google Scholar 

  200. Chou SW, Chiu LL, Cho YM, et al. Effect of systemic hypoxia on GLUT4 protein expression in exercised rat heart. Jpn J Physiol. 2004;54:357–63.

    Article  PubMed  CAS  Google Scholar 

  201. Rattigan S, Appleby GJ, Clark MG. Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta. 1991;1094:217–23.

    Article  PubMed  CAS  Google Scholar 

  202. Wojtaszewski JF, Higaki Y, Hirshman MF, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest. 1999;104:1257–64.

    Article  PubMed  CAS  Google Scholar 

  203. Coven DL, Hu X, Cong L, et al. Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab. 2003;285:E629–36.

    PubMed  CAS  Google Scholar 

  204. Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature. 1995;377:151–5.

    Article  PubMed  CAS  Google Scholar 

  205. Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med. 2000;6:924–8.

    Article  PubMed  CAS  Google Scholar 

  206. Desrois M, Sidell RJ, Gauguier D, King LM, Radda GK, Clarke K. Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res. 2004;61:288–96.

    Article  PubMed  CAS  Google Scholar 

  207. Bruning JC, Michael MD, Winnay JN, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2:559–69.

    Article  PubMed  CAS  Google Scholar 

  208. Kaczmarczyk SJ, Andrikopoulos S, Favaloro J, et al. Threshold effects of glucose transporter-4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy. J Mol Endocrinol. 2003;31:449–59.

    Article  PubMed  CAS  Google Scholar 

  209. Razeghi P, Young ME, Ying J, et al. Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology. 2002;97:203–9.

    Article  PubMed  CAS  Google Scholar 

  210. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104:2923–31.

    Article  PubMed  CAS  Google Scholar 

  211. Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H. Downregulation of myocardial myocyte enhancer factor 2 C and myocyte enhancer factor 2 C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation. 2002;106:407–11.

    Article  PubMed  CAS  Google Scholar 

  212. Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997;34:25–33.

    Article  PubMed  CAS  Google Scholar 

  213. Nikolaidis LA, Sturzu A, Stolarski C, Elahi D, Shen YT, Shannon RP. The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res. 2004;61:297–306.

    Article  PubMed  CAS  Google Scholar 

  214. Shah A, Shannon RP. Insulin resistance in dilated cardiomyopathy. Rev Cardiovasc Med. 2003;4 Suppl 6:S50–7.

    PubMed  Google Scholar 

  215. Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res. 1999;42:246–53.

    Article  PubMed  CAS  Google Scholar 

  216. Nuutila P, Maki M, Laine H, et al. Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. J Clin Invest. 1995;96:1003–9.

    Article  PubMed  CAS  Google Scholar 

  217. Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK. Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res. 1995;30:205–11.

    PubMed  CAS  Google Scholar 

  218. Nascimben L, Ingwall JS, Lorell BH, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension. 2004;44:662–7.

    Article  PubMed  CAS  Google Scholar 

  219. Brownsey RW, Boone AN, Allard MF. Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovasc Res. 1997;34:3–24.

    Article  PubMed  CAS  Google Scholar 

  220. Santalucia T, Boheler KR, Brand NJ, et al. Factors involved in GLUT-1 glucose transporter gene transcription in cardiac muscle. J Biol Chem. 1999;274:17626–34.

    Article  PubMed  CAS  Google Scholar 

  221. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann NY Acad Sci. 2004;1015:202–13.

    Article  PubMed  CAS  Google Scholar 

  222. Young LH, Coven DL, Russell 3rd RR. Cellular and molecular regulation of cardiac glucose transport. J Nucl Cardiol. 2000;7:267–76.

    Article  PubMed  CAS  Google Scholar 

  223. Depre C, Shipley GL, Chen W, et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med. 1998;4:1269–75.

    Article  PubMed  CAS  Google Scholar 

  224. Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H. Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism. 2001;50:1083–90.

    Article  PubMed  CAS  Google Scholar 

  225. Shimizu I, Minamino T, Toko H, et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010;120:1506–14.

    Article  PubMed  CAS  Google Scholar 

  226. Colombo F, Gosselin H, El-Helou V, Calderone A. Beta-adrenergic receptor-mediated DNA synthesis in neonatal rat cardiac fibroblasts proceeds via a phosphatidylinositol 3-kinase dependent pathway refractory to the antiproliferative action of cyclic AMP. J Cell Physiol. 2003;195:322–30.

    Article  PubMed  CAS  Google Scholar 

  227. Tuxworth Jr WJ, Saghir AN, Spruill LS, Menick DR, McDermott PJ. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5′-untranslated region of mRNA. Biochem J. 2004;378:73–82.

    Article  PubMed  CAS  Google Scholar 

  228. Pham FH, Sugden PH, Clerk A. Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ Res. 2000;86:1252–8.

    PubMed  CAS  Google Scholar 

  229. Hannan RD, Luyken J, Rothblum LI. Regulation of rDNA transcription factors during cardiomyocyte hypertrophy induced by adrenergic agents. J Biol Chem. 1995;270:8290–7.

    Article  PubMed  CAS  Google Scholar 

  230. Hannan KM, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol. 2003;23:8862–77.

    Article  PubMed  CAS  Google Scholar 

  231. Lindemann SW, Weyrich AS, Zimmerman GA. Signaling to translational control pathways: diversity in gene regulation in inflammatory and vascular cells. Trends Cardiovasc Med. 2005;15:9–17.

    Article  PubMed  CAS  Google Scholar 

  232. Mani K, Kitsis RN. Myocyte apoptosis: programming ventricular remodeling. J Am Coll Cardiol. 2003;41:761–4.

    Article  PubMed  Google Scholar 

  233. Moe GW, Naik G, Konig A, Lu X, Feng Q. Early and persistent activation of myocardial apoptosis, bax and caspases: insights into mechanisms of progression of heart failure. Pathophysiology. 2002;8:183–92.

    Article  PubMed  CAS  Google Scholar 

  234. Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005;5:189–200.

    Article  PubMed  CAS  Google Scholar 

  235. Yussman MG, Toyokawa T, Odley A, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 2002;8:725–30.

    PubMed  CAS  Google Scholar 

  236. Galvez AS, Brunskill EW, Marreez Y, et al. Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem. 2006;281:1442–8.

    Article  PubMed  CAS  Google Scholar 

  237. Diwan A, Dorn 2nd GW. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda). 2007;22:56–64.

    Article  CAS  Google Scholar 

  238. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.

    Article  PubMed  CAS  Google Scholar 

  239. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  240. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell. 1996;85:817–27.

    Article  PubMed  CAS  Google Scholar 

  241. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell. 2003;11:529–41.

    Article  PubMed  CAS  Google Scholar 

  242. Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 2004;95:957–70.

    Article  PubMed  CAS  Google Scholar 

  243. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  244. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412:95–9.

    Article  PubMed  CAS  Google Scholar 

  245. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.

    Article  PubMed  CAS  Google Scholar 

  246. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441–6.

    Article  PubMed  CAS  Google Scholar 

  247. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 2002;9:423–32.

    Article  PubMed  CAS  Google Scholar 

  248. Hu Y, Ding L, Spencer DM, Nunez G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem. 1998;273:33489–94.

    Article  PubMed  CAS  Google Scholar 

  249. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature. 1999;399:549–57.

    Article  PubMed  CAS  Google Scholar 

  250. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–13.

    Article  PubMed  CAS  Google Scholar 

  251. Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem. 1999;274:1156–63.

    Article  PubMed  CAS  Google Scholar 

  252. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481–90.

    Article  PubMed  CAS  Google Scholar 

  253. Peter ME. The flip side of FLIP. Biochem J. 2004;382:e1–3.

    Article  PubMed  CAS  Google Scholar 

  254. Guo B, Zhai D, Cabezas E, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003;423:456–61.

    Article  PubMed  CAS  Google Scholar 

  255. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11:519–27.

    Article  PubMed  CAS  Google Scholar 

  256. Sun C, Cai M, Meadows RP, et al. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem. 2000;275:33777–81.

    Article  PubMed  CAS  Google Scholar 

  257. Nam YJ, Mani K, Ashton AW, et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell. 2004;15:901–12.

    Article  PubMed  CAS  Google Scholar 

  258. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem. 2004;279:21233–8.

    Article  PubMed  CAS  Google Scholar 

  259. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300:135–9.

    Article  PubMed  CAS  Google Scholar 

  260. Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem. 2004;279:50375–81.

    Article  PubMed  CAS  Google Scholar 

  261. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med. 1997;336:1131–41.

    Article  PubMed  CAS  Google Scholar 

  262. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res. 2003;92:139–50.

    Article  PubMed  CAS  Google Scholar 

  263. Nadal-Ginard B, Kajstura J, Anversa P, Leri A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest. 2003;111:1457–9.

    PubMed  CAS  Google Scholar 

  264. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415:240–3.

    Article  PubMed  CAS  Google Scholar 

  265. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res. 1998;83:15–26.

    PubMed  CAS  Google Scholar 

  266. Rybin VO, Xu X, Steinberg SF. Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res. 1999;84:980–8.

    PubMed  CAS  Google Scholar 

  267. Head BP, Patel HH, Roth DM, et al. G protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem. 2005;280:31036–44.

    Article  PubMed  CAS  Google Scholar 

  268. Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med. 2004;36:584–95.

    Article  PubMed  CAS  Google Scholar 

  269. del Monte F, Hajjar RJ. Targeting calcium cycling proteins in heart failure through gene transfer. J Physiol. 2003;546:49–61.

    Article  PubMed  CAS  Google Scholar 

  270. Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure From molecules to man (Part II). Cardiovasc Pathol. 2005;14:49–60.

    Article  PubMed  CAS  Google Scholar 

  271. Kim Y, Phan D, van Rooij E, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest. 2008;118:124–32.

    Article  PubMed  CAS  Google Scholar 

  272. Fielitz J, Kim MS, Shelton JM, et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci USA. 2008;105:3059–63.

    Article  PubMed  CAS  Google Scholar 

  273. Harrison BC, Kim MS, van Rooij E, et al. Regulation of cardiac stress signaling by protein kinase d1. Mol Cell Biol. 2006;26:3875–88.

    Article  PubMed  CAS  Google Scholar 

  274. Hartil K, Charron MJ. Genetic modification of the heart: transgenic modification of cardiac lipid and carbohydrate utilization. J Mol Cell Cardiol. 2005;39:581–93.

    Article  PubMed  CAS  Google Scholar 

  275. Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem. 1992;267:14592–7.

    PubMed  CAS  Google Scholar 

  276. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997;16:226–34.

    Article  PubMed  CAS  Google Scholar 

  277. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA. Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res. 2000;86:1218–23.

    PubMed  CAS  Google Scholar 

  278. Liu Q, Chen X, Macdonnell SM, et al. Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res. 2009;105:194–200.

    Article  PubMed  CAS  Google Scholar 

  279. Sugden PH, Clerk A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998;83:345–52.

    PubMed  CAS  Google Scholar 

  280. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206–12.

    Article  PubMed  CAS  Google Scholar 

  281. Rienstra M, Van Veldhuisen DJ, Hagens VE, et al. Gender-related differences in rhythm control treatment in persistent atrial fibrillation: data of the Rate Control Versus Electrical Cardioversion (RACE) study. J Am Coll Cardiol. 2005;46:1298–306.

    Article  PubMed  Google Scholar 

  282. Rogge C, Geibel A, Bode C, Zehender M. Cardiac arrhythmias and sudden cardiac death in women. Z Kardiol. 2004;93:427–38.

    Article  PubMed  CAS  Google Scholar 

  283. Aurigemma GP, Silver KH, McLaughlin M, Mauser J, Gaasch WH. Impact of chamber geometry and gender on left ventricular systolic function in patients  >  60 years of age with aortic stenosis. Am J Cardiol. 1994;74:794–8.

    Article  PubMed  CAS  Google Scholar 

  284. Douglas PS, Otto CM, Mickel MC, Labovitz A, Reid CL, Davis KB. Gender differences in left ventricle geometry and function in patients undergoing balloon dilatation of the aortic valve for ­isolated aortic stenosis. NHLBI Balloon Valvuloplasty Registry. Br Heart J. 1995;73:548–54.

    Article  PubMed  CAS  Google Scholar 

  285. Carroll JD, Carroll EP, Feldman T, et al. Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation. 1992;86:1099–107.

    PubMed  CAS  Google Scholar 

  286. Liao Y, Cooper RS, Mensah GA, McGee DL. Left ventricular hypertrophy has a greater impact on survival in women than in men. Circulation. 1995;92:805–10.

    PubMed  CAS  Google Scholar 

  287. Khalil RA. Sex hormones as potential modulators of vascular function in hypertension. Hypertension. 2005;46:249–54.

    Article  PubMed  CAS  Google Scholar 

  288. Peter I, Shearman AM, Zucker DR, et al. Variation in estrogen-related genes and cross-sectional and longitudinal blood pressure in the Framingham Heart Study. J Hypertens. 2005;23:2193–200.

    Article  PubMed  CAS  Google Scholar 

  289. Hardt SE, Sadoshima J. Negative regulators of cardiac hypertrophy. Cardiovasc Res. 2004;63:500–9.

    Article  PubMed  CAS  Google Scholar 

  290. Liu ZP, Nakagawa O, Nakagawa M, et al. CHAMP, a novel cardiac-specific helicase regulated by MEF2C. Dev Biol. 2001;234:497–509.

    Article  PubMed  CAS  Google Scholar 

  291. Porrello ER, Widdop RE, Delbridge LM. Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological ‘catch-up’ growth of the heart? Clin Exp Pharmacol Physiol. 2008;35:1358–64.

    Article  PubMed  CAS  Google Scholar 

  292. Fiedler B, Lohmann SM, Smolenski A, et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci USA. 2002;99:11363–8.

    Article  PubMed  CAS  Google Scholar 

  293. Layland J, Li JM, Shah AM. Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol. 2002;540:457–67.

    Article  PubMed  CAS  Google Scholar 

  294. Becker EM, Schmidt P, Schramm M, et al. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J Cardiovasc Pharmacol. 2000;35:390–7.

    Article  PubMed  CAS  Google Scholar 

  295. Sporbert A, Mertsch K, Smolenski A, et al. Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes. Brain Res Mol Brain Res. 1999;67:258–66.

    Article  PubMed  CAS  Google Scholar 

  296. Harada M, Takeishi Y, Arimoto T, et al. Diacylglycerol kinase zeta attenuates pressure overload-induced cardiac hypertrophy. Circ J. 2007;71:276–82.

    Article  PubMed  CAS  Google Scholar 

  297. Takeishi Y, Goto K, Kubota I. Role of diacylglycerol kinase in cellular regulatory processes: a new regulator for cardiomyocyte hypertrophy. Pharmacol Ther. 2007;115:352–9.

    Article  PubMed  CAS  Google Scholar 

  298. Leong HS, Brownsey RW, Kulpa JE, Allard MF. Glycolysis and pyruvate oxidation in cardiac hypertrophy–why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol. 2003;135:499–513.

    Article  PubMed  CAS  Google Scholar 

  299. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551:491–501.

    Article  PubMed  CAS  Google Scholar 

  300. Ananthakrishnan R, Moe GW, Goldenthal MJ, Marin-Garcia J. Akt signaling pathway in pacing-induced heart failure. Mol Cell Biochem. 2005;268:103–10.

    Article  PubMed  CAS  Google Scholar 

  301. Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103:1072–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Signaling in Hypertrophy and Heart Failure. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics