Skip to main content

Signaling in Endomyocarditis

  • Chapter
  • First Online:
  • 1080 Accesses

Abstract

Myocarditis is an inflammatory disorder of the myocardium that is associated with cardiac dysfunction. Many viruses have been implicated as causes of myocarditis, most commonly adenoviruses and enteroviruses, such as the coxsackieviruses. Viral myocarditis has been recognized as a cause of congestive heart failure (HF).

Endocarditis is an infection of the endocardium that may involve cardiac valves and adjacent structures and may be caused by wide spectrum of bacteria and fungi. In this chapter, we focus on the host cell-signaling systems which are involved in the different phases of viral and/or bacterial infection, including viral entry into the cell and the development of innate immunity and in a number of signaling molecules (both host and pathogen originated) that are involved in different aspects of pathogenesis of myocarditis/infective endocarditis. Also signaling pathways participating in the activation of adaptive immunity toward the viral/bacteria pathogen is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275:1320–3.

    Article  PubMed  CAS  Google Scholar 

  2. Martino T, Petric M, Weingartl H, et al. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all 6 serotypes of coxsackievirus group B, and by swine vesicular disease virus. Virology. 2000;271:99–108.

    Article  PubMed  CAS  Google Scholar 

  3. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–19.

    Article  PubMed  CAS  Google Scholar 

  4. Martino TA, Petric M, Brown M, et al. Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology. 1998;244:302–14.

    Article  PubMed  CAS  Google Scholar 

  5. Asher DR, Cerny AM, Weiler SR, et al. Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development. Genesis. 2005;42:77–85.

    Article  PubMed  CAS  Google Scholar 

  6. Chen JW, Zhou B, Yu QC, et al. Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves. Circ Res. 2006;98:923–30.

    Article  PubMed  CAS  Google Scholar 

  7. Dorner AA, Wegmann F, Butz S, et al. Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. J Cell Sci. 2005;118:3509–21.

    Article  PubMed  CAS  Google Scholar 

  8. Fechner H, Noutsias M, Tschoepe C, et al. Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: identification of a cell-to-cell contact-dependent regulatory mechanism. Circulation. 2003;107:876–82.

    Article  PubMed  Google Scholar 

  9. Ito M, Kodama M, Masuko M, et al. Expression of coxsackievirus and adenovirus receptor in hearts of rats with experimental autoimmune myocarditis. Circ Res. 2000;86:275–80.

    PubMed  CAS  Google Scholar 

  10. Noutsias M, Fechner H, de Jonge H, Wang X, Dekkers D, Houtsmuller AB, et al. Human coxsackie-adenovirus receptor is colocalized with integrins αvβ3 and αvβ5 on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation. 2001;104:275–80.

    PubMed  CAS  Google Scholar 

  11. Sasse A, Wallich M, Ding Z, Goedecke A, Schrader J. Coxsackie-and-adenovirus receptor mRNA expression in human heart failure. J Gene Med. 2003;5:876–82.

    Article  PubMed  CAS  Google Scholar 

  12. Sumbilla C, Ma H, Seth M, Inesi G. Dependence of exogenous SERCA gene expression on coxsackie adenovirus receptor levels in neonatal and adult cardiac myocytes. Arch Biochem Biophys. 2003;415:178–83.

    Article  PubMed  CAS  Google Scholar 

  13. Fairweather D, Frisancho-Kiss S, Rose NR. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol. 2005;15:17–27.

    Article  PubMed  CAS  Google Scholar 

  14. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc Res. 2006;72:384–93.

    Article  PubMed  CAS  Google Scholar 

  15. Hardarson HS, Baker JS, Yang Z, et al. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am J Physiol Heart Circ Physiol. 2007;292:H251–8.

    Article  PubMed  CAS  Google Scholar 

  16. Fairweather D, Yusung S, Frisancho S, et al. IL-12 receptor β1 and Toll-like receptor 4 increase IL-1β- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol. 2003;170:4731–7.

    PubMed  CAS  Google Scholar 

  17. Podewski EK, Hilfiker-Kleiner D, Hilfiker A, et al. Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation. 2003;107:798–802.

    Article  PubMed  CAS  Google Scholar 

  18. Ruppert V, Meyer T, Pankuweit S, Jonsdottir T, Maisch B. Activation of STAT1 transcription factor precedes up-regulation of coxsackievirus-adenovirus receptor during viral myocarditis. Cardiovasc Pathol. 2008;17:81–92.

    Article  PubMed  CAS  Google Scholar 

  19. Yajima T, Yasukawa H, Jeon ES, et al. Innate defense mechanism against virus infection within the cardiac myocyte requiring gp130-STAT3 signaling. Circulation. 2006;114:2364–73.

    Article  PubMed  CAS  Google Scholar 

  20. Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol. 2007;102:393–411.

    Article  PubMed  CAS  Google Scholar 

  21. Liu P, Sole MJ. What is the relevance of apoptosis to the myocardium? Can J Cardiol. 1999;15:8B–10.

    PubMed  Google Scholar 

  22. Nakamura H, Yamamoto T, Yamamura T, et al. Repetitive coxsackievirus infection induces cardiac dilatation in post-myocarditic mice. Jpn Circ J. 1999;63:794–802.

    Article  PubMed  CAS  Google Scholar 

  23. Darnell Jr JE. STATs and gene regulation. Science. 1997;277:1630–5.

    Article  PubMed  CAS  Google Scholar 

  24. Gitlin L, Barchet W, Gilfillan S, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA. 2006;103:8459–64.

    Article  PubMed  CAS  Google Scholar 

  25. Hiscott J, Lin R, Nakhaei P, Paz S. MasterCARD: a priceless link to innate immunity. Trends Mol Med. 2006;12:53–6.

    Article  PubMed  CAS  Google Scholar 

  26. Chau DH, Yuan J, Zhang H, et al. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis. 2007;12:513–24.

    Article  PubMed  CAS  Google Scholar 

  27. Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med. 1999;5:320–6.

    Article  PubMed  CAS  Google Scholar 

  28. Lamphear BJ, Yan R, Yang F, et al. Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. J Biol Chem. 1993;268:19200–3.

    PubMed  CAS  Google Scholar 

  29. Herskowitz A, Ahmed-Ansari A, Neumann DA, et al. Induction of major histocompatibility complex antigens within the myocardium of patients with active myocarditis: a nonhistologic marker of myocarditis. J Am Coll Cardiol. 1990;15:624–32.

    Article  PubMed  CAS  Google Scholar 

  30. Opavsky MA, Penninger J, Aitken K, et al. Susceptibility to myocarditis is dependent on the response of αβ T lymphocytes to coxsackieviral infection. Circ Res. 1999;85:551–8.

    PubMed  CAS  Google Scholar 

  31. Schulze K, Becker B, Schultheiss HP. Antibodies to the ADP/ATP carrier, an autoantigen in myocarditis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo. Circ Res. 1989;64:179–92.

    PubMed  CAS  Google Scholar 

  32. Schwimmbeck PL, Badorff C, Schultheiss HP, et al. Transfer of human myocarditis into severe combined immunodeficiency mice. Circ Res. 1994;75:156–64.

    PubMed  CAS  Google Scholar 

  33. Rose NR, Beisel KW, Herskowitz A, et al. Cardiac myosin and autoimmune myocarditis. Ciba Found Symp. 1987;129:3–24.

    PubMed  CAS  Google Scholar 

  34. Fu LX, Magnusson Y, Bergh CH, et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1993;91:1964–8.

    Article  PubMed  CAS  Google Scholar 

  35. Maisch B, Wedeking U, Kochsiek K. Quantitative assessment of antilaminin antibodies in myocarditis and perimyocarditis. Eur Heart J. 1987;8(Suppl J):233–5.

    Google Scholar 

  36. Klein R, Maisch B, Kochsiek K, Berg PA. Demonstration of organ specific antibodies against heart mitochondria (anti-M7) in sera from patients with some forms of heart diseases. Clin Exp Immunol. 1984;58:283–92.

    PubMed  CAS  Google Scholar 

  37. Schultheiss HP, Bolte HD. Immunological analysis of auto-antibodies against the adenine nucleotide translocator in dilated cardiomyopathy. J Mol Cell Cardiol. 1985;17:603–17.

    Article  PubMed  CAS  Google Scholar 

  38. Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J. Autoimmunity in idiopathic dilated cardiomyopathy: characterization of antibodies against the β1-adrenoceptor with positive chronotropic effect. Circulation. 1994;89:2760–7.

    PubMed  CAS  Google Scholar 

  39. Perez Leirós C, Goren N, Sterin-Borda L, Borda ES. Myocardial dysfunction in an experimental model of autoimmune myocarditis: role of IFN-γ. Neuroimmunomodulation. 1997;4:91–7.

    PubMed  Google Scholar 

  40. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J. 1994;72:561–6.

    Article  PubMed  CAS  Google Scholar 

  41. Marsland BJ, Nembrini C, Grün K, et al. TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-q signaling and promote autoimmune myocarditis. J Immunol. 2007;178:3466–73.

    PubMed  CAS  Google Scholar 

  42. Davies JM. Molecular mimicry: can epitope mimicry induce autoimmune disease? Immunol Cell Biol. 1997;75:113–26.

    Article  PubMed  CAS  Google Scholar 

  43. Fairweather D, Lawson CM, Chapman AJ, et al. Wild isolates of murine cytomegalovirus induce myocarditis and antibodies that cross-react with virus and cardiac myosin. Immunology. 1998;94:263–70.

    Article  PubMed  CAS  Google Scholar 

  44. Liu P, Aitken K, Kong YY, et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med. 2000;6:429–34.

    Article  PubMed  CAS  Google Scholar 

  45. Ni J, Bowles NE, Kim YH, et al. Viral infection of the myocardium in endocardial fibroelastosis. Molecular evidence for the role of mumps virus as an etiologic agent. Circulation. 1997;95:133–9.

    PubMed  CAS  Google Scholar 

  46. Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation. 2005;112:1965–70.

    Article  PubMed  Google Scholar 

  47. Bowles NE, Ni J, Kearney DL, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol. 2003;42:466–72.

    Article  PubMed  Google Scholar 

  48. Kuhl U, Pauschinger M, Bock T, et al. Parvovirus B19 infection mimicking acute myocardial infarction. Circulation. 2003;108:945–50.

    Article  PubMed  Google Scholar 

  49. Bultmann BD, Klingel K, Sotlar K, et al. Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol. 2003;34:92–5.

    Article  PubMed  Google Scholar 

  50. Klingel K, Sauter M, Bock CT, Szalay G, Schnorr JJ, Kandolf R. Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol (Berl). 2004;193:101–7.

    Article  CAS  Google Scholar 

  51. O’Malley A, Barry-Kinsella C, Hughes C, et al. Parvovirus infects cardiac myocytes in hydrops fetalis. Pediatr Dev Pathol. 2003;6:414–20.

    Article  PubMed  Google Scholar 

  52. Zareba KM, Miller TL, Lipshultz SE. Cardiovascular disease and toxicities related to HIV infection and its therapies. Expert Opin Drug Saf. 2005;4:1017–25.

    Article  PubMed  CAS  Google Scholar 

  53. Barbaro G. Reviewing the cardiovascular complications of HIV infection after the introduction of highly active antiretroviral therapy. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:337–43.

    Article  PubMed  CAS  Google Scholar 

  54. Kan H, Xie Z, Finkel MS. HIV gp120 enhances NO production by cardiac myocytes through p38 MAP kinase-mediated NF-κB activation. Am J Physiol Heart Circ Physiol. 2000;279:H3138–43.

    PubMed  CAS  Google Scholar 

  55. Fiala M, Popik W, Qiao JH, et al. HIV-1 induces cardiomyopathy by cardiomyocyte invasion and gp120, Tat, and cytokine apoptotic signaling. Cardiovasc Toxicol. 2004;4:97–107.

    Article  PubMed  CAS  Google Scholar 

  56. Calabrese F, Thiene G. Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects. Cardiovasc Res. 2003;60:11–25.

    Article  PubMed  CAS  Google Scholar 

  57. Hardman JM, Earle KM. Myocarditis in 200 fatal meningococcal infections. Arch Pathol. 1969;87:318–25.

    PubMed  CAS  Google Scholar 

  58. Nagi KS, Joshi R, Thakur RK. Cardiac manifestations of Lyme disease: a review. Can J Cardiol. 1996;12:503–6.

    PubMed  CAS  Google Scholar 

  59. Defosse DL, Duray PH, Johnson RC. The NIH-3 immunodeficient mouse is a model for Lyme borreliosis myositis and carditis. Am J Pathol. 1992;141:3–10.

    PubMed  CAS  Google Scholar 

  60. Marin-Garcia J, Mirvis DM. Myocardial disease in Rocky Mountain spotted fever: clinical, functional, and pathologic findings. Pediatr Cardiol. 1984;5:149–54.

    Article  PubMed  CAS  Google Scholar 

  61. Marin-Garcia J, Gooch 3rd WM, Coury DL. Cardiac manifestations of Rocky Mountain spotted fever. Pediatrics. 1981;67:358–61.

    PubMed  CAS  Google Scholar 

  62. Burian J, Buser P, Eriksson U. Myocarditis: the immunologist’s view on pathogenesis and treatment. Swiss Med Wkly. 2005;135:359–64.

    PubMed  CAS  Google Scholar 

  63. Uzoigwe C. Campylobacter infections of the pericardium and myocardium. Clin Microbiol Infect. 2005;11:253–5.

    Article  PubMed  CAS  Google Scholar 

  64. Saikku P. Chlamydia pneumoniae and cardiovascular diseases. Clin Microbiol Infect. 1996;1 Suppl 1:S19–22.

    Article  PubMed  Google Scholar 

  65. Paz A, Potasman I. Mycoplasma-associated carditis. Case reports and review. Cardiology. 2002;97:83–8.

    Article  PubMed  CAS  Google Scholar 

  66. Galvin JE, Hemric ME, Kosanke SD, Factor SM, Quinn A, Cunningham MW. Induction of myocarditis and valvulitis in Lewis rats by different epitopes of cardiac myosin and its implications in rheumatic carditis. Am J Pathol. 2002;160:297–306.

    Article  PubMed  CAS  Google Scholar 

  67. Raveche ES, Steven E, Schutzer SE, Fernandes H. Evidence of Borrelia autoimmunity-induced component of lyme carditis and arthritis. J Clin Microbiol. 2005;43:850–6.

    Article  PubMed  CAS  Google Scholar 

  68. McKisic MD, Redmond WL, Barthold SW. Cutting edge: T cell-mediated pathology in murine Lyme borreliosis. J Immunol. 2000;164:6096–9.

    PubMed  CAS  Google Scholar 

  69. Pinto AY, Valente SA, Valente Vda C. Emerging acute Chagas disease in Amazonian Brazil: case reports with serious cardiac involvement. Braz J Infect Dis. 2004;8:454–60.

    Article  PubMed  Google Scholar 

  70. Fuenmayor C, Higuchi ML, Carrasco H, et al. Acute Chagas’ disease: immunohistochemical characteristics of T cell infiltrate and its relationship with T. cruzi parasitic antigens. Acta Cardiol. 2005;60:33–7.

    Article  PubMed  Google Scholar 

  71. Marino AP, da Silva A, dos Santos P, et al. Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of Trypanosoma cruzi-elicited myocarditis. Circulation. 2004;110:1443–9.

    Article  PubMed  CAS  Google Scholar 

  72. Minhas T, Ludlam HA, Wilks M, Tabaqchali S. Detection by PCR and analysis of the distribution of a fibronectin-binding protein gene (fbn) among staphylococcal isolates. J Med Microbiol. 1995;42:96–101.

    Article  PubMed  CAS  Google Scholar 

  73. Weidenmaier C, Peschel A, Kempf VA, et al. DltABCD- and MprF-Mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun. 2005;73:8033–8.

    Article  PubMed  CAS  Google Scholar 

  74. Moreillon P, Que YA, Bayer AS. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am. 2002;16:297–318.

    Article  PubMed  Google Scholar 

  75. Erickson PR, Herzberg MC. Altered expression of the platelet aggregation-associated protein from Streptococcus sanguis after growth in the presence of collagen. Infect Immun. 1995;63:1084–8.

    PubMed  CAS  Google Scholar 

  76. Tak T, Shukla SK. Molecular diagnosis of infective endocarditis: a helpful addition to the Duke criteria. Clin Med Res. 2004;2:206–8.

    Article  PubMed  Google Scholar 

  77. Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clin Microbiol Rev. 1994;7:462–78.

    PubMed  CAS  Google Scholar 

  78. Dziewanowska K, Carson AR, Patti JM, Deobald CF, Bayles KW, Bohach GA. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun. 2000;68:6321–8.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson AP. The pathogenicity of enterococci. J Antimicrob Chemother. 1994;33:1083–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Signaling in Endomyocarditis. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics