Skip to main content

Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics

  • Chapter
  • First Online:
Molecular- and Nano-Tubes

Abstract

Polymer composites are an attractive near-term means to exploit the unique properties of single wall carbon nanotubes and graphene. This is particularly true for composites aimed at photonic and optoelectronic applications, where a number of devices have already been demonstrated. These include transparent conductors, saturable absorbers, electroluminescent and photovoltaic devices. Here, we present an overview of such composites, from solution processing of the raw materials, their sorting, characterization, to their incorporation into polymers, device fabrication and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, S. R., Harootunian, A. T., Buechler, Y. J., Taylor, S. S. & Tsien, R. Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694–697 (1991).

    CAS  Google Scholar 

  2. Ago, H., Petritsch, K., Shaffer, M. S. P., Windle, A. H. & Friend, R. H. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 11, 1281–1285 (1999).

    CAS  Google Scholar 

  3. Agrawal, G. P. Application of nonlinear fiber optics. Academic, San Diego (2001).

    Google Scholar 

  4. Ajayan, P. M. & Banhart, F. Nanotubes: Strong bundles. Nat. Mater. 3, 135–136 (2004).

    CAS  Google Scholar 

  5. Ajayan, P. M., Stephan, O., Colliex, C. & Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212–1214 (1994).

    CAS  Google Scholar 

  6. Ajiki, H. & Ando, T. Aharonov-Bohm effect in carbon nanotubes. Physica B 201, 349–352 (1994).

    CAS  Google Scholar 

  7. Allington, R. W., Brakke, M. K., Nelson, J. W., Aron, C. G. & Larkins, B. A. Optimum conditions for high-resolution gradient analysis. Anal. Biochem. 73, 78–92 (1976).

    CAS  Google Scholar 

  8. Alvarez, L., Righi, A., Rols, S., Anglaret, E., Sauvajol, J. L., Munoz, E., Maser, W. K., Benito, A. M., Martinez, M. T. & de la Fuente, G. F. Diameter dependence of Raman intensities for single-wall carbon nanotubes. Phys. Rev. B 63, 153401 (2001).

    Google Scholar 

  9. Anandan, S. Recent improvements and arising challenges in dye-sensitized solar cells. Solar Energy Mater. Solar Cells 91, 843–846 (2007).

    CAS  Google Scholar 

  10. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn. 66, 1066–1073 (1997).

    CAS  Google Scholar 

  11. Araujo, P. T., Doorn, S. K., Kilina, S., Tretiak, S., Einarsson, E., Maruyama, S., Chacham, H., Pimenta, M. A. & Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 98, 067401 (2007).

    Google Scholar 

  12. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotech. 1, 60–65 (2006).

    CAS  Google Scholar 

  13. Arnold, M. S., Stupp, S. I. & Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005).

    CAS  Google Scholar 

  14. Artukovic, E., Kaempgen, M., Hecht, D. S., Roth, S. & Gruner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 5, 757–760 (2005).

    CAS  Google Scholar 

  15. Ausman, K. D., Piner, R., Lourie, O., Ruoff, R. S. & Korobov, M. Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. J. Phys. Chem. B 104, 8911–8915 (2000).

    CAS  Google Scholar 

  16. Bachilo, S. M., Balzano, L., Herrera, J. E., Pompeo, F., Resasco, D. E. & Weisman, R. B. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    CAS  Google Scholar 

  17. Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E. & Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  Google Scholar 

  18. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H., Hong, B. H. & Iijima, S. Roll-to- roll production of 30-inch graphene films for transparent electrodes. Nat. Nano 5, 574–578 (2010).

    CAS  Google Scholar 

  19. Bahr, J. L., Mickelson, E. T., Bronikowski, M. J., Smalley, R. E. & Tour, J. M. Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem. Commun. 193–194 (2001).

    Google Scholar 

  20. Bahr, J. L., Yang, J., Kosynkin, D. V., Bronikowski, M. J., Smalley, R. E. & Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    CAS  Google Scholar 

  21. Bandow, S., Asaka, S., Saito, Y., Rao, A. M., Grigorian, L., Richter, E. & Eklund, P. C. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779 (1998).

    CAS  Google Scholar 

  22. Bandyopadhyaya, R., Nativ-Roth, E., Regev, O. & Yerushalmi-Rozen, R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett. 2, 25–28 (2002).

    CAS  Google Scholar 

  23. Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17, 17–29 (2005).

    CAS  Google Scholar 

  24. Banerjee, S., Kahn, M. G. C. & Wong, S. S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 9, 1898–1908 (2003).

    CAS  Google Scholar 

  25. Baranov, A. V., Bekhterev, A. N., Bobovich, Y. S. & Petrov, V. I. Interpretation of some singularities in raman spectra of graphite and glass carbon. Opt Spektrosk. 62, 1036–1042 (1987).

    CAS  Google Scholar 

  26. Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

    Google Scholar 

  27. Becker, K., Lupton, J. M., Muller, J., Rogach, A. L., Talapin, D. V., Weller, H. & Feldmann, J. Electrical control of Förster energy transfer. Nat. Mater. 5, 777–781 (2006).

    CAS  Google Scholar 

  28. Beecher, P., Servati, P., Rozhin, A., Colli, A., Scardaci, V., Pisana, S., Hasan, T., Flewitt, A. J., Robertson, J., Hsieh, G. W., Li, F. M., Nathan, A., Ferrari, A. C. & Milne, W. I. Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 102, 043710 (2007).

    Google Scholar 

  29. Beecher, S. J., Thomson, R. R., Psaila, N. D., Sun, Z., Hasan, T., Rozhin, A. G., Ferrari, A. C. & Kar, A. K. 320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber. Appl. Phys. Lett. 97, 111114 (2010).

    Google Scholar 

  30. Behrens, M. In Abdelhalden’s Handbuch der Biologischen Arbeitsmethoden. Abt. 5, Teil 10, Part 2, pp. 1363–1392. Urban and Schwarzenberg, Berlin (1938).

    Google Scholar 

  31. Berber, S., Kwon, Y.-K. & Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).

    CAS  Google Scholar 

  32. Bergin, S. D., Nicolosi, V., Streich, P. V., Giordani, S., Sun, Z., Windle, A. H., Ryan, P., Niraj, N. P. P., Wang, Z.-T., Carpenter, L., Blau, W. J., Boland, J. J., Hamilton, J. P. & Coleman, J. N. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 20, 1876 (2008).

    CAS  Google Scholar 

  33. Bergin, S. D., Sun, Z., Streich, P., Hamilton, J. & Coleman, J. N. New solvents for nanotubes: Approaching the dispersibility of surfactants. J. Phys. Chem. C 114, 231–237 (2010).

    CAS  Google Scholar 

  34. Bharathan, J. & Yang, Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 72, 2660–2662 (1998).

    CAS  Google Scholar 

  35. Bhattacharyya, S., Kymakis, E. & Amaratunga, G. A. J. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004).

    CAS  Google Scholar 

  36. Biju, V., Itoh, T., Baba, Y. & Ishikawa, M. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J. Phys. Chem. B 110, 26068–26074 (2006).

    CAS  Google Scholar 

  37. Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K. & Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Google Scholar 

  38. Bo, X. Z., Lee, C. Y., Strano, M. S., Goldfinger, M., Nuckolls, C. & Blanchet, G. B. Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor. Appl. Phys. Lett. 86, 182102 (2005).

    Google Scholar 

  39. Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles. Wiley, New York 1998.

    Google Scholar 

  40. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    CAS  Google Scholar 

  41. Bonaccorso, F., Hasan, T., Tan, P. H., Sciascia, C., Privitera, G., Di Marco, G., Gucciardi, P. G. & Ferrari, A. C. Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactants encapsulation. J. Phys. Chem. C 114, 17267–17285 (2010).

    CAS  Google Scholar 

  42. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 84, 457 (1927).

    Google Scholar 

  43. Born, M. & Huang, K. Dynamical theory of crystal lattices. Clarendon Press, Oxford (1954).

    Google Scholar 

  44. Botti, S., Ciardi, R., De Dominicis, L., Asilyan, L. S., Fantoni, R. & Marolo, T. DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst. Chem. Phys. Lett. 378, 117–121 (2003).

    CAS  Google Scholar 

  45. Boyd, R. W. Nonlinear optics. Academic, San Diego (2003).

    Google Scholar 

  46. Brakke, M. K. Zonal separations by density-gradient centrifugation. Arch. Biochem. 45, 275–290 (1953).

    CAS  Google Scholar 

  47. Brakke, M. K. Photometric scanning of centrifuged density gradient columns. Arch. Biochem. 5, 271–283 (1963).

    CAS  Google Scholar 

  48. Brakke, M. K. Density gradient centrifugation and its application to plant viruses. Advan. Virus Res. 7, 193–224 (1960).

    CAS  Google Scholar 

  49. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Google Scholar 

  50. Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A. & Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vacuum Sci. Technol. A 19, 1800–1805 (2001).

    CAS  Google Scholar 

  51. Brown, S. D. M., Jorio, A., Corio, P., Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Kneipp, K. Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 63, 155414 (2001).

    Google Scholar 

  52. Brown, P., Takechi, K. & Kamat, P. V. Single-walled carbon nanotube scaffolds for dyesensitized solar cells. J. Phys. Chem. C 112, 4776–4782 (2008).

    CAS  Google Scholar 

  53. Bruesch, P. Phonons: Theory and experiments I, lattice dynamics and models of interatomic forces. Springer, Berlin, Heidelberg, New York (1982).

    Google Scholar 

  54. Butt, H., Graf, K. & Kappl, M. Physics and chemistry of interfaces. Wiley VCH, Berlin (2006).

    Google Scholar 

  55. Cacace, M. G., Landau, E. M. & Ramsden, J. J. The Hofmeister series: Salt and solvent effects on interfacial phenomena. Quart. Rev. Bioph. 3, 241–277 (1997).

    Google Scholar 

  56. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

    CAS  Google Scholar 

  57. Calzolari, A., Marzari, N., Souza, I. & Buongiorno Nardelli, M. Ab initio transport properties of nanostructures from maximally localized Wannier functions. Phys. Rev. B 69, 035108 (2004).

    Google Scholar 

  58. Cançado, L. G., Jorio, A., Martins Ferreira, E. H., Stavale, F., Achete, C. A., Capaz, R. B., Moutinho, M. V. O., Lombardo, A., Kulmala, T. & Ferrari, A. C. Quantifying defects in grapheme via Raman spectroscopy at different excitation energies. arXiv:1105.0175 (2011).

    Google Scholar 

  59. Cancado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S. S. & Jorio, A. Phys. Rev. Lett. 93, 247401 (2004).

    CAS  Google Scholar 

  60. Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74, 121401(R) (2006).

    Google Scholar 

  61. Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K. S., Basko, D. M. & Ferrari, A. C. Nano Lett. 9, 1433 (2009).

    CAS  Google Scholar 

  62. Casiraghi, C., Pisana, S., Novoselov, K. S., Geim, A. K. & Ferrari, A. C. Appl. Phys. Lett. 91, 233108 (2007).

    Google Scholar 

  63. Carlson, L. J., Maccagnano, S. E., Zheng, M., Silcox, J. & Krauss, T. D. Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 7, 3698–3703 (2007).

    CAS  Google Scholar 

  64. Cathcart, H., Quinn, S., Nicolosi, V., Kelly, J. M., Blau, W. J. & Coleman, J. N. Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. J. Phys. Chem. C 111, 66–74 (2007).

    CAS  Google Scholar 

  65. Chandrasekhar, R., Charles, S. W. & O’Grady, K. Cobalt ferrite fluids and their application to magnetic ink-jet printing. J. Imaging Technol. 13, 55–59 (1987).

    CAS  Google Scholar 

  66. Chang, E., Bussi, G., Ruini, A. & Molinari, E. Excitons in carbon nanotubes: An Ab Initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 (2004).

    Google Scholar 

  67. Chang, Y. M., Kim, H., Lee, J. H. & Song, Y.-W. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett. 97, 211102–3 (2010).

    Google Scholar 

  68. Chapin, D. M., Fuller, C. S. & Pearson, G. L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).

    CAS  Google Scholar 

  69. Charlier, J.-C., Lambin, Ph. & Ebbesen, T. W. Electronic properties of carbon nanotubes with polygonized cross sections. Phys. Rev. B 54, R8377–R8380 (1996).

    CAS  Google Scholar 

  70. Collins, K. & Washabaugh, M. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18, 323–422 (1985).

    CAS  Google Scholar 

  71. Cote, L. J., Kim, F. & Huang, J. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2008).

    Google Scholar 

  72. Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W., Fray, D. J. & Windle, A. H. Carbon nanotube and polypyrrole composites: Coating and doping. Adv. Mater. 12, 522–526 (2000).

    CAS  Google Scholar 

  73. Chen, H.-Y. & Lee, W. Suppression of field screening in nematic liquid crystals by carbon nanotubes. Appl. Phys. Lett. 88, 222105 (2006).

    Google Scholar 

  74. Chen, H.-Y., Lee, W. & Clark, N. A. Faster electro-optical response characteristics of a carbonnanotube-nematic suspension. Appl. Phys. Lett. 90, 033510-3 (2007).

    Google Scholar 

  75. Chen, J., Rao, A. M., Lyuksyutov, S., Itkis, M. E., Hamon, M. A., Hu, H., Cohn, R. W., Eklund, P. C., Colbert, D. T., Smalley, R. E. & Haddon, R. C. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem. B 105, 2525–2528 (2001).

    CAS  Google Scholar 

  76. Chen, Y.-C., Raravikar, N. R., Schadler, L. S., Ajayan, P. M., Zhao, Y.-P., Lu, T.-M., Wang, G.-C. & Zhang, X.-C. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 um. Appl. Phys. Lett. 81, 975–977 (2002).

    CAS  Google Scholar 

  77. Cheng, H. M., Li, F., Sun, X., Brown, S. D. M., Pimenta, M. A., Marucci, A., Dresselhaus, G. & Dresselhaus, M. S. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 289, 602–610 (1998).

    CAS  Google Scholar 

  78. Cheng, W. D., Wu, D. S., Zhang, H., Li, X. D., Lan, Y. Z., Chen, D. G. & Wang, H. X. Enhancements of third-order nonlinear optical response in the triplet excited state of finite open single-walled carbon nanotubes. J. Chem. Phys. 119, 13100–13105 (2003).

    CAS  Google Scholar 

  79. Choi, J. H. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 90, 223114 (2007).

    Google Scholar 

  80. Cohen, R. & Claverie, J. M. Sedimentation of generalized systems of interacting particles. II. Active enzyme centrifugation – theory and extensions of its validity range. Biopolymers 14, 1701–1716 (1975).

    CAS  Google Scholar 

  81. Coleman, J. N., Khan, U., Blau, W. J. & Gun’ko, Y. K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006).

    CAS  Google Scholar 

  82. Coleman, J. N., Khan, U. & Gun’ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006).

    CAS  Google Scholar 

  83. Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680–3695 (2009).

    CAS  Google Scholar 

  84. Crawford, L. V. & Waring, M. J. Supercoiling of polyoma virus DNA measured by its interaction with ethium bromide. J. Mol. Biol. 25, 23–30 (1967).

    CAS  Google Scholar 

  85. Creeth, J. H. & Pain, R. H. The determination of molecular weights of biological macromolecules by ultracentrifuge methods. Prog. Biophys. Mol. Biol. 17, 217–287 (1967).

    CAS  Google Scholar 

  86. Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).

    CAS  Google Scholar 

  87. Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    CAS  Google Scholar 

  88. Dalton, A. B., Collins, S., Muñoz, E., Razal, J. M., Ebron, V. H., Ferraris, J. P., Coleman, J. N., Kim, B. G. & Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).

    CAS  Google Scholar 

  89. Das, A., Chakraborty, B., Piscanec, S., Pisana, S., Sood, A. K. & Ferrari, A. C. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

    Google Scholar 

  90. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U. V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C. & Sood, A. K. Nat. Nanotechnol. 3, 210 (2008).

    CAS  Google Scholar 

  91. Dawlaty, J. M., Shivaraman, S., Strait, J., George, P., Chandrashekhar, M., Rana, F., Spencer, M. G., Veksler, D. & Chen, Y. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).

    Google Scholar 

  92. De, S., Lyons, P. E., Sorel, S., Doherty, E. M., King, P. J., Blau, W. J., Nirmalraj, P. N., Boland, J. J., Scardaci, V., Joimel, J. & Coleman, J. N. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 3, 714–720 (2009).

    CAS  Google Scholar 

  93. De Dominicis, L., Botti, S., Asilyan, L. S., Ciardi, R., Fantoni, R., Terranova, M. L., Fiori, A., Orlanducci, S. & Appolloni, R. Second- and third- harmonic generation in single-walled carbon nanotubes at nanosecond time scale. Appl. Phys. Lett. 85, 1418–1420 (2004).

    Google Scholar 

  94. De, S., King, P. J., Lotya, M., O’Neill, A., Doherty, E. M., Hernandez, Y., Duesberg, G. S. & Coleman, J. N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6, 458–464 (2010).

    CAS  Google Scholar 

  95. De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, W. J., Boland, J. J. & Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).

    CAS  Google Scholar 

  96. Della Valle, G., Osellame, R., Galzerano, G., Chiodo, N., Cerullo, G., Laporta, P., O., S., Morgner, U., Rozhin, A. G., Scardaci, V. & Ferrari, A. C. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 89, 231115 (2006).

    Google Scholar 

  97. DeMaria, A. J., Stetser, D. A. & Heynau, H. Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 8, 174–176 (1966).

    Google Scholar 

  98. Denneulin, A., Bras, J., Blayo, A., Khelifi, B., Roussel-Dherbey, F. & Neuman, C. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions. Nanotechnology 20, 385701 (2009).

    Google Scholar 

  99. Dettlaff-Weglikowska, U., Kaempgen, M., Hornbostel, B., Skakalova, V., Wang, J., Liang, J. & Roth, S. Conducting and transparent SWNT/polymer composites. Phys. Stat. Sol. (b) 243, 3440–3444 (2006).

    CAS  Google Scholar 

  100. Dieckmann, G. R., Dalton, A. B., Johnson, P. A., Razal, J., Chen, J., Giordano, G. M., Muñoz, E., Musselman, I. H., Baughman, R. H. & Draper, R. K. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc. 125, 1770–1777 (2003).

    CAS  Google Scholar 

  101. Dierking, I., Scalia, G. & Morales, P. Liquid crystal–carbon nanotube dispersions. J. Appl. Phys. 97, 044309 (2005).

    Google Scholar 

  102. Dierking, I., Scalia, G., Morales, P. & LeClere, D. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv. Mater. 16, 865–869 (2004).

    CAS  Google Scholar 

  103. Dobardžić, E., Maultzsch, J., Milošević, I., Thomsen, C. & Damjanović, M. The radial breathing mode frequency in double-walled carbon nanotubes: An analytical approximation. Phys. Stat. Sol. (b) 237, R7 (2003).

    Google Scholar 

  104. Doorn, S. K., Strano, M. S., O’Connell, M. J., Haroz, E. H., Rialon, K. L., Hauge, R. H. & Smalley, R. E. Capillary electrophoresis separations of bundled and individual carbon nanotubes. J. Phys. Chem. B 107, 6063–6069 (2003).

    CAS  Google Scholar 

  105. Dyke, C. A. & Tour, J. M. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 125, 1156–1157 (2003).

    CAS  Google Scholar 

  106. Dyke, C. A. & Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004).

    CAS  Google Scholar 

  107. Dyke, C. A. & Tour, J. M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem. Eur. J. 10, 812–817 (2004).

    CAS  Google Scholar 

  108. Eda, G. & Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    CAS  Google Scholar 

  109. Eivindvik, K. & Sjogren, C. E. Physicochemical properties of iodixanol. Acta Radiologica 36, 32–38 (1995).

    Google Scholar 

  110. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K. & Novoselov, K. S. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610 (2009).

    Google Scholar 

  111. Eschrig, H. Unified perturbation treatment for phonons in metallic covalent and ionic crystals. Phys. Stat. Sol. (b) 56, 197 (1973).

    CAS  Google Scholar 

  112. Essig, S., Marquardt, C. W., Vijayaraghavan, A., Ganzhorn, M., Dehm, S., Hennrich, F., Ou, F., Green, A. A., Sciascia, C., Bonaccorso, F., Bohnen, K.-P., v Lonhneysen, H., Kappes, M. M., Ajayan, P. M., Hersam, M. C., Ferrari, A. C. & Krupke, R. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano lett. 10, 1589–1594 (2010).

    CAS  Google Scholar 

  113. Fagan, J. A., Becker, M. L., Chun, J., Nie, P., Bauer, B. J., Simpson, J. R., Hight-Walker, A. & Hobbie, E. K. Centrifugal length separation of carbon nanotubes. Langmuir 24, 13880–13389 (2008).

    CAS  Google Scholar 

  114. Fairhurst, C. E., Fuller, S., Gray, J., Holmes, M. C. & Tiddy, G. J. T. In Lyotropic surfactant liquid crystals, Vol. 3. High molecular mass liquid crystals (Eds.: Demus, D., Goodby, J., Gray, G. W., Spiess, H. W., and Vill, V.), New York, Wiley-VCH (1998).

    Google Scholar 

  115. Fang, Q., Kieu, K. & Peyghambarian, N. An all-fiber 2-um wavelength-tunable mode-locked laser. IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).

    Google Scholar 

  116. Fantini, C., Jorio, A., Souza, M., Strano, M. S., Dresselhaus, M. S. & Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 93, 147406 (2004).

    CAS  Google Scholar 

  117. Feng, W., Bai, X. D., Lian, Y. Q., Liang, J., Wang, X. G. & Yoshino, K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41, 1551–1557 (2003).

    CAS  Google Scholar 

  118. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 143, 47 (2007).

    Google Scholar 

  119. Ferrari, A. C., Robertson, J. Raman spectroscopy in carbons: From nanotubes to diamond. Philos. Trans. R. Soc. A, 362, 2267–2565 (2004)

    Google Scholar 

  120. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    CAS  Google Scholar 

  121. Ferrari, A. C. & Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

    Google Scholar 

  122. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. & Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    CAS  Google Scholar 

  123. Ferrer-Anglada, N., Kaempgen, M., Skakalova, V., Dettlaf-Weglikowska, U. & Roth, S. Synthesis and characterization of carbon nanotube-conducting polymer thin films. Diamond Relat. Mater. 13, 256–260 (2004).

    CAS  Google Scholar 

  124. Finnie, P., Homma, Y. & Lefebvre, J. Band-gap shift transition in the photoluminescence of single-walled carbon nanotubes. Phys. Rev. Lett. 94, 247401 (2005).

    Google Scholar 

  125. Fong, K. H., Kikuchi, K., Goh, C. H., Set, S. Y., Grange, R., Haiml, M., Schlatter, A. & Keller, U. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 32, 38–40 (2007).

    CAS  Google Scholar 

  126. Ford, T., Graham, J. & Rickwood, D. Iodixanol-a non ionic isosmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem. 220, 360–366 (1994).

    CAS  Google Scholar 

  127. Förster, T. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).

    Google Scholar 

  128. Fox, N. A., Youh, M. J., Steeds, J. W. & Wang, W. N. Patterned diamond particle films. J. Appl. Phys. 87, 8187–8191 (2000).

    CAS  Google Scholar 

  129. Freifelder, D. Molecular weights of coliphages and coliphages DNA. Molecular weights of DNA from bacteriophages T4, T5, and general problem of determination of M. J. Mol. Bio. 54, 567–577 (1970).

    CAS  Google Scholar 

  130. Gambetta, A., Galzerano, G., Rozhin, A. G., Ferrari, A. C., Ramponi, R., Laporta, P. & Marangoni, M. Sub-100 fs two-color pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system. Opt. Express 16, 11727–11734 (2008).

    CAS  Google Scholar 

  131. Gamerith, S., Klug, A., Scheiber, H., Scherf, U., Moderegger, E., & List, E. J. W. Direct ink-jet printing of Ag-Cu nanoparticle and Ag-Precursor based electrodes for OFET applications. Adv. Funct. Mater. 17, 3111–3118 (2007).

    CAS  Google Scholar 

  132. Gans, B.-J. de, Duineveld, P. C. & Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203–213 (2004).

    Google Scholar 

  133. Garber, R. C. & Yoder, O. C. Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid components. Anal. Biochem. 135, 416–422 (1983).

    CAS  Google Scholar 

  134. Garcia-Vidal, F. J. & Pitarke, J. M. Optical absorption and energy-loss spectra of aligned carbon nanotubes. Eur. Phys. J. B 22, 257–265 (2001).

    CAS  Google Scholar 

  135. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  136. Geng, H. Z., Kim, K. K., So, K. P., Lee, Y. S., Chang, Y. & Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129, 7758–7759 (2007).

    CAS  Google Scholar 

  137. Ghatee, M. H. & Pakdel, L. Surface tension regularity of non-polar, polar, and weak electrolyte liquid hydrocarbons. Fluid Phase Equilib. 234, 101–107 (2005).

    CAS  Google Scholar 

  138. Giordani, S., Bergin, S. D., Nicolosi, V., Lebedkin, S., Kappes, M. M., Blau, W. J. & Coleman, J. N. Debundling of single-walled nanotubes by dilution: Observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B 110, 15708–15718 (2006).

    CAS  Google Scholar 

  139. Giorgetti, E., Margheri, G., Sottini, S., Casalboni, M., Senesi, R., Scarselli, M. & Pizzoferrato, R. Dye-doped zirconia-based Ormosil planar waveguides: Optical properties and surface morphology. J. Non-Cryst. Solids 255, 193–198 (1999).

    CAS  Google Scholar 

  140. Girifalco, L. A., Hodak, M. & Lee, R. S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000).

    CAS  Google Scholar 

  141. Girifalco, L. A. & Lad, R. A. Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25, 693–697 (1956).

    CAS  Google Scholar 

  142. Gracia-Espino, E., Sala, G., Pino, F., Halonen, N., Luomahaara, J., Maklin, J., Toth, G., Kordas, K., Jantunen, H., Terrones, M., Helisto, P., Seppa, H., Ajayan, P. M. & Vajtai, R. Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different functional side groups. ACS Nano 4, 3318–3324 (2010).

    CAS  Google Scholar 

  143. Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. & Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238 (2007).

    Google Scholar 

  144. Graham, J. M. Biological centrifugation. BIOS Scientific Publisher Limited, Oxford (2001).

    Google Scholar 

  145. Granqvist, C. G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energ. Mat. Sol. C. 91, 1529–1598 (2007).

    CAS  Google Scholar 

  146. Gratzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145–153 (2003).

    CAS  Google Scholar 

  147. Green, A. A. & Hersam, M. C. Processing and properties of highly enriched double-wall carbon nanotubes. Nat. Nanotechnol. 4, 64–70 (2009).

    CAS  Google Scholar 

  148. Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).

    CAS  Google Scholar 

  149. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16, 3533–3539 (2006).

    CAS  Google Scholar 

  150. Guo, Y., Minami, N., Kazaoui, S., Peng, J., Yoshida, M. & Miyashita, T. Multi-layer LB films of single-wall carbon nanotubes. Physica B 323, 235–236 (2002).

    CAS  Google Scholar 

  151. Hagen, A. & Hertel, T. Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett. 3, 383–388 (2003).

    CAS  Google Scholar 

  152. Hagen, A., Steiner, M., Raschke, M. B., Lienau, C., Hertel, T., Qian, H. H., Meixner, A. J. & Hartschuh, A. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).

    Google Scholar 

  153. Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R160 (1986).

    CAS  Google Scholar 

  154. Han, J.-I. Stability of externally deformed ITO films. In Flexible and flat panel dispolays (Ed.: Crawford, G. P.). Sussex, England (2005).

    Google Scholar 

  155. Hansen, C. M. Hansen solubility parameters: A user’s handbook. CRC Press Inc., Boca Raton, FL (2007).

    Google Scholar 

  156. Harris, P. J. F. Carbon nanotube composites. Int. Mat. Rev. 49, 31–43 (2004).

    CAS  Google Scholar 

  157. Hasan, T., Tan, P. H., Bonaccorso, F., Rozhin, A., Scardaci, V., Milne, W. I. & Ferrari, A. C. Polymer-assisted isolation of singlewall carbon nanotubes in organic solvents for optical-quality nanotube-polymer composites. J. Phys. Chem. C 112, 20227–20232 (2008).

    CAS  Google Scholar 

  158. Hasan, T., Scardaci, V., Tan, P. H., Rozhin, A. G., Milne, W. I. & Ferrari, A. C. Stabilization and ‘de-bundling’ of single-wall carbon nanotube dispersions in N-Methyl-2-Pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111, 12594–12602 (2007).

    CAS  Google Scholar 

  159. Hasan, T., Scardaci, V., Tan, P. H., Rozhin, A. G., Milne, W. I. & Ferrari, A. C. Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping. Physica E 40, 2414–2418 (2008).

    CAS  Google Scholar 

  160. Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P. H., Rozhin, A. G. & Ferrari, A. C. Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21, 3874–3899 (2009).

    CAS  Google Scholar 

  161. Hasan, T., Torrisi, F., Sun, Z., Popa, D., Nicolosi, V., Privitera, G., Bonaccorso, F. & Ferrari, A. C. Solution-phase exfoliation of graphite for ultrafast photonics. Physica Status Solidi (b) 247, 2953–2957 (2010).

    CAS  Google Scholar 

  162. Haschemeyer, R. H. & Bowers, W. F. Exponential analysis of concentration or concentration difference data for discrete molecular weight distributions in sedimentation equilibrium. Biochemistry 9, 435–445 (1970).

    CAS  Google Scholar 

  163. Hearst, J. E. & Vinograd, J. A Three-Component Theory of Sedimentation Equilibrium in a Density Gradient. J. Natl. Acad. Sci. USA 47, 999–1004 (1961).

    CAS  Google Scholar 

  164. Hecht, D, Hu, L. & Gruner, G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).

    Google Scholar 

  165. Henrard, L., Hernández, E., Bernier, P. & Rubio, A. Van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Phys. Rev. B 60, R8521 (1999).

    CAS  Google Scholar 

  166. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun’Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C. & Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nano 3, 563–568 (2008).

    CAS  Google Scholar 

  167. Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotech. 3, 387 (2008).

    CAS  Google Scholar 

  168. Hertel, T., Fasel, R. & Moos, G. Charge-carrier dynamics in single-wall carbon nanotube bundles: A time-domain study. Appl. Phys. A 75, 449–465 (2002).

    CAS  Google Scholar 

  169. Hertel, T. & Moos, G. Electron-phonon interaction in single-wall carbon nanotubes: A time-domain study. Phys. Rev. Lett. 84, 5002–5005 (2000).

    CAS  Google Scholar 

  170. Hertel, T., Perebeinos, V., Crochet, J., Katharina, A., Kappes, M. & Phaedon, A. Intersubband decay of 1-D exciton resonances in carbon nanotubes. Nano Lett. 8, 87–91 (2008).

    CAS  Google Scholar 

  171. Hertel, T., Walkup, R. E. & Avouris, Ph. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58, 13870–13873 (1998).

    CAS  Google Scholar 

  172. Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002).

    CAS  Google Scholar 

  173. Hong, W., Xu, Y., Lu, G., Li, C. & Shi, G. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008).

    CAS  Google Scholar 

  174. Hsieh, G. W., Beecher, P., Li, F. M., Servati, P., Colli, A., Fasoli, A., Chu, D., Nathan, A., Ong, B., Robertson, J., Ferrari, A. C. & Milne, W. I. Formation of composite organic thin film transistors with nanotubes and nanowires. Physica E 40, 2406–2413 (2008).

    CAS  Google Scholar 

  175. Htoon, H., O’Connell, M. J., Doorn, S. K. & Klimov, V. I. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: The role of phonon-assisted transitions. Phys. Rev. Lett. 94, 127403 (2005).

    CAS  Google Scholar 

  176. Huang, C.-Y., Hu, C.-Y., Pan, H.-C. & Lo, K.-Y. Electrooptical responses of carbon nanotube-doped liquid crystal devices. Jpn. J. Appl. Phys. 44, 8077–8081 (2005).

    CAS  Google Scholar 

  177. Hwang, J., Gommans, H. H., Ugawa, A., Tashiro, H., Haggenmueller, R., Winey, K. I., Fisher, J. E., Tanner, D. B. & Rinzler, A. G. Polarized spectroscopy of aligned single-wall carbon nanotubes. Phys. Rev. B 62, 13310–13313 (2000).

    Google Scholar 

  178. Ichida, M., Hamanaka, Y., Kataura, H., Achiba, Y. & Nakamura, A. Ultrafast relaxation dynamics of photoexcited carriers in metallic and semiconducting single-walled carbon nanotubes. J. Phys. Soc. Jpn. 73, 3479–3483 (2004).

    CAS  Google Scholar 

  179. Ichida, M., Mizuno, S., Kataura, H., Achiba, Y. & Nakamura, A. Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer. Appl. Phys. A 78, 1117–1120 (2004).

    CAS  Google Scholar 

  180. Ifft, J. B. & Vinograd, J. The Buoyant behavior of Bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions. J. Phys. Chem. 70, 2814–2822 (1966).

    CAS  Google Scholar 

  181. Il’ichev, N. N., Garnov, S. V. & Obraztsova, E. D. Single-wall carbon nanotube suspension as a passive Q-switch for self mode-locking of solid state lasers. AIP Conf. Proc. Electron. Prop. Novel Nanostruct. 786, 611–615 (2005).

    Google Scholar 

  182. Islam, M. F., Milkie, D. E., Kane, C. L., Yodh, A. G. & Mikkawa, J. M. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404 (2004).

    CAS  Google Scholar 

  183. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T. & Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003).

    CAS  Google Scholar 

  184. Jiang, J., Dong, J. M., Wan, X. G. & Xing, D. Y. A new kind of nonlinear optical material: The fullerene tube. J. Phys. B 31, 3079–3086 (1998).

    CAS  Google Scholar 

  185. Jiang, J., Saito, R., Gruneis, A., Dresselhaus, G. & Dresselhaus, M. S. Optical absorption matrix elements in single-wall carbon nanotubes. Carbon 42, 3169–3176 (2004).

    CAS  Google Scholar 

  186. Jishi, R. A., Venkataraman, L., Dresselhaus, M. S. & Dresselhaus, G. Phonon modes in carbon nanotubes. Chem. Phys. Lett. 209, 77 (1993)

    CAS  Google Scholar 

  187. Jorio, A., Fantini, C., Pimenta, M. A., Heller, D. A., Strano, M. S., Dresselhaus, M. S., Oyama, Y., Jiang, J. & Saito, R. Carbon nanotube population analysis from Raman and photoluminescence intensities. Appl. Phys. Lett. 88, 023109 (2006).

    Google Scholar 

  188. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G. & Dresselhaus, M. S. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

    CAS  Google Scholar 

  189. Jorio, A., Fantini, C., Dantas, M. S. S., Pimenta, M. A., Souza, A. G., Samsonidze, G. G., Brar, V. W., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Ünlü, M. S., Goldberg, B. B. & Saito, R. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 66, 115411 (2002).

    Google Scholar 

  190. Jorio, A., Souza, A. G., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Unlu, M. S., Goldberg, B. B., Pimenta, M. A., Hafner, J. H., Lieber, C. M. & Saito, R. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 65, 155412 (2002).

    Google Scholar 

  191. Jost, O., Gorbunov, A. A., Pompe, W., Pichler, T., Friedlein, R., Knupfer, M., Reibold, M., Bauer, H. D., Dunsch, L., Golden, M. S. & Fink, J. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy. Appl. Phys. Lett. 75, 2217–2219 (1999).

    CAS  Google Scholar 

  192. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R. & Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997).

    CAS  Google Scholar 

  193. Kaempgen, M., Dettlaff, U. & Roth, S. Characterization of carbon nanotubes by optical spectra. Synth. Met. 135136, 755–756 (2003).

    Google Scholar 

  194. Kagan, C. R., Murray, C. B., Nirmal, M. & Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).

    CAS  Google Scholar 

  195. Kamaraju, N., Kumar, S., Sood, A. K., Guha, S., Krishnamurthy, S. & Rao, C. N. R. Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements. Appl. Phys. Lett. 91, 251103 (2007).

    Google Scholar 

  196. Kamyshny, A., Ben-Moshe, M., Aviezer, S. & Magdassi, S. Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26, 281–288 (2005).

    CAS  Google Scholar 

  197. Kane, C. L. & Mele, E. J. Ratio problem in single carbon nanotube fluorescence spectroscopy. Phys. Rev. Lett. 90, 207401 (2003).

    CAS  Google Scholar 

  198. Kang, Y. & Taton, T. A. Micelle-encapsulated carbon nanotubes: A route to nanotube composites. J. Am. Chem. Soc. 125, 5650–5651 (2003).

    CAS  Google Scholar 

  199. Kartner, F. H., Brovelli, L. R., Kopf, D., Kamp, M., Calasso, I. & Keller, U. Control of solid-state laser dynamics by semiconductor devices. Opt. Eng. 34, 2024–2036 (1995).

    Google Scholar 

  200. Kataura, H., Kumazawa, Y., Maniwa, Y., Ohtsuka, Y., Sen, R., Suzuki, S. & Achiba, Y. Diameter control of single-walled carbon nanotubes. Carbon 38, 1691–1697 (2000).

    CAS  Google Scholar 

  201. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. & Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).

    CAS  Google Scholar 

  202. Kavan, L., Ho Yum, J. & Gratzel, M. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano, 5, 165–172 (2011).

    CAS  Google Scholar 

  203. Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H. & Friend, R. H. Inkjet printing of polymer thin film transistors. Thin Solid Films 438439, 279–287 (2003).

    Google Scholar 

  204. Kawase, T., Sirringhaus, H., Friend, R. H. & Shimoda, T. Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13, 1601–1605 (2001).

    CAS  Google Scholar 

  205. Kazaoui, S., Minami, N., Nalini, B., Kim, Y. & Hara, K. Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J. Appl. Phys. 98, 084314 (2005).

    Google Scholar 

  206. Kazaoui, S., Minami, N., Nalini, B., Kim, Y., Takada, N. & Hara, K. Near-infrared electroluminescent devices using single-wall carbon nanotubes thin flms. Appl. Phys. Lett. 87, 211914 (2005).

    Google Scholar 

  207. Kazaoui, S., Minami, N., Yamawaki, H., Aoki, K., Kataura, H. & Achiba, Y. Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films. Phys. Rev. B 62, 1643 (2000).

    CAS  Google Scholar 

  208. Kelleher, E. J. R., Travers, J. C., Sun, Z., Ferrari, A. C., Golant, K. M., Popov, S. V. & Taylor, J. R. Bismuth fiber integrated laser mode-locked by carbon nanotubes. Laser Phys. Lett. 7, 790–794 (2010).

    CAS  Google Scholar 

  209. Kelleher, E. J. R., Travers, J. C., Ippen, E. P., Sun, Z., Ferrari, A. C., Popov, S. V. & Taylor, J. R. Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett. 34, 3526–3528 (2009).

    CAS  Google Scholar 

  210. Kelleher, E. J. R., Travers, J. C., Sun, Z., Rozhin, A. G., Ferrari, A. C., Popov, S. V. & Taylor, J. R. Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. 95, 111108 (2009).

    Google Scholar 

  211. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    CAS  Google Scholar 

  212. Keller, U. In Ultrafast solid-state lasers, Vol. 46 (Ed.: Wolf, E.), Elsevier, 2004.

    Google Scholar 

  213. Keller, U., Miller, D. A. B., Boyd, G. D., Chiu, T. H., Ferguson, J. F. & Asom, M. T. Solidstate low-loss intracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry – Perot saturable absorber. Opt. Lett. 17, 505–507 (1992).

    CAS  Google Scholar 

  214. Keller, U. & Tropper, A. C. Passively modelocked surface-emitting semiconductor lasers. Phys. Rep. 429, 67–120 (2006).

    Google Scholar 

  215. Keller, U., Weingarten, K. J., Kartner, F. X., Kopf, D., Braun, B., Jung, I. D., Fluck, R., Hönninger, C., Matuschek, N. & Aus der Au, J. Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 2, 435–453 (1996).

    CAS  Google Scholar 

  216. Kennedy, J. W., Vardeny, Z. V., Collins, S., Baughman, R. H., Zhao, H. & Mazumdar, S. Electroabsorption spectroscopy of single walled nanotubes. arXiv:cond-mat/0505071v1 (2005).

    Google Scholar 

  217. Kohn, W. Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett 2, 393 (1959).

    CAS  Google Scholar 

  218. Khoo, I. C., Ding, J., Zhang, Y., Chen, K. & Diaz, A. Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal. Appl. Phys. Lett. 82, 3587–3589 (2003).

    CAS  Google Scholar 

  219. Khudyakov, D. V., Lobach, A. S. & Nadtochenko, V. A. Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm. Opt. Lett. 35, 2675–2677 (2010).

    CAS  Google Scholar 

  220. Kieu, K. & Mansuripur, M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt. Lett. 32, 2242–2244 (2007).

    CAS  Google Scholar 

  221. Kilbride, B. E., Coleman, J. N., Fraysse, J., Fournet, P., Cadek, M., Drury, A., Hutzler, S., Roth, S. & Blau, W. J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92, 4024–4030 (2002).

    CAS  Google Scholar 

  222. Kim, D. S., Nepal, D. & Geckeler, K. E. Individualization of single-walled carbon nanotubes: Is the solvent important? Small 1, 1117–1124 (2005).

    CAS  Google Scholar 

  223. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y. & Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Google Scholar 

  224. Kim, Y., Minami, N. & Kazaoui, S. Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films. Appl. Phys. Lett. 86, 073103 (2005).

    Google Scholar 

  225. Kim, Y., Minami, N., Zhu, W., Kazaoui, S., Azumi, R. & Matsumoto, M. Langmuir-Blodgett films of single-wall carbon nanotubes: Layer-by-layer deposition and in-plane orientation of tubes. Jpn. J. Appl. Phys. 42, 7629–7634 (2003).

    CAS  Google Scholar 

  226. Kiowski, O., Lebedkin, S., Hennrich, F. & Kappes, M. M. Single-walled carbon nanotubes show stable emission and simple photoluminescence spectra with weak excitation sidebands at cryogenic temperatures. Phys. Rev. B 76, 075422 (2007).

    Google Scholar 

  227. Kiowski, O., Lebedkin, S., Hennrich, F., Malik, S., Rösner, H., Arnold, K., Sürgers, C. & Kappes, M. M. Photoluminescence microscopy of carbon nanotubes grown by chemical vapor deposition: Influence of external dielectric screening on optical transition energies. Phys. Rev. B 75, 075421 (2007).

    Google Scholar 

  228. Kirschner, M. W. & Schachman, H. K. Conformational changes in proteins as measured by difference sedimentation studies. II. Effect of stereospecific ligands on the catalytic subunit of aspartate transcarbamylase. Biochemistry 10, 1919–1926 (1971).

    CAS  Google Scholar 

  229. Kis, A., Csanyi, G., Salvetat, J. P., Lee, T.-N., Couteau, E., Kulik, A. J., Benoit, W., Brugger, J. & Forro, L. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153–157 (2004).

    CAS  Google Scholar 

  230. Kono, J., Ostojic, G. N., Zaric, S., Strano, M. S., Moore, V. C., Shaver, J., Hauge, R. H. & Smalley, R. E. Ultra-fast optical spectroscopy of micelle-suspended single-walled carbon nanotubes. Appl. Phys. A 78, 1093–1098 (2004).

    CAS  Google Scholar 

  231. Koo, H. S., Chen, M., Pan, P. C., Chou, L. T., Wu, F. M., Chang, S. J. & Kawai, T. Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique. Displays 27, 124–129 (2006).

    Google Scholar 

  232. Koo, B.-K., Lee, D.-Y., Kim, H.-J., Lee, W.-J., Song, J.-S. & Kim, H.-J. Seasoning effect of dye-sensitized solar cells with different counter electrodes. J. Electroceram. 17, 79–82 (2006).

    CAS  Google Scholar 

  233. Kordas, K., Mustonen, T., Toth, G., Jantunen, H., Lajunen, M., Soldano, C., Talapatra, S., Kar, S., Vajtai, R. & Ajayan, Pulickel M. Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2, 1021–1025 (2006).

    CAS  Google Scholar 

  234. Kravets, V. G., Grigorenko, A. N., Nair, R. R., Blake, P., Anissimova, S., Novoselov, K. S. & Geim, A. K. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).

    Google Scholar 

  235. Krupke, R., Hennrich, F., von Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    CAS  Google Scholar 

  236. Krupke, R., Hennrich, F., Hampe, O. & Kappes, M. M. Near-infrared absorbance of single-walled carbon nanotubes dispersed in dimethylformamide. J. Phys. Chem. B 107, 5667–5669 (2003).

    CAS  Google Scholar 

  237. Kumar, S., Dang, T. D., Arnold, F. E., Bhattacharyya, A. R., Min, B. G., Zhang, X., Vaia, R. A., Park, C., Adams, W. W., Hauge, R. H., Smalley, R. E., Ramesh, R. & Willis, P. A. Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35, 9039–9043 (2002).

    CAS  Google Scholar 

  238. Kurti, J., Kresse, G. & Kuzmany, H. First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B 58, R8869–R8872 (1998).

    CAS  Google Scholar 

  239. Kwon, Y.-K., Saito, S. & Tomanek, D. Effect of intertube coupling on the electronic structure of carbon nanotube ropes. Phys. Rev. B 58, R13314–R13317 (1998).

    CAS  Google Scholar 

  240. Kymakis, E., Alexandrou, I. & Amaratunga, G. A. J. High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93, 1764–1768 (2003).

    CAS  Google Scholar 

  241. Kymakis, E. & Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002).

    CAS  Google Scholar 

  242. Labban, A. S. & Marcus, Y. Solvatochromic parameters of ethanolamines. J. Chem. Soc. Faraday Trans. 93, 77–79 (1997).

    CAS  Google Scholar 

  243. Lagerwall, J. P. F., Scalia, G., Haluska, M., Dettlaff-Weglikowska, U., Giesselmann, F. & Roth, S. Simultaneous alignment and dispersion of carbon nanotubes with lyotropic liquid crystals. Phys. Stat. Sol. (b) 243, 3046–3049 (2006).

    CAS  Google Scholar 

  244. Lagerwall, J. P. F., Scalia, G., Haluska, M., Dettlaff-Weglikowska, U., Roth, S. & Giesselmann, F. Nanotube alignment using lyotropic liquid crystals. Adv. Mater. 19, 359–364 (2007).

    CAS  Google Scholar 

  245. Landi, B. J., Ruf, H. J., Worman, J. J. & Raffaelle, R. P. Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J. Phys. Chem. B 108, 17089–17095 (2004).

    CAS  Google Scholar 

  246. Lauret, J. S., Voisin, C., Cassabois, G., Delalande, C., Roussignol, P., Jost, O. & Capes, L. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).

    Google Scholar 

  247. Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys. Rev. B 73, 155426 (2006).

    Google Scholar 

  248. Lebedkin, S., Hennrich, F., Kiowski, O. & Kappes, M. M. Photophysics of carbon nanotubes in organic polymer-toluene dispersions: Emission and excitation satellites and relaxation pathways. Phys. Rev. B 77, 165429 (2008).

    Google Scholar 

  249. Lebedkin, S., Schweiss, P., Renker, B., Malik, S., Hennrich, F., Neumaier, M., Stoermer, C. & Kappes, M. M. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 40, 417–423 (2002).

    CAS  Google Scholar 

  250. Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

    CAS  Google Scholar 

  251. Lee, W. & Chiu, C.-S. Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. Opt. Lett. 26, 521–523 (2001).

    CAS  Google Scholar 

  252. Lee, W., Gau, J.-S. & Chen, H.-Y. Electro-optical properties of planar nematic cells impregnated with carbon nanosolids. Appl. Phys. B 81, 171–175 (2005).

    CAS  Google Scholar 

  253. Lee, W., Wang, C.-Y. & Shih, Y.-C. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl. Phys. Lett. 85, 513–515 (2004).

    CAS  Google Scholar 

  254. Lee, Y.-S., Buongiorno Nardelli, M. & Marzari, N. Band structure and quantum conductance of nanostructures from maximally localized wannier functions: The case of functionalized carbon nanotubes. Phys. Rev. Lett. 95, 076804 (2005).

    Google Scholar 

  255. Lefebvre, J. & Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 167406 (2007).

    CAS  Google Scholar 

  256. Lefebvre, J., Fraser, J. M., Finnie, P. & Homma, Y. Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 69, 075403 (2004).

    Google Scholar 

  257. Lefebvre, J., Fraser, J. M., Homma, Y. & Finnie, P. Photoluminescence from single walled carbon nanotubes: A comparison between suspended and micelle-encapsulated nanotubes. Appl. Phys. A 78, 1107–1110 (2004).

    CAS  Google Scholar 

  258. Lefebvre, J., Homma, Y. & Finnie, P. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 90, 217401 (2003).

    CAS  Google Scholar 

  259. Heller, D. A., Mayrhofer, R. M., Baik, S., Grinkova, Y. V., Usrey, M. L. & Strano, M. S. Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    CAS  Google Scholar 

  260. Li, C., Chen, Y., Wang, Y., I., Z., Chhowalla, M. & Mitra, S. A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J. Mater. Chem. 17, 2406–2411 (2007).

    CAS  Google Scholar 

  261. Li, F., Cheng, H. M., Bai, S., Su, G. & Dresselhaus, M. S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 77, 3161–3163 (2000).

    CAS  Google Scholar 

  262. Li, Y.-L., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).

    CAS  Google Scholar 

  263. Li, Z. M., Tang, Z. K., Liu, H. J., Wang, N., Chan, C. T., Saito, R., Okada, S., Li, G. D., Chen, J. S., Nagasawa, N. & Tsuda, S. Polarized absorption spectra of single-walled 4 angstrom carbon nanotubes aligned in channels of an AlPO4-5 single crystal. Phys. Rev. Lett. 8712, 127401 (2001).

    Google Scholar 

  264. Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E. & Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nano 3, 538–542 (2008).

    CAS  Google Scholar 

  265. Lin, M. F. Optical spectra of single-wall carbon nanotube bundles. Phys. Rev. B 62, 13153–13159 (2000).

    CAS  Google Scholar 

  266. Lin, M. F. & Chuu, D. S. π plasmons in carbon nanotube bundles. Phys. Rev. B 57, 10183–10187 (1998).

    CAS  Google Scholar 

  267. Liu, P. Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41, 2693–2703 (2005).

    CAS  Google Scholar 

  268. Liu, X., Si, J., Chang, B., Xu, G., Yang, Q., Pan, Z., Xie, S., Ye, P., Fan, J. & Wan, M. Thirdorder optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 74, 164–166 (1999).

    CAS  Google Scholar 

  269. Liu, Z., Liu, Q., Huang, Y., Ma, Y., Yin, S., Zhang, X., Sun, W. & Chen, Y. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 20, 3924–3930 (2008).

    CAS  Google Scholar 

  270. Lopez, M. J., Rubio, A., Alonso, J. A., Qin, L. C. & Iijima, S. Novel polygonized single-wall carbon nanotube bundles. Phys. Rev. Lett. 86, 3056 (2001).

    CAS  Google Scholar 

  271. Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z., McGovern, I. T., Duesberg, G. S. & Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    CAS  Google Scholar 

  272. Lu, J., Nagase, S., Zhang, X. W., Wang, D., Ni, M., Maeda, Y., Wakahara, T., Nakahodo, T., Tsuchiya, T., Akasaka, T., Gao, Z. X., Yu, D. P., Ye, H. Q., Mei, W. N. & Zhou, Y. S. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation. J. Am. Chem. Soc. 128, 5114–5118 (2006).

    CAS  Google Scholar 

  273. Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297 (1997).

    CAS  Google Scholar 

  274. Luo, Z., Zhou, M., Weng, J., Huang, G., Xu, H., Ye, C. & Cai, Z. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 35, 3709–3711 (2010).

    CAS  Google Scholar 

  275. Lyklema, J. The surface tension of pure liquids: Thermodynamic components and corresponding states. Colloids Surf. A 156, 413–421 (1999).

    CAS  Google Scholar 

  276. Lynch, M. D. & Patrick, D. L. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2, 1197–1201 (2002).

    CAS  Google Scholar 

  277. Ma, H, Jen, A. K.-H. & Dalton, A. R. Polymer-based optical waveguides: Materials, processing and devices. Adv. Mater. 14, 1339–1365 (2002).

    CAS  Google Scholar 

  278. Maeda, A., Matsumoto, S., Kishda, H., Takenobu, T., Iwasa, Y., Shraishi, M., Ata, M. & Okamoto, H. Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations. Phys. Rev. Lett. 94, 047404 (2005).

    CAS  Google Scholar 

  279. Maeda, Y., Kimura, S.-i., Hirashima, Y., Kanda, M., Lian, Y., Wakahara, T., Akasaka, T., Hasegawa, T., Tokumoto, H., Shimizu, T., Kataura, H., Miyauchi, Y., Maruyama, S., Kobayashi, K. & Nagase, S. Dispersion of single-walled carbon nanotube bundles in nonaqueous solution. J. Phys. Chem. B 108, 18395–18397 (2004).

    CAS  Google Scholar 

  280. Mahan, G. D. Oscillations of a thin hollow cylinder: Carbon nanotubes. Phys. Rev. B 65, 235402 (2002).

    Google Scholar 

  281. Mamedov, A. A., Kotov, N. A., Prato, M., Guldi, D. M., Wicksted, J. P. & Hirsch, A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1, 190–194 (2002).

    CAS  Google Scholar 

  282. Mann, D., Kato, Y. K., Kinkhabwala, A., Pop, E., Cao, J., Wang, X., Zhang, L., Wang, Q., Guo, J. & Dai, H. Electrically driven thermal light emission from individual single-walled carbon nanotubes Nat. Nano. 2, 32–38 (2007).

    Google Scholar 

  283. Manzoni, C., Gambetta, A., Menna, E., Meneghetti, M., Lanzani, G. & Cerullo, G. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

    CAS  Google Scholar 

  284. Marago, O. M., Bonaccorso, F., Saija, R., Privitera, G., Gucciardi, P. G., Iati, M. A., Calogero, G., Jones, P. H., Borghese, F., Denti, P., Nicolosi, V. & Ferrari, A. C. Brownian motion of graphene. ACS Nano 4, 7515–7523 (2010).

    CAS  Google Scholar 

  285. Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993).

    CAS  Google Scholar 

  286. Margulis, V. A. Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes. J. Phys. Condens. Mat. 11, 3065 (1999).

    CAS  Google Scholar 

  287. Margulis, V. A. & Sizikova, T. A. Theoretical study of third-order nonlinear optical response of semiconductor carbon nanotubes. Physica B 245, 173–189 (1998).

    CAS  Google Scholar 

  288. Martinez, A., Fuse, K., Xu, B. & Yamashita, S. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Opt. Express 18, 23054–23061 (2010).

    CAS  Google Scholar 

  289. Kozinsky, B. & Marzari, N. Static dielectric properties of carbon nanotubes from firstprinciples. Phys. Rev. Lett. 96, 166801-4 (2006).

    Google Scholar 

  290. Matyba, P., Yamaguchi, H., Eda, G., Chhowalla, M., Edman, L. & Robinson, N. D. Graphene and mobile ions: The key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010).

    CAS  Google Scholar 

  291. Maultzsch, J., Reich, S., Schlecht, U. & Thomsen, C. High-energy phonon branches of an individual metallic carbon nanotube. Phys. Rev. Lett. 91, 087402 (2003).

    CAS  Google Scholar 

  292. Maultzsch, J., Reich, S., Thomsen, C., Requardt, H. & Ordejón, P. Phonon dispersion of graphite. Phys. Rev. Lett. 92, 075501 (2004).

    CAS  Google Scholar 

  293. Maultzsch, J., Pomraenke, R., Reich, S., Chang, E., Prezzi, D., Ruini, A., Molinari, E., Strano, M. S., Thomsen, C. & Lienau, C. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402(R) (2005).

    Google Scholar 

  294. Maultzsch, J., Telg, H., Reich, S. & Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005).

    Google Scholar 

  295. Mazer, N. A., Carey, M. C., Kwasnick, R. F. & Benedeck, G. B. Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 18, 3064–3075 (1979).

    CAS  Google Scholar 

  296. McDonald, T. J., Engtrakul, C., Jones, M., Rumbles, G. & Heben, M. J. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. J. Phys. Chem. B 110, 25339 (2006).

    CAS  Google Scholar 

  297. Meyer, J. C., Paillet, M., Michel, T., Moreac, A., Neumann, A., Duesberg, G. S., Roth, S. & Sauvajol, J. L. Raman modes of index-identified freestanding single-walled carbon nanotubes. Phys. Rev. Lett. 95, 217401 (2005).

    Google Scholar 

  298. Milnera, M., Kürti, J., Hulman, M. & Kuzmany, H. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 1324 (2000).

    CAS  Google Scholar 

  299. Minami, N., Kim, Y., Miyashita, K., Kazaoui, S. & Nalini, B. Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy. Appl. Phys. Lett. 88, 093123 (2006).

    Google Scholar 

  300. Misewich, J. A., Martel, R., Avouris, Ph., Tsang, J. C., Heinze, S. & Tersoff, J. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    CAS  Google Scholar 

  301. Miyajima, K. Correlation between the hydrophobic nature of monosaccharides and cholates, and their hydrophobic indices. J. Chem. Soc. Faraday Trans. 84, 2537–2544 (1988).

    CAS  Google Scholar 

  302. Miyauchi, Y., Chiashi, S., Murakami, Y., Hayashida, Y. & Maruyama, S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem. Phys. Lett. 387, 198–203 (2004).

    CAS  Google Scholar 

  303. Miyauchi, Y. & Maruyama, S. Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes. Phys. Rev. B 74, 035415 (2006).

    Google Scholar 

  304. Miyauchi, Y., Oba, M. & Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 74, 205440 (2006).

    Google Scholar 

  305. Miyauchi, Y., Saito, R., Sato, K., Ohno, Y., Iwasaki, S., Mizutani, T., Jiang, J. & Maruyama, S. Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chem. Phys. Lett. 442, 394–399 (2007).

    CAS  Google Scholar 

  306. Mohiuddin, T. M. G., Lombardo, A., Nair, R. R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D. M., Galiotis, C., Marzari, N., Novoselov, K. S., Geim, A. K. & Ferrari, A. C. Phys. Rev. B 79, 205433 (2009).

    Google Scholar 

  307. Moniruzzaman, M. & Winey, K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    CAS  Google Scholar 

  308. Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H. & Smalley, R. E. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    CAS  Google Scholar 

  309. Murakami, Y., Einarsson, E., Edamura, T. & Maruyama, S. Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys. Rev. Lett. 94, 087402 (2005).

    Google Scholar 

  310. Nakazawa, M., Nakahara, S., Hirooka, T., Yoshida, M., Kaino, T. & Komatsu, K. Polymer saturable absorber materials in the 1.5 mm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser. Opt. Lett. 31, 915–917 (2006).

    CAS  Google Scholar 

  311. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R. & Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Google Scholar 

  312. Nemanich, R. J. & Solin, S. A. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392 (1979).

    CAS  Google Scholar 

  313. Newell, J. O. & Schachman, H. K. Amino acid substitution which stabilize aspirate transcarbamoylase in the R state disrupt both homotropic and heterotropic effects. Biophys. Chem. 37, 183–196 (1960).

    Google Scholar 

  314. Ng, Y. H., Lightcap, I. V., Goodwin, K., Matsumura, M. & Kamat, P. V. To what extent do graphene Scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 1, 2222–2227 (2010).

    CAS  Google Scholar 

  315. Nguyen, B. T., Gautrot, J. E., Nguyen, M. T. & Zhu, X. X. Nitrocellulose-stabilized silver nanoparticles as low conversion temperature precursors useful for inkjet printed electronics. J. Mater. Chem. 17, 1725–1730 (2007).

    CAS  Google Scholar 

  316. Niyogi, S., Boukhalfa, S., Chikkannanavar, S. B., Mcdonald, T. J., Heben, M. J. & Doorn, S. K. Selective aggregation of single-walled carbon nanotubes via salt addition. J. Am. Chem. Soc. 129, 1898 (2007).

    CAS  Google Scholar 

  317. Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E. & Haddon, R. C. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).

    CAS  Google Scholar 

  318. Noh, Y. Y., Zhao, N., Caironi, M. & Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotech. 2, 784–789 (2007).

    CAS  Google Scholar 

  319. O’Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., Rialon, K. L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J., Hauge, R. H., Weisman, R. B. & Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Google Scholar 

  320. O’Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D. & Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342, 265–271 (2001).

    Google Scholar 

  321. O’Connell, M. J., Sivaram, S. & Doorn, S. K. Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes. Phys. Rev. B 69, 235415 (2004).

    Google Scholar 

  322. O’Flaherty, S. A., Murphy, R., Hold, S. V., Cadek, M., Coleman, J. N. & Blau, W. J. Material investigation and optical limiting properties of carbon nanotube and nanoparticle dispersions. J. Phys. Chem. B 107, 958–964 (2003).

    Google Scholar 

  323. Okazaki, T., Saito, T., Matsuura, K., Ohshima, S., Yumura, M., Oyama, Y., Saito, R. & Iijima, S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem. Phys. Lett. 420, 286–290 (2006).

    CAS  Google Scholar 

  324. Okazaki, T., Saito, T., Matsuura, K., Ohshima, S., Yumura, M. & Iijima, S. Photoluminescence mapping of “As-Grown” single-walled carbon nanotubes: A comparison with Micelle-encapsulated nanotube solutions. Nano Lett. 5, 2618–2623 (2005).

    CAS  Google Scholar 

  325. Okhotnikov, O., Grudinin, A. & Pessa, M. Ultra-fast fibre laser systems based on SESAM technology: New horizons and applications. New J. Phys. 6, 177 (2004).

    Google Scholar 

  326. Okimoto, H., Takenobu, T., Yanagi, K., Miyata, Y., Shimotani, H., Kataura, H. & Iwasa, Y. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv. Mater. 22, 3981–3986 (2010).

    CAS  Google Scholar 

  327. Olek, M., Ostrander, J., Jurga, S., Möhwald, H., Kotov, N., Kempa, K. & Giersig, M. Layerby-layer assembled composites from multiwall carbon nanotubes with different morphologies. Nano Lett. 4, 1889–1895 (2004).

    CAS  Google Scholar 

  328. O’Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740 (1991).

    Google Scholar 

  329. Ostojic, G. N., Zaric, S., Kono, J., Strano, M. S., Moore, V. C., Hauge, R. H. & Smalley, R. E. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Phys. Rev. Lett. 92, 117402 (2004).

    CAS  Google Scholar 

  330. Oyama, Y., Saito, R., Sato, K., Jiang, J., Samsonidze, G. G., Gruneis, A., Miyauchi, Y., Maruyama, S., Jorio, A., Dresselhaus, G. & Dresselhaus, M. S. Photoluminescence intensity of single-wall carbon nanotubes. Carbon 44, 873–879 (2006).

    CAS  Google Scholar 

  331. Park, C., Ounaies, Z., Watson, K. A., Crooks, R. E., Smith, J., Lowther, S. E., Connell, J. W., Siochi, E. J., Harrison, J. S. & Clair, T. L. S. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364, 303–308 (2002).

    CAS  Google Scholar 

  332. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nano 4, 217–224 (2009).

    CAS  Google Scholar 

  333. Pasquier, A.-Du, Unalan, H. E., Kanwal, A., Miller, S. & Chhowalla, M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511-3 (2005).

    Google Scholar 

  334. Perebeinos, V. & Avouris, P. Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes. Nano Lett. 7, 609–613 (2007).

    CAS  Google Scholar 

  335. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Google Scholar 

  336. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

    CAS  Google Scholar 

  337. Pickels, E. G. & Smadel, J. E. Ultracentrifugation studies on the elementary bodies of vaccine virues: I. General methods and determination of particle size J. Exp. Med. 68, 583–606 (1938).

    CAS  Google Scholar 

  338. Pimenta, M. A., Marucci, A., Empedocles, S. A., Bawendi, M. G., Hanlon, E. B., Rao, A. M., Eklund, P. C., Smalley, R. E., Dresselhaus, G. & Dresselhaus, M. S. Raman modes of metallic carbon nanotubes. Phys. Rev. B 58, 16016 (1998).

    Google Scholar 

  339. Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K. S., Geim, A. K., Ferrari, A. C. & Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198 (2007).

    CAS  Google Scholar 

  340. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    CAS  Google Scholar 

  341. Piscanec, S., Lazzeri, M., Robertson, J., Ferrari, A. C. & Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 75, 035427 (2007).

    Google Scholar 

  342. Plentz, F., Ribeiro, H. B., Jorio, A., Strano, M. S. & Pimenta, M. A. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. Phys. Rev. Lett. 95, 247401 (2005).

    Google Scholar 

  343. Pocsik, I., Hundhausen, M., Koos, M. & Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non-cryst. Solids 230, 1083–1086 (1998).

    Google Scholar 

  344. Popa, D., Sun, Z., Torrisi, F., Hasan, T., Wang, F. & Ferrari, A. C. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett. 97, 203106-3 (2010).

    Google Scholar 

  345. Popa, D., Sun, Z., Hasan, T., Torrisi, F., Wang, F. & Ferrari, A. C. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett. 98, 073106-3 (2011).

    Google Scholar 

  346. Popov, V. N., Van Doren, V. E. & Balkanski, M. Lattice dynamics of single-walled carbon nanotubes. Phys. Rev. B 59, 8355–8358 (1999).

    CAS  Google Scholar 

  347. Pradhan, B., Batabyal, S. K. & Pal, A. J. Functionalized carbon nanotubes in donor/acceptortype photovoltaic devices. Appl. Phys. Lett. 88, 093106 (2006).

    Google Scholar 

  348. Priya, B. R. & Byrne, H. J. Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-wall carbon nanotubes. J. Phys. Chem. C 112, 332–337 (2008).

    CAS  Google Scholar 

  349. Qu, L., Lin, Y., Hill, D. E., Zhou, B., Wang, W., Sun, X., Kitaygorodskiy, A., Suarez, M., Connell, J. W., Allard, L. F. & Sun, Y.-P. Polyimide-functionalized carbon nanotubes: Synthesis and dispersion in nanocomposite films. Macromolecules 37, 6055–6060 (2004).

    CAS  Google Scholar 

  350. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G. & Dresselhaus, M. S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997).

    CAS  Google Scholar 

  351. Reich, S., Dworzac, M., Hoffmann, A., Thomsen, C. & Strano, M. S. Excited-state carrier lifetime in single-walled carbon nanotubes. Phys. Rev. B 71, 033402 (2005).

    Google Scholar 

  352. Reich, S., Thomsen, C. & Ordejón, P. Electronic band structure of isolated and bundled carbon nanotubes. Phys. Rev. B 65, 155411 (2002).

    Google Scholar 

  353. Reich, S., Thomsen, C. & Robertson, J. Exciton resonances Quench the photoluminescence of zigzag carbon nanotubes. Phys. Rev. Lett. 95, 077402-4 (2005).

    Google Scholar 

  354. Riddik, J. A., Bunger, W. B. & Sakano, T. K. Organic solvents, physical properties and methods of purification. Wiley, New York (1986).

    Google Scholar 

  355. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodríguez-Macías, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C. & Smalley, R. E. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 67, 29 (1998).

    CAS  Google Scholar 

  356. Roda, A., Hofmann, A. F. & Mysels, K. J. The influence of bile salt structure on selfassociation in aqueous solutions. J. Bio. Chem. 258, 6362 (1983).

    CAS  Google Scholar 

  357. Rozhin, A. G., Sakakibara, Y., Kataura, H., Matsuzaki, S., Ishida, K., Achiba, Y. & Tokumoto, M. Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol. Chem. Phys. Lett. 405, 288–293 (2005).

    CAS  Google Scholar 

  358. Rozhin, A. G., Sakakibara, Y., Namiki, S., Tokumoto, M. & Kataura, H. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Appl. Phys. Lett. 88, 051118 (2006).

    Google Scholar 

  359. Rozhin, A. G., Sakakibara, Y., Tokumoto, M., Kataura, H. & Achiba, Y. Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 464465, 368–372 (2004).

    Google Scholar 

  360. Rozhin, A. G., Scardaci, V., Wang, F., Hennrich, F., White, I. H., Milne, W. I. & Ferrari, A. C. Generation of ultra-fast laser pulses using nanotube mode-lockers. Phys. Stat. Sol. (b) 243, 3551 (2006).

    CAS  Google Scholar 

  361. Sackett, D. L. & Lippoldt, R. E. Thermodynamics of reversible monomer-dimer association of tubulin. Biochemistry 30, 3511–3517 (1991).

    CAS  Google Scholar 

  362. Sakakibara, Y., Kintaka, K., Rozhin, A. G., ltatani, T., Soe, W. M., ltatani, H., Tokumoto, M. & Kataura, H. Optically uniform carbon nanotube-polyimide nanocomposite: Application to 165 fs mode-locked fiber laser and waveguide, presented at 31st European Conference on Optical Communication, Glasgow, Scotland (2005).

    Google Scholar 

  363. Sakakibara, Y., Rozhin, A. G., Kataura, H., Achiba, Y. & Tokumoto, H. Carbon nanotube-poly(vinylalcohol) nanocomposite film devices: Applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors. Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

    CAS  Google Scholar 

  364. Salvetat, J.-P., Briggs, G. A. D., Bonard, J.-M., Bacsa, R. i. R., Kulik, A. J., Stöckli, T., Burnham, N. A. & Forró, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944 (1999).

    CAS  Google Scholar 

  365. Sánchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A. & Ordejón, P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688 (1999).

    Google Scholar 

  366. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    CAS  Google Scholar 

  367. Sarukura, N., Ishida, Y., Yanagawa, T. & Nakano, H. All solid-state cw passively modelocked Ti:sapphire laser using a colored glass filter. Appl. Phys. Lett. 57, 229–230 (1990).

    CAS  Google Scholar 

  368. Sasaki, Y., Igura, T., Miyassu, Y. I., Lee, S., Nagadome, S., Takiguchi, H. & Sugihara, G. The adsorption behavior of four bile salt species on graphite in water – Evaluation of effective hydrophobicity of bile acids. Colloids Surf. B 5, 241–247 (1995).

    CAS  Google Scholar 

  369. Scalia, G., Lagerwall, J. P. F., Schymura, S., Haluska, M., Giesselmann, F. & Roth, S. Carbon nanotubes in liquid crystals as versatile functional materials. Phys. Stat. Sol. (b) 244, 4212–4217 (2007).

    CAS  Google Scholar 

  370. Scardaci, V., Rozhin, A. G., Hennrich, F., Milne, W. I. & Ferrari, A. C. Carbon nanotubepolymer composites for photonic devices. Physica E 37, 115 (2007).

    CAS  Google Scholar 

  371. Scardaci, V., Rozhin, A. G., Tan, P. H., Wang, F., White, I. H., Milne, W. I. & Ferrari, A. C. Carbon nanotubes for ultrafast photonics. Phys. Stat. Sol. (b) 244, 4303–4307 (2007).

    CAS  Google Scholar 

  372. Scardaci, V., Sun, Z., Wang, F., Rozhin, A. G., Hasan, T., Hennrich, F., White, I. H., Milne, W. I. & Ferrari, A. C. Carbon nanotube-polycarbonate composites for ultrafast lasers. Adv. Mater. 20, 4040 (2008).

    CAS  Google Scholar 

  373. Scardaci, V., Coull, R. & Coleman, J. N. Very thin transparent, conductive carbon nanotube films on flexible substrates Appl. Phys. Lett. 97, 023114 (2010).

    Google Scholar 

  374. Schabel, M. C. & Martins, J. L. Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185 (1992).

    CAS  Google Scholar 

  375. Schedin, F., Lidorikis, E., Lombardo, A., Kravets, V. G., Geim, A. K., Grigorenko, A. N., Novoselov K. S. & Ferrari A. C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617 (2010).

    CAS  Google Scholar 

  376. Schibli, T. R., Minoshima, K., Kataura, H., Itoga, E., Minami, N., Kazaoui, S., Miyashita, K., Tokumoto, M. & Sakakibara, Y. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 13, 8025–8031 (2005).

    CAS  Google Scholar 

  377. Schmidt, A., Rivier, S., Cho, W. B., Yim, J. H., Choi, S. Y., Lee, S., Rotermund, F., Rytz, D., Steinmeyer, G., Petrov, V. & Griebner, U. Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 μm. Opt. Express 17, 20109–20116 (2009).

    CAS  Google Scholar 

  378. Senoo, Y., Nishizawa, N., Sakakibara, Y., Sumimura, K., Itoga, E., Kataura, H. & Itoh, K. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. Opt. Express 17, 20233–20241 (2009).

    CAS  Google Scholar 

  379. Set, S., Yaguchi, H., Jablonski, M., Tanaka, Y., Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y. & Kikuchi, K. A noise suppressing saturable absorber at 1550 nm based on carbon nanotube technology”, presented at Optical Fiber Communications Conference (OFC), Washington, DC (2003).

    Google Scholar 

  380. Set, S. Y., Yaguchi, H., Tanaka, Y. & Jablonski, M. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quant. Electron. 10, 137–146 (2004).

    CAS  Google Scholar 

  381. Set, S. Y., Yaguchi, H., Tanaka, Y., Jablonski, M., Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y. & Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes”, presented at Optical Fiber Communication Conference (OFC), Washington, DC (2003).

    Google Scholar 

  382. Shaffer, M. S. P. & Windle, A. H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11, 937–941 (1999).

    CAS  Google Scholar 

  383. Sheik-Bahae, M., Said, A. A. & Van Stryland, E. W. High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989).

    CAS  Google Scholar 

  384. Shigeta, M., Komatsu, M. & Nakashima, N. Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chem. Phys. Lett. 418, 115–118 (2006).

    CAS  Google Scholar 

  385. Shimoda, H., Oh, S. J., Geng, H. Z., Walker, R. J., Zhang, X. B., McNeil, L. E. & Zhou, O. Self-assembly of carbon nanotubes. Adv. Mater. 14, 899–901 (2002).

    CAS  Google Scholar 

  386. Shimoda, T., Morii, K., Seki, S. & Kiguchi, H. Inkjet printing of light-emitting polymer displays. Mater. Res. Soc. Bull. 28, 821–827 (2003).

    CAS  Google Scholar 

  387. Shyu, F. L. & Lin, M. F. π plasmons in two-dimensional arrays of aligned carbon nanotubes. Phys. Rev. B 60, 14434–14440 (1999).

    CAS  Google Scholar 

  388. Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing–process and its applications. Adv. Mater. 22, 673–685 (2010).

    CAS  Google Scholar 

  389. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. & Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    CAS  Google Scholar 

  390. Smale, G. & Sasse, J. RNA isolation form cartilage using density gradient centrifugation in cesium trifluoroacetate: An RNA preparation technique effective in the presence of high proteoglycan content. Anal. Biochem. 203, 352–356 (1992).

    CAS  Google Scholar 

  391. Small, D. M., Penkett, S. A. & Chapman, D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim. Biophys. Acta 176, 178–189 (1969).

    CAS  Google Scholar 

  392. Small, W. R. & Panhuis, M. In het Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3, 1500–1503 (2007).

    CAS  Google Scholar 

  393. Smith, Peter W. Mode-locking of lasers. Proc. IEEE 58, 1342–1357 (1970).

    Google Scholar 

  394. Solodyankin, M. A., Obraztsova, E. D., Lobach, A. S., Chernov, A. I., Tausenev, A. V., Konov, V. I. & Dianov, E. M. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 33, 1336–1338 (2008).

    CAS  Google Scholar 

  395. Song, Y.-W., Morimune, K., Set, S. Y. & Yamashita, S. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers. Appl. Phys. Lett. 90, 021101 (2007).

    Google Scholar 

  396. Song, Y.-W. & Yamashita, S. Passively mode-locked lasers with 17.2-GHz fundamentalmode repetition rate pulsed by carbon nanotubes. Opt. Lett. 32, 430–432 (2007).

    CAS  Google Scholar 

  397. Song, Y.-W., Yamashita, S., Einarsson, E. & Maruyama, S. All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film. Opt. Lett. 32, 1399–1401 (2007).

    Google Scholar 

  398. Song, Y.-W., Yamashita, S., Goh, C. S. & Set, S. Y. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Opt. Lett. 32, 148–150 (2007).

    CAS  Google Scholar 

  399. Song, Y.-W., Yamashita, S. & Maruyama, S. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett. 92, 021115 (2008).

    Google Scholar 

  400. Song, Y.-W., Jang, S.-Y., Han, W.-S. & Bae, M.-K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 96, 051122-3 (2010).

    Google Scholar 

  401. Song, Y. W., Set, S. Y., Yamashita, S., Goh, C. S. & Kotake, T. 1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes. IEEE Photonics Technol. Lett. 17, 1623–1625 (2005).

    CAS  Google Scholar 

  402. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).

    Google Scholar 

  403. Star, A., Liu, Y., Grant, K., Ridvan, L., Stoddart, J. F., Steuerman, D. W., Diehl, M. R., Boukai, A. & Heath, J. R. Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36, 553–560 (2003).

    CAS  Google Scholar 

  404. Star, A. & Stoddart, J. F. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35, 7516–7520 (2002).

    CAS  Google Scholar 

  405. Star, A., Stoddart, J. F., Steuerman, D., Diehl, M., Boukai, A., Wong, E. W., Yang, X., Chung, S.-W., Choi, H. & Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40, 1721–1725 (2001).

    CAS  Google Scholar 

  406. Steuerman, D. W., Star, A., Narizzano, R., Choi, H., Ries, R. S., Nicolini, C., Stoddart, J. F. & Heath, J. R. Interactions between conjugated polymers and single-walled carbon nanotubes. J. Phys. Chem. B 106, 3124–3130 (2002).

    CAS  Google Scholar 

  407. Stillemark, P., Boren, J., Andersson, M., Larsson, T., Rustaeus, S., Karlsson, K. A. & Olofsson, S. O. The assembly and secretion of apolipoprotein B-48-containing very low density lipoproteins in McA-RH7777 cells. J. Biol. Chem. 275, 10506–10513 (2000).

    CAS  Google Scholar 

  408. Stutzmann, N., Friend, R. H. & Sirringhaus, H. Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003).

    CAS  Google Scholar 

  409. Sugihara, G., Shigematsu, D.-S., Nagadome, S., Lee, S., Sasaki, Y. & Igimi, H. Thermodynamic study on the langmuir adsorption of various bile salts including taurine and glycine conjugates onto graphite in water. Langmuir 16, 1825–1833 (2000).

    CAS  Google Scholar 

  410. Sun, Y., Wu, Q. & Shi, G. Graphene based new energy materials. Energy Environ. Sci. doi:10.1039/C0EE00683A (2011).

    Google Scholar 

  411. Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D. M. & Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    CAS  Google Scholar 

  412. Sun, Z., Lin, X., Yu, H., Hasan, T., Torrisi, F., Zhang, L., Sun, L., Guo, L., Hou, W., Li, J. & Ferrari, A. C. High-power ultrafast solid-state laser using graphene based saturable absorber. In The Conference on Lasers and Electro-Optics (Baltimore, US), JWA79 (2010).

    Google Scholar 

  413. Sun, Z., Hasan, T., Wang, F., Rozhin, A., White, I. & Ferrari, A. Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Res. 3, 404–411 (2010).

    CAS  Google Scholar 

  414. Sun, Z., Popa, D., Hasan, T., Torrisi, F., Wang, F., Kelleher, E. J. R., Travers, J. C., Nicolosi, V. & Ferrari, A. C. A Stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 3, 653–660 (2010).

    CAS  Google Scholar 

  415. Sun, Z., Rozhin, A. G., Wang, F., Scardaci, V., Milne, W. I., White, I. H., Hennrich & F. Ferrari, A. C. L-band ultrafast fiber laser mode locked by carbon nanotubes. Appl. Phys. Lett. 93, 061114 (2008).

    Google Scholar 

  416. Sun, Z., Rozhin, A. G., Wang, F., Hasan, T., Popa, D., O’Neill, W. & Ferrari, A. C. A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Appl. Phys. Lett. 95, 253102 (2009).

    Google Scholar 

  417. Suzuki, K., Yamaguchi, M., Kumagai, M. & Yanagida, S. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32, 28–29 (2003).

    CAS  Google Scholar 

  418. Svedberg, T. & Pedersen, K. O. The ultracentrifuge. Clarendon Press, Oxford (1940).

    Google Scholar 

  419. Takenobu, T., Miura, N., Lu, S.-Y., Okimoto, H., Asano, T., Shiraishi, M. & Iwasa, Y. Ink-jet printing of carbon nanotube thin-film transistors on flexible plastic substrates. Appl. Phys. Express 2, 025005 (2009).

    Google Scholar 

  420. Takahashi, T., Tsunoda, K., Yajima, H. & Ishii, T. Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose. Jpn. J. Appl. Phys. 43, 3636–3639 (2004).

    CAS  Google Scholar 

  421. Tan, P. H., Rozhin, A. G., Hasan, T., Hu, P., Scardaci, V., Milne, W. I. & Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

    CAS  Google Scholar 

  422. Tan, P. H., Hasan, T., Bonaccorso, F., Scardaci, V., Rozhin, A. G., Milne, W. I. & Ferrari, A. C. Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E 40, 2352–2359 (2008).

    CAS  Google Scholar 

  423. Tan, Y. & Resasco, D. E. Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 109, 14454–14460 (2005).

    CAS  Google Scholar 

  424. Tan, W. D., Su, C. Y., Knize, R. J., Xie, G. Q., Li, L. J. & Tang, D. Y. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 96, 031106 (2010).

    Google Scholar 

  425. Tang, Z., Zhuang, J. & Wang, X. Exfoliation of graphene from graphite and their self-assembly at the oil-water interface. Langmuir 26, 9045–9049 (2010).

    CAS  Google Scholar 

  426. Tasis, D., Tagmatarchis, N., Georgakilas, V. & Prato, M. Soluble carbon nanotubes. Chem. Eur. J. 9, 4000–4008 (2003).

    CAS  Google Scholar 

  427. Tatsuura, S., Furuki, M., Sato, Y., Iwasa, I., Tian, M. & Mitsu, H. Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications. Adv. Mater. 15, 534–537 (2003).

    CAS  Google Scholar 

  428. Tausenev, A. V., Obraztsova, E. D., Lobach, A. S., Chernov, A. I., Konov, V. I., Konyashchenko, A. V., Kryukov, P. G. & Dianov, E. M. Self-mode-Iocking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method. Quantum Electron. 37, 205–208 (2007).

    CAS  Google Scholar 

  429. Telg, H., Maultzsch, J., Reich, S., Hennrich, F. & Thomsen, C. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 93, 177401 (2004).

    CAS  Google Scholar 

  430. Tersoff, J. & Ruoff, R. S. Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73, 676 (1994).

    CAS  Google Scholar 

  431. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tománek, D., Fischer, J. E. & Smalley, R. E. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    CAS  Google Scholar 

  432. Thomsen, C. & Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000).

    CAS  Google Scholar 

  433. Torrens, O. N., Milkie, D. E., Zheng, M. & Kikkawa, J. M. Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. Nano Lett. 6, 2864–2867 (2006).

    CAS  Google Scholar 

  434. Trancik, J. E., Barton, S. C. & Hone, J. Transparent and catalytic carbon nanotube films, Nano Lett. 8, 982–987 (2008).

    CAS  Google Scholar 

  435. Trebino, R. Frequency-resolved optical gating: The measurement of ultrashort laser pulses. Kluwer Academic Publishers, Norwell, MA (2002).

    Google Scholar 

  436. Trickey, S. B., Müller-Plathe, F., Diercksen, G. H. F. & Boettger, J. C. Interplanar binding and lattice relaxation in a graphite dilayer. Phys. Rev. B 45, 4460 (1992).

    CAS  Google Scholar 

  437. Trushkevych, O., Collings, N., Crossland, W. A., Wilkinson, T. D., Georgiou, A. & Milne, W. I. Projection of holograms from photorefractive optically addressed spatial light modulators. J. Nonlinear Opt. Phys. 16, 307–316 (2007).

    CAS  Google Scholar 

  438. Trushkevych, O., Collings, N., Hasan, T., Scardaci, V., Ferrari, A. C., Wilkinson, T. D., Crossland, W. A., Milne, W. I., Geng, J., Johnson, B. F. G. & Macaulay, S. Characterization of carbon nanotube-thermotropic nematic liquid crystal composites. J. Phys. D 41, 125106 (2008).

    Google Scholar 

  439. Tsyboulsky, D., Rocha, J. D. R., Bachilo, S. M., Cognet, L. & Weisman, R. B. Structuredependent fluorescence efficiencies of individual single-walled cardon nanotubes. Nano Lett. 7, 3080–3085 (2007).

    Google Scholar 

  440. Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

    CAS  Google Scholar 

  441. Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    CAS  Google Scholar 

  442. Uchida, S., Martinez, A., Song, Y.-W., Ishigure, T. & Yamashita, S. Carbon nanotube-doped polymer optical fiber. Opt. Lett. 34, 3077–3079 (2009).

    CAS  Google Scholar 

  443. Umeyama, T., Kadota, N., Tezuka, N., Matano, Y. & Imahori, H. Photoinduced energy transfer in composites of poly[(p-phenylene-1,2-vinylene)-co-(p-phenylene-1,1-vinylidene)] and single-walled carbon nanotubes. Chem. Phys. Lett. 444, 263–267 (2007).

    CAS  Google Scholar 

  444. Van Stryland, E. W. & Sheik-Bahae, M. In Z-scan (Eds.: Kuzyk, M. G. and Dirk, C. W.), New York, Marcel Dekker Inc., 1998.

    Google Scholar 

  445. Yu, H., Chen, X., Zhang, H., Xu, X., Hu, X., Wang, Z., Wang, J., Zhuang, S. & Jiang, M. Large energy pulse generation modulated by Graphene epitaxially grown on silicon carbide. ACS Nano 4, 7582–7586 (2010).

    CAS  Google Scholar 

  446. Vidano, R. P., Fischbach, D. B., Willis, L. J. & Loehr, T. M. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 39, 341–344 (1981).

    CAS  Google Scholar 

  447. Vieira, O. V., Laranjinha, J. A. N., Madeira, V. M. C. & Almeida, L. M. Rapid isolation of low density lipoproteins in a concentrated fraction free from water-soluble plasma antioxidants. J. Lipid Res. 37, 2715–2721 (1996).

    CAS  Google Scholar 

  448. Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P. & Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    CAS  Google Scholar 

  449. Viswanathan, G., Chakrapani, N., Yang, H. C., Wei, B. Q., Chung, H. S., Cho, K. W., Ryu, C. Y. & Ajayan, P. M. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258–9259 (2003).

    CAS  Google Scholar 

  450. Vivien, L., Anglaret, E., Riehl, D., Hache, F., Bacou, F., Andrieux, M., Lafonta, F., Journet, C., Goze, C., Brunet, M. & Bernier, P. Optical limiting properties of singlewall carbon nanotubes. Opt. Commun. 174, 271–275 (2000).

    CAS  Google Scholar 

  451. Wada, O. Femtosecond all-optical devices for ultrafast communication and signal processing. New J. Phys. 6, 183 (2004).

    Google Scholar 

  452. Walsh, A. G., Vamivakas, A. N., Yin, Y., Ünlü, M. S., Goldberg, B. B., Swan, A. K. & Cronin, S. B. Screening of excitons in single, suspended carbon nanotubes. Nano Lett. 7, 1485–1488 (2007).

    CAS  Google Scholar 

  453. Wang, F., Rozhin, A., Sun, Z., Scardaci, V., Penty, R., White, I. & Ferrari, A. C. Fabrication, characterization and mode locking application of single-walled carbon nanotube/polymer composite saturable absorbers. Int. J. Mater. Form. 1, 107–112 (2008).

    Google Scholar 

  454. Wang, F., Rozhin, A. G., Scardaci, V., Sun, Z., Hennrich, F., White, I. H., Milne, W. I. & Ferrari, A. C. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 3, 738–742 (2008).

    CAS  Google Scholar 

  455. Wang, F., Rozhin, A. G., Sun, Z., Scardaci, V., White, I. H. & Ferrari, A. C. Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite. Phys. Stat. Sol. (b) 245, 2319–2322 (2008).

    CAS  Google Scholar 

  456. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    CAS  Google Scholar 

  457. Wang, F., Sfeir, M. Y., Huang, L., Huang, X. M. H., Wu, Y., Kim, J., Hone, J., O’Brien, S., Brus, L. E. & Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401 (2006).

    Google Scholar 

  458. Wang, J. Z., Zheng, Z. H., Li, H. W., Huck, W. T. S. & Sirringhaus, H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3, 171–176 (2004).

    Google Scholar 

  459. Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    CAS  Google Scholar 

  460. Wang, X., Zhi, L., Tsao, N., Tomovic, Z., Li, J. & Müllen, K. Transparent carbon films as electrodes in organic solar cells. Angew. Chem. 47, 2990 (2008).

    CAS  Google Scholar 

  461. Wei, L., Wang, B., Goh, T. H., Li, L. J., Yang, Y. H., Chan-Park, M. B. & Chen, Y. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples. J. Phys. Chem. B 112, 2771–2774 (2008).

    CAS  Google Scholar 

  462. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 3, 1235 (2003).

    CAS  Google Scholar 

  463. Weisman, R. B., Bachilo, S. M. & Tsyboulsky, D. Fluorescence spectroscopy of singlewalled carbon nanotubes in aqueous suspension. Appl. Phys. A 78, 1111–1116 (2004).

    CAS  Google Scholar 

  464. Weiss, V., Thiruvengadathan, R. & Regev, O. Preparation and characterization of a carbon nanotube-lyotropic liquid crystal composite. Langmuir 22, 854–856 (2006).

    CAS  Google Scholar 

  465. Wenseleers, W., Vlasov, I. I., Goovaerts, E., Obraztsova, E. D., Lobach, A. S. & Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14, 1105–1112 (2004).

    CAS  Google Scholar 

  466. White, B., Banerjee, S., O’Brien, S., Turro, N. J. & Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 13684–13690 (2007).

    CAS  Google Scholar 

  467. Williams, J. W., Van Holde, K. E., Baldwin, R. L. & Fujita, H. The theory of sedimentation analysis. Chem Rev. 58, 715–806 (1958).

    CAS  Google Scholar 

  468. Wu, J., Walukiewicz, W., Shan, W., Bourret-Courchesne, E., Ager III, J. W., Yu, K. M., Haller, E. E., Kissell, K., Bachilo, S. M., Weisman, R. B. & Smalley, R. E. Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes. Phys. Rev. Lett. 93, 017404 (2004).

    Google Scholar 

  469. Wu, J., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y. & Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302-3 (2008).

    Google Scholar 

  470. Wu, J., Agrawal, M., Becerril, H. C. A., Bao, Z., Liu, Z., Chen, Y. & Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2009).

    Google Scholar 

  471. Wu, Y., Li, Y., Ong, B. S., Liu, P., Gardner, S. & Chiang, B. High-performance organic thin-film transistors with solution-printed gold contacts. Adv. Mater. 17, 184–187 (2005).

    CAS  Google Scholar 

  472. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F. & Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    CAS  Google Scholar 

  473. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nano 4, 839–843 (2009).

    CAS  Google Scholar 

  474. Xie, H., Ortiz-Acevedo, A., Zorbas, V., Baughman, R. H., Draper, R. K., Musselman, I. H., Dalton, A. B. & Dieckmann, G. R. Peptide cross-linking modulated stability and assembly of peptide-wrapped single-walled carbon nanotubes. J. Mater. Chem. 15, 1734–1741 (2005).

    CAS  Google Scholar 

  475. Xie, Xiao-Lin, Mai, Yiu-Wing & Zhou, Xing-Ping. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R 49, 89–112 (2005).

    Google Scholar 

  476. Xu, Z., Wu, Y., Hu, B., Ivanov, I. N. & Geohegan, D. B. Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers. Appl. Phys. Lett. 87, 263118 (2005).

    Google Scholar 

  477. Yamashita, S., Inoue, Y., Maruyama, S., Murakami, Y., Yaguchi, H., Jablonski, M. & Set, S. Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 29, 1581–1583 (2004).

    CAS  Google Scholar 

  478. Yamashita, S., Inoue, Y., Yaguchi, H., Jablonski, M. & Set, S. Y. S-,C-,L-Band picosecond fiber pulse sources using a broadband carbon-nanotube-based mode-locker. Euro. Conf. on Opt. Comm. (ECOC), (Stockholm, 2004). pp. No.Th.1.3.4.

    Google Scholar 

  479. Yamashita, S., Set, S. Y., Goh, C. S. & Kikuchi, K. Ultrafast saturable absorbers based on carbon nanotubes and their applications to passively mode-locked fiber lasers. Electron. Comm. Jpn. 90, 17–24 (2007).

    Google Scholar 

  480. Yan, J., Zhang, Y. B., Kim, P. & Pinczuk, A. Phys. Rev. Lett. 98, 166802 (2007).

    Google Scholar 

  481. Yan, X., Cui, X., Li, B. & Li, L.-S. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett., 10, 1869–1873 (2010).

    CAS  Google Scholar 

  482. Yanagi, K., Miyata, Y. & Kataura, H. Optical and conductive characteristics of metallic single-wall carbon nanotubes with three basic colors; Cyan, magenta, and yellow. Appl. Phys. Express 1, 034003 (2008).

    Google Scholar 

  483. Yang, N., Zhai, J., Wang, D., Chen, Y. & Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010).

    CAS  Google Scholar 

  484. Yaws, C. L. Thermophysical properties of chemicals and hydrocarbons. William Andrew Inc. Norwich, NY (2008).

    Google Scholar 

  485. Yong, V. & Tour, J. M. Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6, 313–318 (2009).

    Google Scholar 

  486. Yu, A., Hu, H., Bekyarova, E., Itkis, M. E., Gao, J., Zhao, B. & Haddon, R. C. Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Compos. Sci. Tech. 66, 1187 (2006).

    Google Scholar 

  487. Yu, P. & Cardona, M. Fundamentals of semiconductors. Springer, Berlin (2005).

    Google Scholar 

  488. Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004).

    Google Scholar 

  489. Zhang, J., Kang, D. E., Xia, W., Okochi, M., Mori, H., Selkoe, D. J. & Koo, E. H. Subcellular distribution and turnover of presenilins in transfected cells. J. Biolog. Chem. 273, 12436–12442 (1998).

    CAS  Google Scholar 

  490. Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M. E. & Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6, 1880–1886 (2006).

    CAS  Google Scholar 

  491. Zhang, H., Tang, D. Y., Zhao, L. M., Bao, Q. L. & Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17, 17630–17635 (2009).

    CAS  Google Scholar 

  492. Zhao, H. & Mazumdar, S. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    Google Scholar 

  493. Zhao, H. & Mazumdar, S. Elucidation of the electronic structure of semiconducting single-walled carbon nanotubes by electroabsorption spectroscopy. Phys. Rev. Lett. 98, 166805 (2007).

    Google Scholar 

  494. Zhao, N., Chiesa, M., Sirringhaus, H., Li, Y., Wu, Y. & Ong, B. Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution. J. Appl. Phys. 101, 064513-6 (2007).

    Google Scholar 

  495. Zheng, M., Jagota, A., Semke, E. D., Diner, B. A., Mclean, R. S., Lustig, S. R., Richardson, R. E. & Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).

    CAS  Google Scholar 

  496. Zheng, M., Jagota, A., Strano, M. S., Santos, A. P., Barone, P., Chou, S. G., Diner, B. A., Dresselhaus, M. S., McLean, R. S., Onoa, G. B., Samsonidze, G. G., Semke, E. D., Usrey, M. & Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    CAS  Google Scholar 

  497. Zhou, Y., Hu, L. & Gruner, G. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88, 123109 (2006).

    Google Scholar 

  498. Zorbas, V., Ortiz-Acevedo, A., Dalton, A. B., Yoshida, M. M., Dieckmann, G. R., Draper, R. K., Baughman, R. H., Jose-Yacama, M. & Musselman, I. H. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 7222–7227 (2004).

    CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Popa, F. Torrisi, F. Wang, W. B. Cho for useful discussions. TH acknowledges funding from King’s College, Cambridge, FB from a Newton International Fellowship, PHT from NSF of China (No. 10874177). ACF from EPSRC (Grant Nos. GR/S97613/01 and EP/E500935/1) ERC NANOPOTS, Royal Society Brian Mercer Award for Innovation, The Cambridge Integrated Knowledge Centre in Advanced Manufacturing Technology for Photonics and Electronics, the EU grants GENIUS and RODIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hasan, T. et al. (2011). Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics. In: Hayden, O., Nielsch, K. (eds) Molecular- and Nano-Tubes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9443-1_9

Download citation

Publish with us

Policies and ethics