Skip to main content

Physical Aging in Glasses and Composites

  • Chapter
  • First Online:

Abstract

Physical aging is observed in all glassy materials because of the fact that they are out of equilibrium. The ways in which aging manifests itself are the results of the thermal history of the materials, the environment, and even the constraint of, e.g., fibers or particles. In the present chapter, the fundamentals of aging of glasses are summarized by considering first structural recovery, which is the kinetics of the thermodynamic-type variables such as volume or enthalpy, and its impact on the mechanical response, which is the physical aging. Linear viscoelastic and nonlinear viscoelastic properties as well as yield behaviors will be considered. Furthermore, we will consider environmental effects on physical aging behaviors. The work will end with a perspective on aging in composites and where further research is needed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Silica glass at 1,000°C has a viscosity of 1015.82 Pa s41 and at room temperature, from the reported activation energy, one would estimate the value to be >> 1030 Pa s. In this case, since the Maxwell model [34] estimation of the relaxation time is \( \tau = {\eta_0}/G \) and G ≈ 28 GPa for a window glass [41], then \( t \approx {10^{{30}}}{/}28 \times {10^9}\;{\hbox{s}} \approx {10^{{12}}}\;{\hbox{years}} \) which is much longer than the times available for European cathedral windows to have flowed.

  2. 2.

    We remark that the concept of rejuvenation is not completely clear. The idea of a freshly quenched state is often used when one talks of thermal rejuvenation. However, other workers sometimes refer to mechanical rejuvenation and this is more controversial. The reader is advised to see the paper by the current author on mechanical rejuvenation [100] and also the more recent work of Isner and Lacks [132] that investigate the issue using molecular simulations.

References

  1. A.J. Kovacs, “Transition Vitreuse dans les Polyméres Amorphes. Etude Phénoménologique,” Fortschritte der Hochpolymeren-Forschung, 3, 394–507 (1963).

    Article  Google Scholar 

  2. A.Q. Tool, “Relation Between Inelastic Deformability and Thermal Expansion of Glass in Its Annealing Range,” J. Amer. Ceram. Soc., 29, 240–253 (1946); A.Q. Tool, “Viscosity and the Extraordinary Heat Effects in Glass,” J. Research National Bureau of Standards (USA), 37, 73–90 (1946).

    Google Scholar 

  3. O.S. Narayanaswamy, “A Model of Structural Relaxation in Glass, “J. Am. Ceram. Soc., 54, 491–498 (1971).

    Article  CAS  Google Scholar 

  4. C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Esteal, P.B. Elterman, R.P. Moeller, H. Sasabe and J.A. Wilder, “Structural Relaxation in Vitreous Materials,” Ann. N.Y. Acad. Sci., 279, 15–35 (1976).

    Article  CAS  Google Scholar 

  5. G.W. Scherer, Relaxation in Glass and Composites, Krieger Publishing Co., Malabar, Florida (1992).

    Google Scholar 

  6. G.B. McKenna, “Glass Formation and Glassy Behavior,” in Comprehensive Polymer Science, Vol. 2: Polymer Properties, ed. by C. Booth and C. Price, Pergamon Press, Oxford, (1989) pp. 311–362.

    Google Scholar 

  7. J.M. Hutchinson, “Physical Aging in Polymers,” Progress in Polymer Science, 20, 703–760 (1995).

    Article  CAS  Google Scholar 

  8. S.L. Simon, “Physical Aging,” Chapter in Encyclopedia of Polymer Science, this edition (2001).

    Google Scholar 

  9. L.C.E. Struik, Physical Aging in Polymers and Other Amorphous Materials, Elsevier, Amsterdam (1976).

    Google Scholar 

  10. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan and S.W. Martin, “Relaxation in Glassforming Liquids and Amorphous Solids,” J. Appl. Phys., 88, 3113–3157 (2000).

    Article  CAS  Google Scholar 

  11. S.E.B. Petrie, “Thermal behavior of annealed organic glasses,” J. Polym. Sci. A-2, 10, 1255–1272 (1972).

    Article  CAS  Google Scholar 

  12. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson and A.R. Ramos, “Isobaric Volume and Enthalpy Recovery of Glasses. II. A Transparent Multiparameter Model,” J. Polym. Sci., Polym. Phys. Ed., 17, 1097–1162 (1979).

    Article  CAS  Google Scholar 

  13. I.M. Hodge, “Enthalpy Relaxation and Recovery in Amorphous Materials,” J. Non-Crystalline Solids, 169, 211–266 (1984).

    Article  Google Scholar 

  14. G.B. McKenna and S.L. Simon, “The glass transition: Its measurement and underlying physics,” in Handbook of Thermal Analysis and Calorimetry, 3 rd . Ed., S.Z.D. Cheng, editor. Elsevier, Amsterdam (2002).

    Google Scholar 

  15. J.M. O’Reilly, “Review of structure and mobility in amorphous polymers,” CRC Critical Reviews in Solid State and Materials Sciences, 13, 259–277 (1987).

    Article  Google Scholar 

  16. R.N. Haward, The Physics of Glassy Polymers, Applied Science, London (1973).

    Google Scholar 

  17. Assignment of the Glass Transition, R.J. Seiler, ed., ASTM STP 1249, American Society for Testing and Materials, Philadelphia, PA (1994).

    Google Scholar 

  18. S.V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State, CRC Press, Boca Raton, FL (1995).

    Google Scholar 

  19. E.J. Donth, The glass transition: relaxation dynamics in liquids and disordered materials, Springer-Verlag, New York (2001).

    Google Scholar 

  20. M.R. Tant and A.J. Hill, Structure and Properties of Glassy Polymers, ACS Symposium Series 710, American Chemical Society, Washington, DC (1998).

    Google Scholar 

  21. P.A. O’Connell and G.B. McKenna, “Large Deformation Response of Polycarbonate: Time-temperature and Time-Aging Time Superposition,” in Handbook of Polycarbonate Science and Technology, ed. by D.G. LeGrand and J.T. Bendler, Marcel Dekker, New York, Chapter 10, pp 225–254 (1999).

    Google Scholar 

  22. S. Arrese-Igor, O.Mitxelena, A. Arbe, A. Alegría, J. Colmenero and B. Frick, “Effect of stretching on the sub-Tg phenylene-ring dynamics of polycarbonate by neutron scattering,” Phys. Rev. E., 78, 021801–1 - 021801–8 (2008).

    Article  CAS  Google Scholar 

  23. G.B. McKenna, “On the Physics Required for the Prediction of Long Term Performance of Polymers and Their Composites,” J. Res. NIST, 99, 169–189 (1994).

    CAS  Google Scholar 

  24. G.B. McKenna, “Interlaminar Effects in Fiber Reinforced Plastics--A Review,” Polymer-Plast. Technol. Eng., 5, 23–53 (1975).

    Article  Google Scholar 

  25. Composite Materials: Testing and Design, ASTM STP 460, American Society for Testing and Materials, Philadelphia, PA (1969).

    Google Scholar 

  26. Composite Materials: Testing and Design (Third Conference), ASTM STP 546, American Society for Testing and Materials, Philadelphia, PA (1973).

    Google Scholar 

  27. J.R. Vinson and T.W. Chou, Composite Materials and Their Use in Structures, Applied Science Publishers, London (1975).

    Google Scholar 

  28. Composite Materials, ed. by L.J. Broutman and R.H. Krock, Vol. 2. Mechanics of Composite Materials, ed. by G.P. Sendeckyj, Academic Press, New York (1971).

    Google Scholar 

  29. D.J. Plazek,“Temperature Dependence of the Viscoelastic Behavior of Polystyrene,” J. Phys. Chem., 69, 3480–3487 (1965).

    Article  CAS  Google Scholar 

  30. H. Vogel, “Das Temperaaturabhängigkeitsgesetz der Viskosität Flüssigkeiten,” Phys. Z., 22, 645–646 (1921).

    CAS  Google Scholar 

  31. G. S. Fulcher, “Analysis of Recent Measurements of the Viscosity of Glasses,” J. Am. Ceram. Soc., 8, 339–355 (1925).

    Article  CAS  Google Scholar 

  32. G. Tammann, “Glasses as supercooled liquids,” J. Soc. Glass Technol. 9, 166–185 (1925).

    CAS  Google Scholar 

  33. M.L. Williams, R.F. Landel and J.D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids,” Journal of the American Chemical Society, 77, 3701–3707 (1955).

    Article  CAS  Google Scholar 

  34. J.D. Ferry,Viscoelastic Properties of Polymers, 3rd. Edition, J. Wiley and Sons, New York (1980).

    Google Scholar 

  35. T. Hecksher, A.I. Nielsen, N.B. Olsen and J.C. Dyre, “Little evidence for dynamic divergences in ultraviscous molecular liquids,” Nature Physics, 4, 737–741 (2008).

    Article  CAS  Google Scholar 

  36. G.B. McKenna, “Glass dynamics - Diverging views on glass transition, Nature Physics, 4, 673–674 (2008).

    Article  CAS  Google Scholar 

  37. C.A. Bero and D.J. Plazek, “Volume-dependent rate processes in an epoxy resin,” J. Polym. Sci. Part B: Polymer Physics, 29, 39–47 (1991).

    Article  CAS  Google Scholar 

  38. C.T. Moynihan, A.J. Easteal, M.A. DeBolt and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Ceramic Soc., 59(1–2), 12–16 (1976).

    Article  CAS  Google Scholar 

  39. P. Badrinarayanan, W. Zheng, Q.X. Li and S.L. Simon, “The glass transition temperature versus the fictive temperature,” J. Non-Crystalline Solids, 353, 2603–2612 (2007).

    Article  CAS  Google Scholar 

  40. J.Y. Park and G.B. McKenna, “Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions, Phys. Rev. B., 61, 6667–6676 (2000).

    Article  CAS  Google Scholar 

  41. W.D. Callister, Jr. and D.G. Rethwisch, Fundamentals of Materials Science and Engineering. An Integrated Approach, 3 rd . Ed., J. Wiley and Sons, Hoboken, NJ, USA (2008).

    Google Scholar 

  42. R.H. Doremus, “Viscosity of Silica,” J. Appl. Physics, 92, 7619–7629 (2002).

    Article  CAS  Google Scholar 

  43. Y. Zheng and G.B. McKenna, “Structural Recovery in a Model Epoxy: Comparison of Responses after Temperature and Relative Humidity Jumps,” Macromolecules, 36, 2387–2396 (2003).

    Article  CAS  Google Scholar 

  44. I. Echeverria, P.-C. Su, S.L. Simon and D.J. Plazek, “Physical aging of a polyetherimide: Creep and DSC measurements,” J. Polymer Science. Part B: Polymer Physics, 33, 2457–2468 (1995).

    Article  CAS  Google Scholar 

  45. L. Boltzmann, “Zur Theorie der Elastischen Nachwirkung,” Sitzungsber. Akad. Wiss. Wien. Mathem.-Naturwiss. Kl., 70, 2. Abt. 275–300 (1874).

    Google Scholar 

  46. R. Kohlrausch, “Theorie des Elektrischen Rückstandes in der Leidener Flasche,” Annalen der Physik und Chemie von J.C. Poggendorff, 91, 179–214 (1854).

    Article  Google Scholar 

  47. G. Williams and D.C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).

    Article  CAS  Google Scholar 

  48. P. Badrinarayanan, S.L. Simon, R.J. Lyn and J.M. O’Reilly, “Effect of structure on enthalpy relaxation of polycarbonate: Experiments and modeling,” Polymer, 49, 3554–3560 (2008).

    Article  CAS  Google Scholar 

  49. G.B. McKenna and S.L. Simon, “Time-dependent volume and enthalpy responses in polymers,” in Time dependent and nonlinear effects in polymers and composites, ASTM STP 1357, R.A. Schapery and C.T. Sun, eds., West Conshohocken, PA, pp 18–46 (2000).

    Chapter  Google Scholar 

  50. C.R. Schultheisz and G.B. McKenna, “Volume recovery, physical aging and the tau-effective paradox in glassy polycarbonate following temperature jumps,” Proceedings of the 25th Annual Conference of the North American Thermal Analysis Society, September 7–9, McClean, VA, pp 366–373 (1997).

    Google Scholar 

  51. C.R. Schultheisz, NIST, unpublished.

    Google Scholar 

  52. G.B. McKenna, C.A. Angell, R.W. Rendell, C.T. Moynihan, A.J. Kovacs,J.M. Hutchinson, M. Oguni, J. O’Reilly, L. Struik, I.M. Hodge, J.C. Bauwens, E. Oleynick, S. Rekhson, G. Williams and S. Matsuoka, “The phenomenology and models of the kinetics of volume and enthalpy in the glass transition range,” J. Non-Crystalline Solids, 131, 528–536 (1991).

    Article  Google Scholar 

  53. L. Andreozzia, M. Faetti, F. Zulli, and M. Giordano, “Enthalpy relaxation of polymers: comparing the predictive power of two configurational entropy models extending the AGV approach,” Eur. Phys. J. B., 41, 383–393 (2004).

    Article  CAS  Google Scholar 

  54. J.M. Hutchinson, S. Montserrat, Y. Calventus and P. Cortes, “Application of the Adam-Gibbs equation to the non-equilibrium glassy state,” Macromolecules, 33, 5252–5262 (2000).

    Article  CAS  Google Scholar 

  55. P. Bernazanni and S.L. Simon,” Volume Recovery of Polystyrene: Evolution of the Characteristic Relaxation Time,” J. Non-Crystalline Solids, 307, 470480 (2002).

    Article  Google Scholar 

  56. S.L. Simon and P. Bernazanni, “Structural Relaxation in the Glass: Evidence for a Path Dependence of the Relaxation Time,” J. Non-Crystalline Solids, 352, 4763–4768 (2006).

    Article  CAS  Google Scholar 

  57. It is important to note that ideas such as free volume and its distribution are inherently heterogeneous. For instance, in the KAHR model12, it was recognized that the local relaxation time could depend on the local free volume or local departure from equilibrium δI but the choice was made to simply use the global departure from equilibrium because of limited computational capacity available at that time.

    Google Scholar 

  58. R.E. Robertson, R. Simha and J.G. Curro, “Free-volume and the kinetics of aging of polymer glasses,” Macromolecules, 17, 911–919 (1984).

    Article  CAS  Google Scholar 

  59. R. Simha and T. Somcynsky, “Statistical thermodynamics of spherical and chain molecule fluid,” Macromolecules, 2, 342–350 (1969).

    Article  CAS  Google Scholar 

  60. G. Adam and J.H. Gibbs, “The temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys., 43, 139–146 (1965).

    Article  CAS  Google Scholar 

  61. T.S. Chow, “Free volume distributions in amorphous polymers,” Macromolecular Theory and Simulations,” 4, 397-4-4 (1995).

    Article  CAS  Google Scholar 

  62. J. Liu, Q. Deng and Y.C. Jean, “Free-Volume Distributions of Polystyrene Probed by Positron-annihilation--Comparison with Free-volume Theories,” Macromolecules, 26, 7149–7155 (1993).

    Article  CAS  Google Scholar 

  63. M. Schmidt and F.H.J. Maurer, “Isotropic pressure-densified atactic poly(methyl methacrylate) glasses: Free-volume properties from equation-of-state data and positron annihilation lifetime spectroscopy,” Macromolecules, 33, 3879–3891 (2000).

    Article  CAS  Google Scholar 

  64. Y.C. Jean, “Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers? Comment,” Macromolecules, 29, 5756–5757 (1996).

    Article  CAS  Google Scholar 

  65. R. Richert, “Heterogeneous Dynamics in Liquids: Fluctuations in Time and Space,” J. Phys.: Condens. Matter, 14, R703 - R738 (2002).

    Article  CAS  Google Scholar 

  66. M. Ediger, “Spatially Heterogeneous Dynamics in Supercooled Liquids,” Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  CAS  Google Scholar 

  67. S. C. Glotzer, “Spatially Heterogeneous Dynamics in Liquids: Insights from Simulation,” J. Non-Cryst. Solids, 274, 342–355 (2000).

    Article  CAS  Google Scholar 

  68. R. Bohmer, “Non-exponential Relaxation in Disordered Materials: Phenomenological Correlations and Spectrally Selective Experiments,” Phase Transitions, 65, 211 (1998).

    Article  Google Scholar 

  69. R. Bohmer, “Nanoscale Heterogeneity of Glass-Forming Liquids: Experimental Advances,” Curr. Opin. Solid State Mater. Sci., 3, 378–385 (1998).

    Article  CAS  Google Scholar 

  70. C. T. Thurau and M. D. Ediger, “Influence of Spatially Heterogeneous Dynamics on Physical Aging of Polystyrene,” J. Chem. Phys., 116, 9089–9099 (2002).

    Article  CAS  Google Scholar 

  71. P. Chaudhuri, L. Berthier, S. Sastry and W. Kob, “On the relaxation dynamics of glass-forming systems: Insights from computer simulations,” Modeling and Simulation of New Materials, AIP Conference Proceedings, Volume 1091, 95–108 (2009).

    CAS  Google Scholar 

  72. T. R. Bohme and J. J. dePablo, “Evidence for Size-Dependent Mechanical Properties from Simulations of Nanoscopic Polymeric Structures,” J. Chem. Phys., 116 (22) 9939–9951 (2002).

    Article  CAS  Google Scholar 

  73. J. Dudowicz, K.F. Freed KF and J.F. Douglas, “Generalized entropy theory of polymer glass formation,” Advances in Chemical Physics, 137, 125–222 (2008).

    Article  CAS  Google Scholar 

  74. K. Chen, E.J. Saltzman and K.S. Schweizer, “Segmental dynamics in polymers: from cold melts to ageing and stressed glasses,” J. Phys.: Cond. Matter, 21, 503101–1 – 503101–20 (2009).

    Google Scholar 

  75. J.M. Caruthers, School of Chemical Engineering, Purdue University, Lafayette, IN. The work is originally published in Ph.D. theses referenced below. The first paper by Lustig, Shay and Caruthers that put the model into the literature is also cited below. The more recent developments by Caruthers in collaboration with Adolf and Chambers and then extended by Adolf and others are broad and well implemented attempts to make the model more useful and to develop fuller understanding of the strengths and limitations of the model from an engineering perspective.

    Google Scholar 

  76. S.R. Lustig (1989) “A Continuum Thermodynamics Theory for Transport in Polymer/Fluid Systems,” Ph.D. Thesis, Purdue University, Lafayette, IN.

    Google Scholar 

  77. Colucci, D.M., (1995) “The Effect of Temperature and Deformation on the Relaxation Behavior in the Glass Transition Region,” Ph.D. Thesis, School of Chemical Engineering, Purdue University, Lafayette, IN.

    Google Scholar 

  78. D.S. McWilliams, (1996) “Study of the Effect of Thermal History on the Structural Relaxation and Thermoviscoelasticity of Amorphous Polymers,” Ph.D. Thesis, Purdue University, Lafayette, IN.

    Google Scholar 

  79. S.R. Lustig, R.M. Shay and J.M. Caruthers, “Thermodynamic Constitutive Equations for Materials with Memory on a Material Time Scale,” Journal of Rheology, 40, 69–106 (1996).

    Article  CAS  Google Scholar 

  80. D.B. Adolf, R.S. Chambers and J.M. Caruthers, “Extensive Validation of a Thermodynamically Consistent, Nonlinear Viscoelastic Model for Glassy Polymers,” Polymer, 45, 4599–4621 (2004).

    Article  CAS  Google Scholar 

  81. J.M. Caruthers, D.B. Adolf, R.S. Chambers, P. Shrikhande, “A Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Glassy Polymers,” Polymer, 45, 4577–4597 (2004).

    Article  CAS  Google Scholar 

  82. D.B. Adolf and R.S. Chambers, “Application of a Nonlinear Viscoelastic Model to Glassy, Particulate-Filled Polymers,” Journal of Polymer Science: Part B. Polymer Physics, 43, 3135–3150 (2005).

    Article  CAS  Google Scholar 

  83. D.B. Adolf and R.S. Chambers, “A Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Thermosets during Cure,” J. Rheol., 51, 23–50 (2007).

    Article  CAS  Google Scholar 

  84. D.B. Adolf, R.S. Chambers, J. Flemming, J. Budzien and J. McCoy, “Potential Energy Clock Model: justification and Challenging Predictions,” J. Rheology, 51, 517–540 (2007).

    Article  CAS  Google Scholar 

  85. C. Truesdell, Rational Thermodynamics, 2nd ed., Springer-Verlag, New York (1984).

    Google Scholar 

  86. Typically one uses Maxwell relations to relate the different thermodynamic variables (specific volume, enthalpy, coefficient of thermal expansion, heat capacity for example) to the free energy of the system6,87.

    Google Scholar 

  87. Typically any general thermodynamics text will have the appropriate relations. See, e.g., R.A. Swalin, Thermodynamics of Solids, second edition, Wiley-Interscience, 1972.

    Google Scholar 

  88. S.R. de Groot and P. Mazur, Nonequilibrium Thermodynamics, Dover Publications, Mineola, NY (1984).

    Google Scholar 

  89. S. Lengyel, “On Classical Nonequililbrium Thermodynamics and Its Extensions,” Lecture Notes in Physics, 199, 398–406 (1984).

    Article  Google Scholar 

  90. F. Bampi and A. Morro, “Nonequilibrium thermodynamics—A hidden variable approach,” Lecture Notes in Physics, 199, 211–232 (1984).

    Article  Google Scholar 

  91. H.C. Ottinger, Beyond Equilibrium Thermodynamics, Wiley, Hoboken, NJ, USA (2005).

    Book  Google Scholar 

  92. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes. 3 rd edition, Wiley Interscience, New York (1967).

    Google Scholar 

  93. B.D. Coleman, “Thermodynamics of Materials with Memory,” Archives of Rational Mechanics and Analysis, 17, 1–46 (1964).

    Google Scholar 

  94. B.D. Coleman, “On Thermodynamics, Strain Impulses, and Viscoelasticity,” Archives of Rational Mechanics and Analysis, 17, 230–254 (1964).

    Google Scholar 

  95. W.Noll, “A Mathematical Theory of the Mechanical Behavior of Continuous Media,” Archives of Rational Mechanics and Analysis, 2,197–226 (1958).

    Article  Google Scholar 

  96. D.B. Adolf, R.S. Chambers, J. Flemming, J. Budzien and J.McCoy, “Potential Energy Clock Model: Justification and Challenging Predictions,” J. Rheol., 51, 517–540 (2007).

    Article  CAS  Google Scholar 

  97. P.A. O’Connell and G.B. McKenna, “Large Deformation Response of Polycarbonate: Time-Temperature, Time-Aging Time, and Time-Strain Superposition,” Polymer Engineering and Science, 37, 1485–1495 (1997).

    Article  Google Scholar 

  98. A.Lee and G.B. McKenna, “Effect of Crosslink Density on Physical Aging of Epoxy Networks,” Polymer, 29, 1812–1817 (1988).

    Article  CAS  Google Scholar 

  99. P.A. O’Connell and G.B. McKenna, “Arrhenius like Temperature Dependence of the Segmental Relaxation below Tg,” Journal of Chemical Physics, 110, 11054–11060 (1999).

    Article  Google Scholar 

  100. G.B. McKenna, “Mechanical Rejuvenation in Polymer Glasses: Fact or Fallacy?,” J. Phys.: Condens. Matter, 15, S737–S763 (2003).

    Article  CAS  Google Scholar 

  101. S. Matsuoka, S.J. Aloisio and H.E. Bair, “Interpretation of shift of relaxation time with deformation in glassy polymers in terms of excess enthalpy,” J. Appl. Phys., 44, 4265–4268 (1973).

    Article  CAS  Google Scholar 

  102. R.A. Schapery, Polym. Eng. Sci.,”Characterization of nonlinear viscoelastic materials,” 9, 295–310 (1969).

    Article  CAS  Google Scholar 

  103. Y.C. Lou and R.A. Schapery, J. Comp. Matls., “Viscoelastic characterization of a nonlinear fiber-reinforced plastic,” 5, 208–234 (1971).

    Article  CAS  Google Scholar 

  104. B. Bernstein and A. Shokooh, “The Stress Clock Function in Viscoelasticity,” J. Rheol., 24, 189–211 (1980).

    Article  CAS  Google Scholar 

  105. T.A. Tervoort, E.T. J. Klompen and L.E. Govaert, “A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behavior of polymer glasses,” J. Rheol., 40, 779–797 (1996).

    Article  CAS  Google Scholar 

  106. J.-J. Pesce and G. B. McKenna, “Prediction of the Sub-Yield Extension and Compression Responses of Glassy Polycarbonate from Torsional Measurements,” J. Rheology, 41, 929–942 (1997).

    Article  CAS  Google Scholar 

  107. S. Jazouli, W.B. Luo, F. Bremand and T. Vu-Khanh,“ Application of time-stress equivalence to nonlinear creep of polycarbonate,” Polymer Testing, 24, 463–467 (2005).

    Article  CAS  Google Scholar 

  108. A. Lee and G.B. McKenna,, "The Physical Aging Response of an Epoxy Glass Subjected to Large Stresses," Polymer, 31, 423–430 (1990).

    Article  CAS  Google Scholar 

  109. C.G’Sell and G.B. McKenna,, “Influence of Physical Aging on the Yield Behavior of Model DGEBA/Poly(propylene oxide) Epoxy Glasses,” Polymer, 33, 2103–2113 (1992).

    Article  Google Scholar 

  110. M. Aboulfaraj, C. G'Sell, D. Mangelinck, and G.B. McKenna, "Physical Aging of Epoxy Networks after Quenching and/or Plastic Cycling," J. Non-Crystalline Solids, 172174, 615–621 (1994).

    Article  Google Scholar 

  111. C.H. Huu and T. Vu-Khanh, “Effects of physical aging on yielding kinetics of polycarbonate,” Theoretical and Applied Fracture Mechanics, 40, 75–83 (2003).

    Article  CAS  Google Scholar 

  112. J.M. Hutchinson, S. Smith, B. Horne and G.M. Gourlay, “Physical aging of polycarbonate: Enthalpy relaxation, creep response, and yielding behavior,” Macromolecules, 32, 5046–5061 (1999).

    Article  CAS  Google Scholar 

  113. M. Aboulfaraj, C. G'Sell, D. Mangelinck, and G.B. McKenna, “Physical Aging of Epoxy Networks after Quenching and/or Plastic Cycling,” J. Non-Crystalline Solids, 172174, 615–621 (1994).

    Article  Google Scholar 

  114. C.G. Robertson, J.E. Monat and G.L. Wilkes, “Physical aging of an amorphous polyimide: Enthalpy relaxation and mechanical property changes,” J. Polym. Sci. Part B: Polymer Physics, 37, 1931–1946 (1999).

    Article  CAS  Google Scholar 

  115. R. Song R, J. Chen, J.G. Gao, S. Lin and Q.R. Fan, “The effect of physical aging on the properties of atactic polystyrene,” Acta Polymerica Sinica, 1, 61–66 (1998).

    Google Scholar 

  116. L. Teze, J.L. Halary, L. Monnerie and L. Canova, “On the viscoelastic and plastic behaviour of methylmethacrylate-co-N-methylglutarimide copolymers,” Polymer, 40, 971–981 (1999).

    Article  CAS  Google Scholar 

  117. J.P. Armistead and A.W. Snow, “Influence of matrix properties on fragmentation test,” J. Adhesion, 14, 209–222 (1995).

    Article  Google Scholar 

  118. T.S. Chow, “Stress-Strain Behavior of Physically Aging Polymers,” Polymer, 34, 541–545 (1993).

    Article  CAS  Google Scholar 

  119. B. Haidar and T.L. Smith, “History-dependent and temperature-dependent yield phenomena of polycarbonate related to its rate of physical aging,” Polymer, 32, 2594–2600 (1991).

    Article  CAS  Google Scholar 

  120. W.H. Jo and K.J. Ko, “The effects of physical aging on the thermal and mechanical-properties of an epoxy polymer,” Polym. Eng. Sci., 31, 239–244 (1991).

    Article  CAS  Google Scholar 

  121. O.A. Hasan, M.C. Boyce, X.S. Li and S. Berko, “An investigation of the yield and post-yield behavior and corresponding structure of poly(methyl methacrylate),” J. Polym. Sci. Part B: Polymer Physics, 31, 186–197 (1993).

    Article  Google Scholar 

  122. R.A. Bubeck, S.E. Bales and H.D. Lee, “Changes in yield and deformation of polycarbonates caused by physical aging,” Polym. Eng. Sci., 24, 1142–1148 (1984).

    Article  CAS  Google Scholar 

  123. C. Bauwens-Crowet and J.C. Bauwens, “Annealing of polycarbonate below the glass transition-Quantitative interpretation of the effect on yield stress and differential scanning calorimetry measurements,” Polymer, 23, 1599–1604 (1982).

    Article  CAS  Google Scholar 

  124. C. Bauwens-Crowet and J.P. Bauwens, “Effect of thermal history on the tensile yield stress of polycarbonate in the beta-transition range,” Polymer, 24, 921–924 (1983).

    Article  CAS  Google Scholar 

  125. J.J. Martinez-Vega, H. Trumel and J. L. Gacougnolle, “Plastic deformation and physical ageing in PMMA,” Polymer, 43, 4979–4987 (2002).

    Article  CAS  Google Scholar 

  126. W.D. Cook, M. Mehrabi and G.H. Edward, “Ageing and Yielding in Model Epoxy Thermosets,” Polymer, 40, 1209–1218 (1999).

    Article  CAS  Google Scholar 

  127. E.T.J. Klompen, T.A.P. Engels, L.E. Govaert and H.E.H. Meijer, “Modeling of the postyield response of glassy polymers: Influence of thermomechanical history,” Macromolecules, 38, 6997–7008 (2005).

    Article  CAS  Google Scholar 

  128. T.A. Tervoort and L.E. Govaert, “Strain-hardening behavior of polycarbonate in the glassy state“, J. Rheol., 44, 1263–1277 (2000).

    Article  CAS  Google Scholar 

  129. T.A. Tervoort, R.J.M. Smit, W.A.M. Brekelmans and L.E. Govaert, “A constitutive equation for the elasto-viscoplastic deformation of glassy polymers,” Mech. Time-Dep. Materials, 1, 269–291 (1998).

    Article  Google Scholar 

  130. L.E. Govaert, P.H.M. Timmermans, W.A.M. Brekelmans, “The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation” J. Eng. Mater. Techn., 122, 177–185 (2000).

    Article  CAS  Google Scholar 

  131. O.A. Hasan, M.C. Boyce, X.S. Li and S. Berko, “An investigation of the yield and post-yield behavior and corresponding structure of poly(methyl methacrylate),” J. Polym. Sci. Part B: Polymer Physics, 31, 185–197 (1993).

    Article  CAS  Google Scholar 

  132. B.A. Isner and D.J. Lacks, “Generic Rugged Landscapes under Strain and the Possibility of Rejuvenation in Glasses,” Phys. Rev. Lett., 96, 025506–1 – 025506–4 (2006).

    Article  CAS  Google Scholar 

  133. G.B. McKenna and A.J.Kovacs, “Physical Ageing of Poly(methyl methacrylate) in the Nonlinear Range: Torque and Normal Force Measurements,” Polym. Eng. and Sci., 24, 1138-1141 (1984).

    Article  CAS  Google Scholar 

  134. H.G.H. van Melick, L.E. Govaert, B. Raas, W.J. Nauta and H.E.H. Meijer, “Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene,” Polymer, 44, 1171–1179 (2003).

    Article  Google Scholar 

  135. H.E.H. Meijer and L.E. Govaert, “Mechanical performance of polymer systems: The relation between structure and properties,” Prog. Polym. Sci., 30, 915–938 (2005).

    Article  CAS  Google Scholar 

  136. T.A.P. Engels, L.C.A. van Breemen, L.E. Govaert and H.E.H. Meijer, “Predicting the long-term mechanical performance of polycarbonate from thermal history during injection molding,” Marcomolecular Materials and Engineering, 294, 829–838 (2009).

    CAS  Google Scholar 

  137. R. P.M. Janssen, D. de Kanter, L.E. Govaert and H.E.H. Meijer, “Fatigue life predictions for glassy polymers: A constitutive approach,” Macromolecules, 41, 2520–2530 (2008).

    Article  CAS  Google Scholar 

  138. L.B. Liu, D. Gidley and A.F. Yee, “Effect of cyclic stress on structural changes in polycarbonate as probed by positron-annihilation lifetime spectroscopy,” J. Polym. Sci. Part B: Polymer Physics, 30, 230–238 (1992).

    Google Scholar 

  139. D.M. Colucci, P.A O'Connell and G.B. McKenna, “Stress Relaxation Experiments in Polycarbonate: A Comparison of Volume Changes for Two Commercial Grades,” Polymer Engineering and Science, 37, 1469–1474 (1997).

    Article  CAS  Google Scholar 

  140. J.M. Crissman and G.B. McKenna,“Relating Creep and Creep Rupture in PMMA Using a Reduced Variables Approach,” J. Polym. Sci., Phys. Ed., 25, 1667–1677 (1987).

    Article  CAS  Google Scholar 

  141. J.M. Crissman and G.B. McKenna, “Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behavior,” J. Polymer Science, Phys. Ed., 28, 1463–1473 (1990).

    Article  CAS  Google Scholar 

  142. G.M. Gusler and G.B. McKenna, “The Craze Initiation Response of A Polystyrene and a Styrene-Acrylonitrile Copolymer During Physical Aging,” Polymer Engineering and Science, 37, 1442–1448 (1997).

    Article  CAS  Google Scholar 

  143. M. Delin and G.B. McKenna, “The Craze Growth Response in Stress Relaxation Conditions for a Styrene Acrylonitrile Copolymer During Physical Aging,” Mechanics of Time Dependent Materials, 4, 231–255 (2000).

    Article  CAS  Google Scholar 

  144. J.E. Lincoln, R.J. Morgan and E.E. Shin, “Effect of thermal history on the deformation and failure of polyimides,” J. Polym. Sci. Part B: Polymer Physics, 39, 2947–2959 (2001).

    Article  CAS  Google Scholar 

  145. S. Sacks and W. S. Johnson, “Effects of thermal aging on the mechanical behavior of K3B matrix material,” J. Thermoplastic Composites, 11, 429–442 (1998).

    CAS  Google Scholar 

  146. H. Parvatareddy, J.Z. Wang, D.A. Dillard, T.C. Ward and M.E. Rogalski, “Environmental aging of high performance polymeric composites-Effects on durability,” Composites Science and Technology, 53, 399-409 (1995).

    Article  CAS  Google Scholar 

  147. J.C. Arnold, “The effects of physical aging on the brittle-fracture behavior of polymers,” Polym. Eng. Sci., 35, 165–169 (1995).

    Article  CAS  Google Scholar 

  148. J.C. Arnold, “The influence of physical aging on the creep-rupture behavior of polystyrene,” J. Polym. Sci. Part B: Polymer Physics, 31, 1451–1458 (1993).

    Article  CAS  Google Scholar 

  149. V.T. Truong and B.C. Ennis, “Effect of physical aging on the fracture-behavior of cross-linked epoxies,” Polym. Eng. Sci., 31, 548557 (1991).

    Article  CAS  Google Scholar 

  150. Y. Zheng, R.D. Priestley and G.B. McKenna, “Physical Aging of an Epoxy Subsequent to Relative Humidity Jumps through the Glass Concentration,” J. Polym. Sci., B: Polym.Phys.,42, 2107–2121 (2004).

    Article  CAS  Google Scholar 

  151. M. Alcoutlabi, F. Briatico-Vangosa and G.B. McKenna, “Effect of Chemical Activity Jumps on the Viscoelastic Behavior of an Epoxy Resin: The Physical Aging Response in Carbon Dioxide Pressure-Jumps,” J. Polym. Sci., Part B: Polymer Physics, 40, 2050–2064 (2002).

    Article  CAS  Google Scholar 

  152. M. Alcoutlabi, L. Banda, G. B. McKenna, "A Comparison of Concentration-Glasses and Temperature-Hyperquenched Glasses: CO2-Formed Glass vs. Temperature-Formed Glass," Polymer, 45, 5629–5634 (2004).

    Article  CAS  Google Scholar 

  153. G.B. McKenna, “Glassy States: Concentration Glasses and Temperature Glasses Compared,” J. Non-Crystalline Solids, 353, 3820–3828 (2007).

    Article  CAS  Google Scholar 

  154. Y. Zheng, Effects of Moisture on the Dimensional and Viscoelastic Properties of Glassy Polymers, Ph.D. Thesis, Department of Chemical Engineering, Texas Tech University, Lubbock, TX (2003).

    Google Scholar 

  155. S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R.J. McMahon, M.D. Ediger, T. Wu, L. Yu and S. Satija, “Organic glasses with exceptional thermodynamic and kinetic stability,” Science, 315, 353–356 (2007).

    Article  CAS  Google Scholar 

  156. G.B. McKenna, C.L. Jackson, J.M. O'Reilly, and J. S. Sedita "Kinetics of Enthalpy Recovery near the Glass Transition of Small Molecule Glasses at Nanometer Size Scales,"Polymer Preprints, 33(1),118–119 (1992).

    CAS  Google Scholar 

  157. S. L. Simon, J.-Y. Park and G. B. McKenna, "Enthalpy Recovery of a Glass-Forming Liquid Constrained in a Nanoporous Matrix: Negative Pressure Effects," European Physical Journal E: Soft Matter, 8, 209–216 (2002).

    Article  CAS  Google Scholar 

  158. J.Y. Park and G.B. McKenna, “Size and Confinement Effects on the Glass Transition Behavior of oTP/PS Polymer Solutions,” Physical Review B, 61, 6667–6676 (2000).

    Article  CAS  Google Scholar 

  159. S. Kawana and R.A.L. Jones, “Effect of physical aging in thin glassy polymer films,” Eur. Phys. J. E, 10, 223–230 (2003).

    Article  CAS  Google Scholar 

  160. R.D. Priestley, C.J. Ellison, L.J. Broadbelt and J.M. Torkelson, “Structural relaxation of polymer glasses at surfaces, interfaces and in between,” Science, 309, 456–459 (2005).

    Article  CAS  Google Scholar 

  161. R.D. Priestley, L.J. Broadbelt and J.M. Torkelson, “Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: Effects of attractive vs neutral polymer-substrate interactions measured by fluorescence,” Macromolecules, 38, 654–657 (2005).

    Article  CAS  Google Scholar 

  162. C.J. Ellison and J.M. Torkelson, “The distribution of glass-transition temperatures in nanoscopically confined glass formers,” Nature Materials, 2, 695–700 (2003).

    Article  CAS  Google Scholar 

  163. M.K. Mundra, C.J. Ellison, R.E. Behling and J.M. Torkelson, “Confinement, composition and spin coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene containing random copolymers: Sensing by intrinsic fluorescence,” Polymer, 47, 7747–7759 (2006).

    Article  CAS  Google Scholar 

  164. R.D. Priestley, L.J. Broadbelt, J. M. Torkelson and K. Fukao, “Glass transition and β-relaxation of labeled polystyrene,” Phys. Rev. E., 75, 061806–1 – 061806–10 (2007).

    Article  CAS  Google Scholar 

  165. R.D. Priestley, P. Rittigstein, L.J. Broadbelt, K. Fukao and J.M. Torkelson, “Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: Fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites,” J. Phys.: Condens. Matter, 19, 205120–1 – 205120–12 (2007).

    Article  CAS  Google Scholar 

  166. P.H. Pfromm and W.J. Koros, “Accelerated physical aging of thin glassy polymer-films-Evidence from gas- transport measurements,” Polymer, 36, 2379–2387 (1995).

    Article  CAS  Google Scholar 

  167. Y. Huang and D.R. Paul, “Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes,” Ind. Eng. Chem. Res., 46, 2342–2347 (2007).

    Article  CAS  Google Scholar 

  168. M. S. McCaig, D.R. Paul and J.W. Barlow, “Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part II. Mathematical model,” Polymer, 41, 639–648 (2000).

    Article  CAS  Google Scholar 

  169. Y. Huang and D.R. Paul, Effect of temperature on physical aging of thin glassy polymer films,” Macromolecules, 38, 10148–10154 (2005).

    Article  CAS  Google Scholar 

  170. Y. Huang and D.R. Paul, “Effect of molecular weight and temperature on physical aging of thin glassy poly(2,6-dimethyl-1,4-phenylene oxide) films,” J. Polym. Sci. Part B: Polym. Physics, 45, 1390–1398 (2007).

    Article  CAS  Google Scholar 

  171. K.D. Dorkenoo and P.H. Pfromm, “Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films,” J. Polym. Sci. Part B: Polym. Physics, 37, 2239–2251 (1999).

    Article  CAS  Google Scholar 

  172. K.D. Dorkenoo and P.H. Pfromm, “Accelerated Physical Aging of Thin Poly[1-(trimethylsilyl)-1-propyne] Films,” Macromolecules, 33, 3747–3751 (2000).

    Article  CAS  Google Scholar 

  173. G. Braun and A.J. Kovacs, “Glass transition in powdered polystyrene,” Phys. Chem. Glasses, 4,1152–160 (1963).

    Google Scholar 

  174. Y.P. Koh and S.L. Simon, Structural Relaxation of Stacked Ultrathin Polystyrene Films,” Journal of Polymer Science: Part B: Polymer Physics, 46, 2741–2753 (2008).

    Article  CAS  Google Scholar 

  175. K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault and J.R. Dutcher, “Molecular weight dependence of the reduction in the glass transiiton temperature of thin, freely-standing polymer films,” Phys. Rev. E., 63, 031801–1 -13801-10 (2001).

    Article  CAS  Google Scholar 

  176. J.L. Sullivan, E.J. Blais and D. Houston, “Physical aging and the creep behavior of thermosetting and thermoplastic composites,” Composites Science and Technology, 47, 389–403 (1993).

    Article  CAS  Google Scholar 

  177. J.L. Sullivan, “Creep and physical aging of composites,” Composites Science and Technology, 39, 207–232 (1990).

    Article  CAS  Google Scholar 

  178. A. d’Amore, F. Cocchini, A. Pompo, A. Apicella and L. Nicolais, “The effects of physical aging on long- term properties of poly-ether-keton (PEEK) and PEEK-based composites,” J. Appl. Polym. Sci., 39, 1163–1174 (1990)

    Article  Google Scholar 

  179. T.S. Gates, D.R. Veazie and L.C. Brinson, “Comparison of physical aging effects on the tension and compression creep of the IM7/K3B composite,” Proc. ASME Aerospace Division, AD-52, American Society of Mechanical Engineers, New York, pp. 361–365 (1996).

    Google Scholar 

  180. M.E. Nichols, S.S. Wang and P.H. Geil, “Creep and physical aging in a polyamideimide carbon fiber composite,” J. Macromol. Sci.-Physics, B29, 303–336 (1990).

    Article  CAS  Google Scholar 

  181. T.S. Gates, D.R. Veazie and L.C. Brinson, “Creep and Physical Aging in a Polymeric Composite: Comparison of Tension and Compresssion,” J. Comp. Matls., 31, 2478–2505 (1997).

    Article  CAS  Google Scholar 

  182. R.D. Bradshaw and L.C. Brinson, “Physical Aging in Polymers and Polymer Composites: An Analysis and Method for Time-Aging Time Superposition,” Polym. Eng. Sci., 37, 31–44 (1997).

    Article  CAS  Google Scholar 

  183. J.Z. Wang, H. Pavatareddy, D.A. Dillard and G.L. Wilkes, “Studies on the physical aging behavior of cyanate ester resin and its graphite fiber composites,” Proc. ASME Symposium on Reliability, Stress Analysis, and Failure Prevention Aspects of Composite and Active Materials, DE-79, American Society of Mechanical Engineers, New York, pp.15-29 (1994).

    Google Scholar 

  184. E.S. Kong, S.M. Lee and H.G. Nelson, “Physical Aging in Graphite/Epoxy Composites,” Polymer Composites, 3, 29–33 (1982).

    Article  CAS  Google Scholar 

  185. H.W. Hu, “Physical aging in long term creep of polymeric composite laminates,” J. Mechanics, 23, 245–252 (2007).

    Article  Google Scholar 

  186. H. Hu and C.T. Sun, “The characterization of physical aging in polymeric composites,” Composites Science and Technology,” 60, 2693–2698 (2000).

    Article  CAS  Google Scholar 

  187. W.G. Knauss and W. Zhu, “Nonlinearly viscoelastic behavior of polycarbonate. II. The role of volumetric strain,” Mech. Time Dependent Matls., 6, 301–322 (2002).

    Article  CAS  Google Scholar 

  188. I. Echeverria, P.L. Kolek, D.J. Plazek and S.L. Simon, “Enthalpy recovery, creep and creep-recovery measurements during physical aging of amorphous selenium,” J. Non-Crystalline Solids, 324, 242–255 (2003).

    Article  CAS  Google Scholar 

  189. P. Badrinarayanan and S.L. Simon, “Origin of the divergence of the timescales for volume and enthalpy recovery,” Polymer, 48, 1464–1470 (2007).

    Article  CAS  Google Scholar 

  190. S.L. Simon and G.B. McKenna, “Experimental evidence against the existence of an ideal glass transition,” J. Non-Crystalline Solids, 355, 672–675 (2009).

    Article  CAS  Google Scholar 

  191. P. Prasatya, G.B. McKenna and S.L. Simon,” A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: Effects of processing parameters,” J. Composite Materials, 35, 826–848 (2001).

    Article  CAS  Google Scholar 

  192. Y.K. Kim and S.R. White, “Stress relaxation behavior of 3501–6 epoxy resin during cure,” Polym. Eng. Sci., 36, 2852–2862 (1996).

    Article  CAS  Google Scholar 

  193. D.J. Plazek and I.C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy-resin network,” J. Polym. Sci. Part B: Polymer Physics, 29, 1729 (1991).

    Article  CAS  Google Scholar 

  194. M. Alcoutlabi and G.B. McKenna, “Effects of Confinement on Material Behaviour at the Nanometre Size Scale,” J. Phys.: Condensed Matter, 17, R461-R524 (2005).

    Article  CAS  Google Scholar 

  195. G.B. McKenna, “Confit III. Summary and perspectives on dynamics in confinement,” European Physical Journal Special Topics, 141, 291–300 (2007).

    Article  Google Scholar 

  196. C.B. Roth and J.R. Dutcher, “Glass transition and chain mobility in thin polymer films,” J. Electroanalytical Chemistry, 584, 13–22 (2005).

    Article  CAS  Google Scholar 

  197. J.A. Forrest and K. Dalnoki-Veress, “The glass transition in thin polymer films,” Adv. in Coll. Interface. Sci., 94, 167–196 (2001).

    Article  CAS  Google Scholar 

  198. F. Varnik and J. Baschnagel, “Computer simulations of supercooled polymer melts in the bulk and in-confined geometry,” J. Phys.: Cond. Matter, 17, R851-R953 (2005).

    Article  CAS  Google Scholar 

  199. D.R. Paul and L.M. Robeson, “Polymer nanotechnology: Nanocomposites,” Polymer, 49, 3187–3204 (2008).

    Article  CAS  Google Scholar 

  200. A.J. Crosby and J.Y. Lee, “Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties,” Polymer Reviews, 47, 217–229 (2007).

    Article  CAS  Google Scholar 

  201. F. Fraga, M. Lopez, V.H. Soto Tellini, E. Rodriguez-Nunez, J.M. Martinez-Ageitos and J. Mirayaga, “Study of the physical aging of the epoxy system BADGE n = 0/m-XDA/CaCO3,“J. Appl. Polym. Sci., 113, 2456–2461 (2009).

    Article  CAS  Google Scholar 

  202. U. Yilmazer and R.J. Farris, “Physical aging in particulate-filled composites with an amorphous glassy matrix,” J. Appl. Polym. Sci., 28, 3269–3280 (1983).

    Article  CAS  Google Scholar 

  203. J. Menczel and B. Wunderlich, “Heat capacity hysteresis of semicrystalline macromolecular glasses,” J. Polym. Sci. Polym. Lett., 19, 261–264 (1981).

    Article  CAS  Google Scholar 

  204. L.C.E. Struik, “The mechanical and physical aging of semicrystalline polymers.1.,” Polymer, 28,1521–1533 (1987).

    Article  CAS  Google Scholar 

  205. L.C.E. Struik, “The mechanical and physical aging of semicrystalline polymers.2.,” Polymer, 28,1534–1542 (1987).

    Article  CAS  Google Scholar 

  206. L.C.E. Struik, “Mechanical behavior and physical aging of semicrystalline polymers. 3. Prediction of long-term creep from short-time tests,” Polymer, 30, 799–814 (1989).

    Article  CAS  Google Scholar 

  207. L.C.E. Struik, “Mechanical behavior and physical aging of semicrystalline polymers: 4,” Polymer, 30, 815–8830 (1989).

    Article  CAS  Google Scholar 

  208. B. Wunderlich, “Glass transition of partially ordered macromolecules,” Prog. Coll. Polym. Sci., 96, 22–28 (1994).

    Article  CAS  Google Scholar 

  209. R.K. Krishnaswamy, J.F. Geibel and B.J.Lewis, “Influence of Semicrystalline Morphology on the Physical Aging Characteristics of Poly(phenylene sulfide),” Macromolecules, 36, 2907–2914 (2003).

    Article  CAS  Google Scholar 

  210. P. Huo and P. Cebe, “Effects of thermal history on the rigid amorphous phase in poly(phenylene sulfide), “Coll. Polym. Science, 270, 840–852 (1992).

    Article  CAS  Google Scholar 

  211. J. Beckmann, G.B. McKenna, B.G. Landes, D.H. Bank, and R.A. Bubeck, "Physical Aging Kinetics of Syndiotactic Polystyrene as Determined from Creep Behavior," Polymer Engineering and Science, 37, 1459–1468 (1997).

    Article  CAS  Google Scholar 

  212. A.Y.H. Liu and J. Rottler, “Physical aging and structural recovery in nanocomposites,” J. Poly. Sci. Part B: Polymer Physics, 47,1789–1798 (2009).

    Article  CAS  Google Scholar 

  213. C. Thenau, M. Salmeron Sanchez, J.C. Rodriguez Hernandez, M. Monleon Pradas, J.M. Saiter and J.L. Gomez Ribelles, “The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy,” Eur. Phys. J. E., 24, 69–77 (2007).

    Article  CAS  Google Scholar 

  214. H. Lu and S. Nutt, “Enthalpy relaxation of layered silicate-epoxy nanocomposites,” Macromol. Chem. and Physics, 204, 1832–1841 (2003).

    Article  CAS  Google Scholar 

  215. J.B. Donnet and A. Voet, Carbon Black: Physics, Chemistry and Elastomer Reinforcement,” Marcel Dekker, New York (1976).

    Google Scholar 

  216. C.G. Robertson and C.M. Roland, “Glass transition and interfacial segmental dynamics in polymer-particle composites,” Rubber Chemistry and Technology, 81, 506–522 (2008).

    Article  CAS  Google Scholar 

  217. S.M. Aharoni, “Increased glass transition temperature in motionally constrained semicrystalline polymers,” Polym. Adv. Tech., 9, 169–201, (1998).

    Article  CAS  Google Scholar 

  218. S. Ammanuel, A.M. Gaudette and S.S. Sternstein, “Enthalpic relaxation of silica-polyvinylacetate nanocomposites,” J. Polym. Sci. Part B: Polymer Physics, 46, 2733–2740 (2008).

    Article  CAS  Google Scholar 

  219. B. Haidar, H.Salah Deradji, A. Vidal and E. Papirer, “Physical aging phenomena in silica and glass beads filled elastomers (EPDM),” Macromol. Symp., 108, 147–161 (1996).

    Article  CAS  Google Scholar 

  220. S.S. Sternstein and A.J. Zhu, “Reinforcement Mechanism of Nanofilled Polymer Melts As Elucidated by Nonlinear Viscoelastic Behavior,” Macromolecules, 35, 72627273 (2002).

    Article  CAS  Google Scholar 

  221. H. Montes, F. Lequeux and J. Berriot, “Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers,” Macromolecules, 36, 8107–8118 (2003).

    Article  CAS  Google Scholar 

  222. J. Jancar, “The Thickness Dependence of Elastic Modulus of Organosilane Interphases,” Polym. Comp., 29, 1372–1377 (2008).

    Article  CAS  Google Scholar 

  223. S. Merabia, P. Sotto and D.R. Long, “A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects),” Macromolecules, 41, 8252–8266 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful for the generous support of the National Science Foundation under grant DMR-0804438, the Office of Naval Research under project number N00014-06-1-0922, and the John R. Bradford Endowment at Texas Tech University for partial support of this work. He is also thankful to Arts et Métiers ParisTech in Paris, France for partial support of the work during the summer of 2009. The author is also grateful to Ben Xu for help in creating figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. McKenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McKenna, G.B. (2012). Physical Aging in Glasses and Composites. In: Pochiraju, K., Tandon, G., Schoeppner, G. (eds) Long-Term Durability of Polymeric Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9308-3_7

Download citation

Publish with us

Policies and ethics