Skip to main content

Cytotoxic T Lymphocytes: Mechanism of Action and Role in Allograft Rejection

  • Chapter
  • 302 Accesses

Abstract

The discovery of cytotoxic T lymphocytes (CTL) emerged from attempts to understand the basis for tumor immunity, delayed-type hypersensitivity (DTH) reactions, and especially allograft rejection. These phenomena had the hallmarks of immune reactions, such as the involvement of lymphoid cells, specificity, and memory, but they could not be fully accounted for by antibody. Evidence suggesting direct killing of specifically recognized allogeneic target cells byin vivosensitized lymphocytes was first provided by Weaver in 19551. Weaver found that when transplants were placed inside diffusion chambers permeable to large molecules but not to cells, they were not rejected when the chambers were implanted into naive or primed allogeneic animals. This was consistent with previous evidence that antibodies from immune serum were not sufficient for graft rejection2. But immune spleen cells were. If spleen cells from a mouse that had previously rejected a graft of the same type were placed into the same diffusion chamber as the secondary transplant, the transplant within the chamber was rapidly destroyed. Hence, Weaver concluded that transplant rejection was caused by contact-mediated destruction of graft cells induced by immune cells, rather than soluble molecules, a suggestion made even earlier by Kidd in 19503based on detailed histopathology of graft rejectionin vivo.

A major transition in the study of lymphocyte-mediated cytotoxicity came about in 1960, with the report by Andre Govaertz in 19604that thoracic duct lymphocytes isolated from dogs after rejection of a renal allograft were capable of destroyingin vitromonolayer cultures of kidney cells obtained from the donor’s contralateral kidney, but not kidney cells from an unrelated donor. This finding showed that the attacking cells were part of a recirculating population of lymphocytes. At the time of this discovery of killer lymphocytes, the existence of distinct T- and B-lymphocyte subpopulations was not yet appreciated. But once these subsets were demonstrated, and a marker found for T cells—the so-called theta 9 (for thymus) antigen—the identity of killer cells within T lymphocytes was established5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weaver, J., G.H. Algire, and R.T. Prehn (1955). The growth of cells in vivo in diffusion chambers. II. The role of cells in the destruction of homografts.J. Natl. Cancer Inst.15, 1737–1767.

    PubMed  CAS  Google Scholar 

  2. Mitchison, N. (1953). Passive transfer of transplantation immunity.Nature171, 267–268.

    Article  PubMed  CAS  Google Scholar 

  3. Kidd, J.G. (1950). Experimental necrobiosis-a venture in cytobiology.Proc. Ins. Med. Chicago18, 50–60.

    Google Scholar 

  4. Govaertz, A. (1960). Cellular antibodies in kidney homotransplantation.J. Immunol.85, 516–522.

    Google Scholar 

  5. Cerottini, J.C. and K.T. Brunner (1974). Cell-mediated cytotoxicity, allograft rejection, and tumor immunity.Adv. Immunol.18, 67–132.

    Google Scholar 

  6. Rosenau, W. and H.D. Moon (1961). Lysis of homologous cells by sensitized lymphocytes in tissue culture.J. Natl. Cancer Inst.27, 471–483.

    PubMed  CAS  Google Scholar 

  7. Berke G. and W.R. Clark (2004). The Killer Lymphocyte Kluver Publishers (submitted for publication).

    Google Scholar 

  8. Brunner, K.T., J. Mauel, J.C. Cerottini, and B. Chapuis (1968). Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs.Immunology14, 181–196.

    PubMed  CAS  Google Scholar 

  9. Brunner, K.T., J. Mauel, H. Rudolf, and B. Chapuis (1970). Studies of allograft immunity in mice. I. Induction, development and in vitro assay of cellular immunity.Immunology18, 501–515.

    PubMed  CAS  Google Scholar 

  10. Amos, D.B. (1962). The use of simplified systems as an aid to the interpretation of mechanisms of graft rejection.Progr. Allergy6, 648–538.

    Google Scholar 

  11. Baker, P., R. Weiser, and J. Jutilaet al.(1962). Mechanisms of tumor homograft rejection: The behavior of sarcoma I ascites tumor in theAlland C57BL/6K mouse.Ann. NY Acad. Sci. 10146–63.

    Article  Google Scholar 

  12. Berke, G. and R.H. Levey (1972). Cellular immunoabsorbents in transplantation immunity. Specific in vitro deletion and recovery of mouse lymphoid cells sensitized against allogeneic tumors.J. Exp. Med.135, 972–984.

    Article  PubMed  CAS  Google Scholar 

  13. Berke, G., K.A. Sullivan, and D.B. Amos (1972). Tumor immunity in vitro: Destruction of a mouse ascites tumor through a cycling pathway.Science177, 433–434.

    Article  PubMed  CAS  Google Scholar 

  14. Berke, G. (1993). The functions and mechanisms of action of cytolytic lymphocytes. In W.E. Paul (ed.)Fundamental Immunol.3rd edn., 28. Raven Press, Chap. New York, pp. 965–1014.

    Google Scholar 

  15. Berke, G. (1994). The binding and lysis of target cells by cytotoxic lymphocytes: Molecular and cellular aspects.Annu. Rev. Immunol.12, 735–773.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson, D.B. (1963). The reaction of immunologically activated lymphoid cells against homologous target tissue cells in vitro.J. Cell. Comp. Physiol.62, 273–286.

    Article  CAS  Google Scholar 

  17. Ginsburg, H., W. Ax, and G. Berke (1969). Graft reaction in tissue culture by normal rat lymphocytes.Transplant. Pmc. 1551–555.

    CAS  Google Scholar 

  18. Henney, C.S. and M.M. Mayer (1971). Specific cytolytic activity of lymphocytes: Effect of antibodies against complement components C2, C3, and C5.Cell. Immunol.12, 702–705.

    Article  Google Scholar 

  19. Timonen, T., J.R. Ortaldo, and R.B. Herberman (1981). Characteristics of human large granular lymphocytes and relationship to natural killer and K cells.J. Exp. Med.153, 569–582.

    Article  PubMed  CAS  Google Scholar 

  20. Bykovskaja, S.N., A.N. Rytenko, M.O. Rauschenbach, and A.F. Bykovsky (1978). Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. I. Hypertrophy and change of orientation of the Golgi apparatus.Cell. Immunol.40, 164–174.

    Article  PubMed  CAS  Google Scholar 

  21. Bykovskaja, S.N., A.N. Rytenko, M.O. Rauschenbach, and A.E Bykovsky (1978). Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. II. Morphogenesis of secretory granules and intracellular vacuoles.Cell. Immunol.40, 175–185.

    Article  PubMed  CAS  Google Scholar 

  22. Zagury, D., J. Bernard, N. Thienress, M. Feldman, and G. Berke (1975). Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes. Conjugation, killing and recycling at the single cell level.Eur. J. Immunol.5, 818–822.

    Article  Google Scholar 

  23. Thierness, N., A. David, J. Bernard, R Jeannesson, and D. Zagury (1977). Active phosphatiasique acide de la cellule T cytolytique au cours du processure de cytolyse.CR. Acad. Sci. Paris285, 713–715.

    Google Scholar 

  24. Geiger, B., D. Rosen, and G. Berke (1982). Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells.J. Cell. Biol.95, 137–143.

    Article  PubMed  CAS  Google Scholar 

  25. Kupfer, A., G. Dennert, and S.J. Singer (1983). Polarization of the Golgi apparatus and the microtubuleorganizing center within cloned natural killer cells bound to their targets.Proc. Natl. Acad. Sci. USA80, 7224–7228.

    Article  PubMed  CAS  Google Scholar 

  26. Carpen, O., I. Virtanen, and E. Saksela (1982). Ultrastructure of human natural killer cells: Nature of the cytolytic contacts in relation to cellular secretion.J. Immunol.128, 2691–2697.

    PubMed  CAS  Google Scholar 

  27. Henkart, P. and R. Blumenthal (1975). Interaction of lymphocytes with lipid bilayer membranes: A model for lymphocyte-mediated lysis of target cells.Proc. Natl. Acad. Sci. USA72, 2789–2793.

    Article  PubMed  CAS  Google Scholar 

  28. Dourmashkin, R R, P. Deteix, C.B. Simone, and R Henkart (1980). Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity.Clin. Exp. Immunol.42, 554–560.

    PubMed  CAS  Google Scholar 

  29. Yannelli, J.R., J.A. Sullivan, G.L. Mandell, and V.H. Engelhard (1986). Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography.J. Immunol.136, 377–382.

    PubMed  CAS  Google Scholar 

  30. Kupfer, A. and S.J. Singer (1989). Cell biology of cytotoxic and helper T cell functions: Immunofluorescence microscopic studies of single cells and cell couples.Annu. Rev. Immunol. 7309–337.

    Article  PubMed  CAS  Google Scholar 

  31. Griffiths, G. (1995). The cell biology of CTL killing.Curr Opin. Immunol. 7343–348.

    Article  PubMed  CAS  Google Scholar 

  32. Podack, E.R., and G. Dennert (1983). Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells.Nature302, 442–445.

    Article  PubMed  CAS  Google Scholar 

  33. Dennert, G. and E.R. Podack (1983). Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes.J. Exp. Med.157, 1483–1495.

    Article  PubMed  CAS  Google Scholar 

  34. Shinkai, Y., M.C. Yoshida, K. Maeda, T. Kobata, K. Maruyama, J. Yodoiet al.(1989). Molecular cloning and chromosomal assignment of a human perform (PFP) gene.Immunogenetics30, 452–457.

    Article  PubMed  CAS  Google Scholar 

  35. Lichtenheld, M.G. and E.R. Podack (1989). Structure of the human perforin gene. A simple gene organization with interesting potential regulatory sequences.J. Immunol.143, 4267–4274.

    PubMed  CAS  Google Scholar 

  36. Kwon, B.S., M. Wakulchik, C.C. Liu, P.M. Persechini, J.A. Trapani, A.K. Haqet al.(1989). The structure of the mouse lymphocyte pore-forming protein perforin.Biochem. Biophys. Res. Commun.158, 1–10.

    Article  PubMed  CAS  Google Scholar 

  37. Lowrey, D.M., T. Aebischer, K. Olsen, M. Lichtenheld, F. Rupp, H. Hengartneret al.(1989). Cloning, analysis, and expression of murine perforin 1 cDNA, a component of cytolytic T-cell granules with homology to complement component C9.Proc. Natl. Acad. Sci. USA86, 247–251.

    Article  PubMed  CAS  Google Scholar 

  38. Henkart, M.P. and P.A. Henkart (1982). Lymphocyte mediated cytolysis as a secretory phenomenon.Adv. Exp. Med. Biol.146, 227–247.

    Article  PubMed  CAS  Google Scholar 

  39. Burkhardt, J.K., S. Hester, C.K. Lapham, and Y. Argon (1990). The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments.J. Cell. Biol.111, 2327–2340.

    Article  PubMed  CAS  Google Scholar 

  40. Stinchcombe, J.C., L.J. Page, and G.M. Griffiths (2000). Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients.Traffic1, 435–444.

    Article  PubMed  CAS  Google Scholar 

  41. Peters, P.J., H.J. Geuze, H.A. Van der Donk, J.W. Slot, J.M. Griffith, N.J. Stainet al.(1989). Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes.Eur. J. Immunol.19, 1469–1475.

    Article  PubMed  CAS  Google Scholar 

  42. Smyth, M.J., M.D. O’Connor, and J.A. Trapani (1996). Granzymes: A variety of serine protease specificities encoded by genetically distinct subfamilies.J. Leukoc. Biol.60, 555–562.

    PubMed  CAS  Google Scholar 

  43. Trapani, J.A. (1998). Dual mechanisms of apoptosis induction by cytotoxic lymphocytes.Int. Rev. Cytol.182, 111–192.

    Article  PubMed  CAS  Google Scholar 

  44. Trapani, J.A., D.A. Jans, P.J. Jans, M.J. Smyth, K.A. Browne, and V.R. Sutton (1998). Efficient nuclear targeting of granzyme B and the nuclear consequences of apoptosis induced by granzyme B and perforin are caspasedependent, but cell death is caspase-independent.J. Biol. Chem.273, 27934–27938.

    Article  PubMed  CAS  Google Scholar 

  45. Trapani, J.A., P. Jans, M.J. Smyth, C.J. Froelich, E.A. Williams, V.R. Suttonet al.(1998). Perform-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction.Cell Death Differ.5, 488–496.

    Article  PubMed  CAS  Google Scholar 

  46. Kam, C.M., D. Hudig, and J.C. Powers (2000). Granzymes (lymphocyte serine proteases): Characterization with natural and synthetic substrates and inhibitors.Biochim. Biophys. Acta1477, 307–323.

    Article  PubMed  CAS  Google Scholar 

  47. Waugh, S.M., J.L. Harris, R. Fletterick, and C.S. Craik (2000). The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity.Nat. Struct. Biol. 7762–765.

    Article  PubMed  CAS  Google Scholar 

  48. Pastemack, M.S., and H.N. Eisen (1985). A novel serine esterase expressed by cytotoxic T lymphocytes.Nature314,743–745.

    Article  Google Scholar 

  49. Ostergaard, H.L., K.P. Kane, M.F. Mescher, and W.R. Clark (1987). Cytotoxic T lymphocyte mediated lysis without release of serine esterase.Nature330, 71–72.

    Article  PubMed  CAS  Google Scholar 

  50. Shiver, J.W., L. Su, and P.A. Henkart (1992). Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A.Cell71, 315–322.

    Article  PubMed  CAS  Google Scholar 

  51. Shi, L., S. Mai, S. Israels, K. Browne, J.A. Trapani, and A.H. Greenberg (1997). Granzyme B (GraB) autonomously crosses the cell membrane and perform initiates apoptosis and GraB nuclear localization.J. Exp. Med.185, 855–866.

    Article  PubMed  CAS  Google Scholar 

  52. Froelich, C.J., K. Orth, J. Turbov, P. Seth, R. Gottlieb, B. Babioret al.(1996). New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis.J. Biol. Chem.271, 29073–29079.

    Article  PubMed  CAS  Google Scholar 

  53. Motyka, B., G. Korbutt, M.J. Pinkoski, J.A. Heibein, A. Caputo, M. Hobmanet al.(2000). Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis.Cell103, 491–500.

    Article  PubMed  CAS  Google Scholar 

  54. Trapani, J.A., V.R. Sutton, K.Y. Thia, Y.Q. Li, C.J. Froelich, D.A. Janset al.(2003). A clathrin/dynamin-and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death.J. Cell. Biol.160, 223–233.

    Article  PubMed  CAS  Google Scholar 

  55. Pinkoski, M.J., M. Hobman, J.A. Heibein, K. Tomaselli, F. Li, P. Sethet al.(1998). Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis.Blood92, 1044–1054.

    PubMed  CAS  Google Scholar 

  56. Blink, E.J., J.A. Trapani, and D.A. Jans (1999). Perforin-dependent nuclear targeting of granzymes: A central role in the nuclear events of granule-exocytosis-mediated apoptosis?Immunol. Cell. Biol.77, 206–215.

    Article  PubMed  CAS  Google Scholar 

  57. Jans, D.A., V.R. Sutton, R Jans, C.J. Froelich, and J.A. Trapani (1999). BCL-2 blocks perforin-induced nuclear translocation of granzymes concomitant with protection against the nuclear events of apoptosis.J. Biol. Chem.274, 3953–3961.

    Article  PubMed  CAS  Google Scholar 

  58. Trapani, J.A., J. Davis, V.R. Sutton, and M.J. Smyth (2000). Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo.Curr. Opin. Immunol.12, 323–329.

    Article  PubMed  CAS  Google Scholar 

  59. Earnshaw, W.C., L.M. Martins, and S.H. Kaufmann (1999). Mammalian caspases: Structure, activation, substrates, and functions during apoptosis.Annu. Rev. Biochem.68, 383–424.

    Article  PubMed  CAS  Google Scholar 

  60. Dannon, A.J., D.W. Nicholson, and R.C. Bleackley (1995). Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B.Nature377, 446–448.

    Article  Google Scholar 

  61. Darmon, A.J., T.J. Ley, D.W. Nicholson, and R.C. Bleackley (1996). Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation.J. Biol. Chem.271, 21709–21712.

    Article  PubMed  CAS  Google Scholar 

  62. Talanian, R.V., X. Yang, J. Turbov, R. Seth, T. Ghayur, C.A. Casianoet al.(1997). Granule-mediated killing: Pathways for granzyme B-initiated apoptosis.J. Exp. Med.186, 1323–1331.

    Article  PubMed  CAS  Google Scholar 

  63. Martin, S.J., G.P. Amarante-Mendes, L. Shi, T.H. Chuang, C.A. Casiano, G.A. O’Brienet al.(1996). The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism.EMBO J.15, 2407–2416.

    PubMed  CAS  Google Scholar 

  64. Sarin, A., M.S. Williams, M.A. Alexander-Miller, J.A. Berzofsky, C.M. Zacharchuk, and P.A. Henkart (1997). Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases.Immunity6, 209–215.

    Article  PubMed  CAS  Google Scholar 

  65. Krammer, P.H. (2000). CD95’s deadly mission in the immune system.Nature407, 789–795.

    Article  PubMed  CAS  Google Scholar 

  66. Russell, J.H. and T.J. Ley (2002). Lymphocyte-mediated cytotoxicity.Annu. Rev. Immunol.20, 323–370.

    Article  PubMed  CAS  Google Scholar 

  67. Barry, M., and R.C. Bleackley (2002). Cytotoxic T lymphocytes: All roads lead to death.Nat. Rev. Immunol.2, 401–409.

    PubMed  CAS  Google Scholar 

  68. Acha-Orbea, H., L. Scarpellino, S. Hertig, M. Dupuis, and J. Tschopp (1990). Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides.EMBO J.9, 3815–3819.

    PubMed  CAS  Google Scholar 

  69. Shiver, J.W. and P.A. Henkart (1991). A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene.Cell64, 1175–1181.

    Article  PubMed  CAS  Google Scholar 

  70. Berke, G. and D. Rosen (1987). Are lytic granules and perforin 1 involved in lysis induced by in vivo-primed peritoneal exudate cytolytic T lymphocytes?Transplant. Proc.19, 412–416.

    PubMed  CAS  Google Scholar 

  71. Berke, G. and D. Rosen (1988). Highly lytic in vivo primed cytolytic T lymphocytes devoid of lytic granules and BLT-esterase activity acquire these constituents in the presence of T cell growth factors upon blast transformation in vitro.J. Immunol.141, 1429–1436.

    PubMed  CAS  Google Scholar 

  72. Tirosh, R. and G. Berke (1985). Immune cytolysis viewed as a stimulatory process of the target.Adv. Exp. Med. Biol.184, 473–492.

    Article  PubMed  CAS  Google Scholar 

  73. Tirosh, R. and G. Berke (1985). T-lymphocyte-mediated cytolysis as an excitatory process of the target. I. Evidence that the target cell may be the site of Cat+action.Cell. Immunol.95, 113–123.

    Article  PubMed  CAS  Google Scholar 

  74. Berke, G., D. Rosen, and D. Ronen (1993). Mechanism of lymphocyte-mediated cytolysis: Functional cytolytic T cells lacking perforin and granzymes.Immunology78, 105–112.

    PubMed  CAS  Google Scholar 

  75. Berke, G. (1991). T-cell-mediated cytotoxicity.Cure Opin. Immunol.3, 320–325.

    Article  CAS  Google Scholar 

  76. Berke, G. (1995). The CTL’s kiss of death.Cell81, 9–12.

    Article  PubMed  CAS  Google Scholar 

  77. Berke, G. (1995). PELs and the perforin and granzyme independent mechanism of CTL-mediated lysis.Immunol. Rev.146, 21–31.

    Article  PubMed  CAS  Google Scholar 

  78. Kagi, D., B. Ledermann, K. Burki, P. Seiler, B. Odermatt, K.J. Olsenet al.(1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice.Nature369, 31–37.

    Article  PubMed  CAS  Google Scholar 

  79. Kagi, D., F. Vignaux, B. Ledermann, K. Burki, V. Depraetere, S. Nagataet al.(1994). Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity.Science265, 528–530.

    Article  PubMed  CAS  Google Scholar 

  80. Kojima, H., N. Shinohara, S. Hanaoka, Y. Someya-Shirota, Y. Takagaki, H. Ohnoet al.(1994). Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes.Immunity1, 357–364.

    Article  PubMed  CAS  Google Scholar 

  81. Lowin, B., E Beermann, A. Schmidt, and J. Tschopp (1994). A null mutation in the perforin gene impairs cytolytic T lymphocyte-and natural killer cell-mediated cytotoxicity.Proc. Natl. Acad. Sci. USA91, 11571–11575.

    Article  PubMed  CAS  Google Scholar 

  82. Walsh, C.M., M. Matloubian, C.C. Liu, R. Ueda, C.G. Kurahara, J.L. Christensenet al.(1994a). Immune function in mice lacking the perforin gene.Proc. Natl. Acad. Sci. USA91, 10854–10858.

    Article  CAS  Google Scholar 

  83. Rouvier, E., M.F. Luciani, and P. Golstein (1993). Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity.J. Exp. Med.177, 195–200.

    Article  PubMed  CAS  Google Scholar 

  84. Suda, T., T. Takahashi, P. Golstein, and S. Nagata (1993). Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family.Cell75, 1169–1178.

    Article  PubMed  CAS  Google Scholar 

  85. Nagata, S. and P. Golstein (1995). The Fas death factor.Science267, 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  86. Nagata, S. (1998). Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: A lesson from the mouse model.J. Hum. Genet.43, 2–8.

    Article  PubMed  CAS  Google Scholar 

  87. Wallach, D., E.E. Varfolomeev, N.L. Malinin, Y.V. Goltsev, A.V. Kovalenko, and M.P. Boldin (1999). Tumor necrosis factor receptor and Fas signaling mechanisms.Annu. Rev. Immunol.17, 331–367.

    Article  PubMed  CAS  Google Scholar 

  88. Zimmermann, K.C., C. Bonzon, and D.R. Green (2001). The machinery of programmed cell death.Pharmacol. Ther.92, 57–70.

    Article  Google Scholar 

  89. Bradley, J.A., D.W. Mason, and P.J. Morris (1985). Evidence that rat renal allografts are rejected by cytotoxic T cells and not by nonspecific effectors.Transplantation39, 169–175.

    Article  PubMed  CAS  Google Scholar 

  90. Griffiths, G.M., R. Namikawa, C. Mueller, C.C. Liu, J.D. Young, M. Billinghamet al.(1991). Granzyme A and perforin as markers for rejection in cardiac transplantation.Eur. J. Immunol.21, 687–693.

    Article  PubMed  CAS  Google Scholar 

  91. Clement, M.V., S. Legros-Maida, D. Israel-Biet, F. Carnot, A. Soulie, P. Reynaudet al.(1994). Perforin and granzyme B expression is associated with severe acute rejection. Evidence for in situ localization in alveolar lymphocytes of lung-transplanted patients.Transplantation57, 322–326.

    Article  PubMed  CAS  Google Scholar 

  92. Walsh, C.M., F. Hayashi, D.C. Saffran, S.T. Ju, G. Berke, and W.R. Clark (1996). Cell-mediated cytotoxicity results from, but may not be critical for, primary allograft rejection.J. Immunol.156, 1436–1441.

    PubMed  CAS  Google Scholar 

  93. Ahmed, K.R., T.B. Guo, and K.K. Gaal (1997). Islet rejection in perforin-deficient mice: The role of perforin and Fas.Transplantation63, 951–957.

    Article  PubMed  CAS  Google Scholar 

  94. Selvaggi, G., C. Ricordi, E.R. Podack, and L. Inverardi (1996). The role of the perforin and Fas pathways of cytotoxicity in skin graft rejection.Transplantation62, 1912–1915.

    Article  PubMed  CAS  Google Scholar 

  95. Schulz, M., R.M. Zinkernagel, and H. Hengartner (1991). Peptide-induced antiviral protection by cytotoxic T cells.Proc. Natl. Acad. Sci. USA88, 991–993.

    Google Scholar 

  96. Ratner, A. and W.R. Clark (1993). Role of TNF-alpha in CD8+ cytotoxic T lymphocyte-mediated lysis.J. Immunol.150, 4304–4314.

    Google Scholar 

  97. Rosen, D., J.H. Li, S. Keidar, I. Markon, R. Orda, and G. Berke (2000). Tumor immunity in perforin-deficient mice: A role for CD95(Fas/APO-1).J. Immunol.164, 3229–3235.

    PubMed  CAS  Google Scholar 

  98. Seino, K., N. Kayagaki, H. Bashuda, K. Okumura, and H. Yagita (1996). Contribution of Fas ligand to cardiac allograft rejection.Int. Immunol.8, 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  99. Brent, L. and P. Medawar (1966). Quantitative studies on tissue transplantation immunity. 8. The effects of irradiation.Proc. R. Soc. Lond. B. Biol. Sci.165, 413–423.

    Google Scholar 

  100. Rosenberg, A.S. and A. Singer (1988). Evidence that the effector mechanism of skin allograft rejection is antigen-specific.Proc. Natl. Acad. Sci. USA85, 7739–7742.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berke, G., Clark, W.R. (2004). Cytotoxic T Lymphocytes: Mechanism of Action and Role in Allograft Rejection. In: Wilkes, D.S., Burlingham, W.J. (eds) Immunobiology of Organ Transplantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8999-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8999-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4754-5

  • Online ISBN: 978-1-4419-8999-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics