Skip to main content

Epilepsy and Seizures: Excitotoxicity or Excitotrophicity?

  • Chapter
Excitotoxicity in Neurological Diseases

Abstract

Excitotoxic neuronal death has been clearly documented in the adult brain following status epilepticus (SE), a state of uninterrupted seizure activity that may last for hours. The severity and duration of SE determine the extent of neuronal injury; in most animal models damage is observed with durations of one hour or longer. Severity, duration and rate of onset may also influence the extent to which the neuronal death is mediated by apoptotic or necrotic processes. In contrast to the adult brain, the immature brain is resistant to SE-induced damage; nevertheless long-term deleter ious effects of SE have been observed in animals that experienced SE in infancy without exhibiting neuronal loss. Likewise, in adult animals, long-term abnormalities such as spontaneous seizures have been documented following SE even under conditions in which the brain was protected from damage. This suggests that SE-induced excitotoxic injury is not required for the development of long-term disrupt ion of neuronal function in the aftermath of SE. In contrast to SE, recurrent intermittent brief seizures such as those typically associated with epilepsy, do not necessar ily cause neuronal inj ury. In patients with epilepsy it is often difficult to determine whether brain lesions are a cause or consequence of the seizure condition; little or no injury has been observed with chronic brief seizures in several animal models. In fact, exposure to repeated brief noninjurious seizures has been shown to exert a neuroprotective action, possibly as a consequence of induction of expression of neurotrophic factors. This “excitotrophic” effect of seizures extends beyond protection against SE-induced injury to include protection in models such as adrenalectomy-induced granule cell death. It is therefore possible that seizures may serve to protect against neurodegeneration and promote regrowth and remodeling in the face of insults to the nervous system. Thus, seizures can span a spectrum from trophic and adaptive to toxic and maladaptive, depending upon the conditions of their occurrence and the extent to which they are regulated. In this context, seizures may be analogous to fever: adaptive and protective in specific settings, with the capacity to become maladaptive and injurious in their own right if they develop into SE or a long lasting epileptic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams R. ECT for Parkinson’s disease. Am J Psychiatry 1989; Nov; 146(11):1391–3

    PubMed  CAS  Google Scholar 

  • Akbar M.T., Lundberg A.M., Liu K., Vidyadaran S., Wells K.E., Dolatshad H., Wynn S., Wells D.J., Latchman D.S., de Belleroche J. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 2003; May 30;278(22):19956–65

    Article  PubMed  CAS  Google Scholar 

  • Andre V., Ferrandon A., Marescaux C., Nehlig A. Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy. Epilepsy Res 2000; Nov;42(1):7–22

    Article  PubMed  CAS  Google Scholar 

  • Angelucci F., Aloe L., Jimenez-Vasquez P., Mathe A.A. Electroconvulsive stimuli alter the regional concentrations of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in adult rat brain. J ECT 2002; Sep; 18(3):138–43

    Article  PubMed  Google Scholar 

  • Ankarcrona M., Dypbukt J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton SA, Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15:961–973

    Article  PubMed  CAS  Google Scholar 

  • Araki T., Simon R.P., Taki W., Lan J.Q., Henshall D.C. Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse. J Neurosci Res 2002; Sep 1;69(5):614–21

    Article  PubMed  CAS  Google Scholar 

  • Aronica E.M., Gorter J.A., Paupard M.C., Grooms S.Y., Bennett M.Y., Zukin R.S. Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 1997; Nov 1;17(21):8588–95

    PubMed  CAS  Google Scholar 

  • Babb T.L., Brown W.J., Pretorius J., Davenport C., Lieb J.P., Crandall P.H. Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 1990; 25:729–740.

    Article  Google Scholar 

  • Balldin J., Eden S., Granerus A.K, Modigh K., Svanborg A., Walinder J., Wallin L. Electroconvulsive therapy in Parkinson’s syndrome with “on-off” phenomenon. J Neural Transm 1980; 47(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Baram T.Z., Eghbal-Ahmadi M., Bender R.A. Is neuronal death required for seizureinduced epileptogenesis in the immature brain? Prog Brain Res 2002; 135:365–75

    Article  PubMed  Google Scholar 

  • Beale M.D., Kellner C.H., Gurecki P., Pritchett J.T. ECT for the treatment of Huntington’s disease: a case study. Convuls Ther 1997; Jun;13(2):108–12

    PubMed  CAS  Google Scholar 

  • Becker A.J., Gillardon F., Blumcke I., Langendorfer D., Beck H., Wiestler O.D. Differential regulation of apoptosis-related genes in resistant and vulnerable subfields of the rat epileptic hippocampus. Brain Res Mol Brain Res 1999; Apr 6;67(1):172–6

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985; 14:375–403

    Article  PubMed  CAS  Google Scholar 

  • Berger M., de Soto D.A. The use of ECT for Parkinson symptoms in a nondepressed patient. Psychosomatics 1990; Fall;31(4):465–6

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi N., Bernasconi A., Caramanos Z., Dubeau F., Richardson J., Andermann F., Arnold D.L. Entorhinal cortex atrophy in epilepsy patients exhibiting normal hippocampal volumes. Neurology 2001; May 22;56(10):1335–9

    Article  PubMed  CAS  Google Scholar 

  • Bertram E.H. 3rd, Lothman E.W. Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the rat. Brain Res 1993; Feb 12;603(1):2531

    Google Scholar 

  • Berzaghi M. P., Cooper J., Castren E., Zafra F., Sofroniew M., Thoenen H., and Lindholm D. Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J Neurosci 1993; 13:3818–3826

    CAS  Google Scholar 

  • Birkett D.P. Use of ECT in Parkinson’s disease. Am J Psychiatry 1990; Jul;147(7):952

    Google Scholar 

  • Bittigau P., Sifringer M., Ikonomidou C. Antiepileptic drugs and apoptosis in the developing brain. Ann N Y Acad Sci 2003; May;993: 103–14; discussion 123-4

    Article  PubMed  CAS  Google Scholar 

  • Bittigau P., Sifringer M., Genz K., Reith E., Pospischil D., Govindarajalu S., Dzietko M., Pesditschek S., Mai L., Dikranian K., Olney J., and Ikonomidou C. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. PNAS 2002; 99(23):15089–15094

    Article  PubMed  CAS  Google Scholar 

  • Blennow G., Brierley J.B., Meldrum B.S., Siesjo B.K. Epileptic brain damage: the role of systemic factors that modify cerebral energy metabolism. Brain 1978; Dec;101(4):687–700

    Article  PubMed  CAS  Google Scholar 

  • Blumcke I., Becker A.J., Klein C., Scheiwe C., Lie A.A., Beck H., Waha A., Friedl M.G., Kuhn R., Emson P., Elger C., Wiestler O.D. Temporal lobe epilepsy associated upregulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol 2000; Jan;59(1):1–10

    PubMed  CAS  Google Scholar 

  • Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S.A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 1995; Aug 1;92(16):7162–6

    Article  PubMed  CAS  Google Scholar 

  • Briellmann R.S., Newton M.R., Wellard R.M., Jackson G.D. Hippocampal sclerosis following brief generalized seizures in adulthood. Neurology 2001; 57:315–7

    Article  PubMed  CAS  Google Scholar 

  • Browning R.A., Nelson D.K. Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transections. Exp Neurol 1986; Sep;93(3):546–56

    Article  PubMed  CAS  Google Scholar 

  • Browning R.A., Nelson D.K. Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci 1985; Dec 9;37(23):2205–11

    Article  PubMed  CAS  Google Scholar 

  • Browning R.A., Wang C., Lanker M.L., Jobe P.C. Electroshock-and pentylenetetrazol-induced seizures in genetically epilepsy-prone rats (GEPRs): differences in threshold and pattern. Epilepsy Res 1990; May–Jun;6(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Bruce A.J., M. Baudry. Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Rad Biol Med 1995; 18:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Buckmaster P.S., Dudek F.E. Neuronal loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 1997; 385:385–404

    Article  PubMed  CAS  Google Scholar 

  • Cassidy R.M., Gale K. Mediodorsal thalamus plays a critical role in the development of limbic motor seizures. J Neurosci 1998; Nov 1; 18(21):9002–9

    PubMed  CAS  Google Scholar 

  • Cavalheiro E.A., Silva D.F., Turski W.A., Calderazzo-Filho L.S., Bortolotto Z.A., Turski L. The susceptibility of rats to pilocarpine is age-dependent. Exp Brain Res 1987; 37:43–58

    CAS  Google Scholar 

  • Cavalheiro E.A., Leite J.P., Bortolotto Z.A., Turski W.A., Ikonomidou C., Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991; 32:778–782

    Article  PubMed  CAS  Google Scholar 

  • Cendes F., Andermann F., Carpenter S., Zatorre R.J., Cashman N.R. Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 1995; Jan;37(1):123–6

    Article  PubMed  CAS  Google Scholar 

  • Cendes F., Andermann F., Dubeau F., Gloor P., Evans A., Jones-Gotman M., Olivier A., Andermann E., Robitaille Y., Lopes-Cendes I., et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 1993; Jun;43(6):1083–7

    Article  PubMed  CAS  Google Scholar 

  • Cheng B., Mattson M.P. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 1994; Mar 21;640(1–2):56–67

    Article  PubMed  CAS  Google Scholar 

  • Cilio M.R., Sogawa Y., Cha B.H., Liu X., Huang L.T., Holmes G.L. Long-term effects of status epilepticus in the immature brain are specific for age and model. Epilepsia 2003; Apr;44(4):518–28

    Article  PubMed  Google Scholar 

  • Clifford D.B., Olney J.W., Maniotis A., Collins R.C., Zorumski C.F. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987; 23:953–968

    Article  PubMed  CAS  Google Scholar 

  • Covolan L., Ribeiro L.T.C., Longo B.M., Mello L. Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine or kainate induced status epilepticus. Hippocampus 2000; 10:169–180

    Article  PubMed  CAS  Google Scholar 

  • Dalby N.O., Tonder N., Wolby D.P., West M., Finsen B., Bolwig T.G. No loss of hippocampal hilar somatostatinergic neurons after repeated electroconvulsive shock: a combined stereological and in situ hybridization study. Biol Psychiatry 1996; Jul 1;40(1):54–60

    Article  PubMed  CAS  Google Scholar 

  • Davies K.G., Hermann B.P., Dohan F.C. Jr., Foley K.T., Bush A.J., Wyler A.R. Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients. Epilepsy Res 1996; Jun;24(2):119–26

    Article  PubMed  CAS  Google Scholar 

  • DeGiorgio C.M., Tomiyasu U., Gott P.S., Treiman D.M. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia 1992; 33:23–7

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo R.J., Hauser W.A., Towne A.R., Boggs J.G., Pellock J.M., Penberthy L., et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology 1996; 46:1029–35

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo R.J., Towne A.R., Pellock J.M., Ko D. Status epilepticus in children, adults, and the elderly. Epilepsia 1992; 33 Suppl 4:S15–25

    Article  PubMed  Google Scholar 

  • Dirnagl U., Simon R.P., Hallenbeck J.M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003; May;26(5):248–54

    Article  PubMed  CAS  Google Scholar 

  • Druga R., Kubova H., Suchomelova L., Haugvicova R. Lithium/pilocarpine status epilepticus-induced neuropathology of piriform cortex and adjoining structures in rats is age-dependent. Physiol Res 2003; 52(2):251–64

    PubMed  CAS  Google Scholar 

  • Dzhala V., Ben-Ari Y., Khazipov R. Seizures accelerate anoxia-induced neuronal death in the neonatal rat hippocampus. Ann Neurol 2000; Oct;48(4):632–40

    Article  PubMed  CAS  Google Scholar 

  • Ebert U., Brandt C., Loscher W. Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia 2002; 43 Suppl 5:86–95

    Article  PubMed  Google Scholar 

  • Emerson M.R., Nelson S.R., Samson F.E., Pazdernik T.L. A global hypoxia preconditioning model: neuroprotection against seizure-induced specific gravity changes (edema) and brain damage in rats. Brain Res Brain Res Protoc 1999; Dec;4(3):360–6

    Article  PubMed  CAS  Google Scholar 

  • Ende G., Braus D.F., Walter S., Weber-Fahr W., Henn F.A. The hippocampus in patients treated with electroconvuls ive therapy: a proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 2000; 57(10):937–943

    Article  PubMed  CAS  Google Scholar 

  • Faber R., Trimble M.R. Electroconvulsive therapy in Parkinson’s disease and other movement disorders. Mov Disord 1991; 6(4):293–303

    Article  PubMed  CAS  Google Scholar 

  • Faherty C.J., Xanthoudakis S., Smeyne R.J. Caspase-3-dependent neuronal death in the hippocampus following kainic acid treatment. Brain Res Mol Brain Res 1999; Jun 18;70(1):159–63

    Article  PubMed  CAS  Google Scholar 

  • Farwell J. R., Dodrill C. B., Batzel L. W. Neuropsychological abilities of children with epilepsy. Epilepsia 1985; 26:395–400

    Article  PubMed  CAS  Google Scholar 

  • Fernandez G., Effenberger O., Vinz B., Steinlein O., Elger C.E., Dohring W., Heinze H.J. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 1998; Apr;50(4):909–17

    Google Scholar 

  • Fernandez-Sanchez M.T., Novelli A. Basic fibroblast growth factor protects cerebellar neurons in primary culture from NMDA and non-NMDA receptor mediated neurotoxicity. FEBS Lett 1993; Nov 29;335(1):124–31

    Article  PubMed  CAS  Google Scholar 

  • Finklestein S.P., Kemmou A., Caday C.G., Berlove D.J. Basic fibroblast growth factor protects cerebrocortical neurons against excitatory amino acid toxicity in vitro. Stroke 1993; Dec;24(12 Suppl):I141–3

    CAS  Google Scholar 

  • Follesa P., Gale K., Mocchetti I. Regional and temporal pattern of expression of nerve growth factor and basic fibroblast growth factor mRNA in rat brain following electroconvulsive shock. Exp Neurol 1994; May;127(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Fountain N.B., Lothman E.W. Pathophysiology of status epilepticus. J Clin Neurophysiol 1995; Jul;12(4):326–42

    PubMed  CAS  Google Scholar 

  • Freese A., Finklestein S.P., DiFiglia M. Basic fibroblast growth factor protects striatal neurons in vitro from NMDA-receptor mediated excitotoxicity. Brain Res 1992; Mar 20;575(2):351–5

    Article  PubMed  CAS  Google Scholar 

  • Friedman L.K. Selective reduction of GluR2 protein in adult hippocampal CA3 neurons following status epilepticus but prior-to cell loss. Hippocampus 1998; 8(5):511–25

    Article  PubMed  CAS  Google Scholar 

  • Fuerst D., Shah J., Kupsky W.I., Johnson R., Shah A., Hayman-Abello B., et al. Volumetric MRI, pathological, and neuropsychological progression in hippocampal sclerosis. Neurology 2001; 57:184–8

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D.G., Itabashi H.H., Wu A., Shinmei S.S. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000; Aug;41(8):981–91

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D.G., Ke X., Trinidad R.B., Shinmei S.S., Wu A. Caspase-3 is not activated in seizure-induced neuronal necrosis with internucleosomal DNA cleavage. J Neurochem 2002; Oct;83(1):229–40

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D.G., Shinmei S.S., Cai B. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 2000c; 98(1):41–53

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D.G., Shinmei S.S., Cai B. Lithium-pilocarpineinduced status epilepticus produces necrotic neurons with internucleosomal DNA fragmentation in adult rats. Eur J Neurosci 1999; 11:1605–14

    Google Scholar 

  • Fujikawa D.G., Shinmei S.S., Cai B. Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia 2000d; 41 Suppl 6:S9–13

    Article  PubMed  Google Scholar 

  • Fujikawa D.G. Confusion between neuronal apoptosis and activation of programmed cell death mechanisms in acute necrot ic insults. Trends Neurosci 2000; Sep;23(9):410–1

    Article  PubMed  CAS  Google Scholar 

  • Galanopoulou A.S., Vidaurre J., Moshe S.L. Under what circumstances can seizures produce hippocampal injury: evidence for age-specific effects. Dev Neurosci 2002; 24(5):355–63

    Article  PubMed  CAS  Google Scholar 

  • Gilbert D.L., Gantside P.S., Glauser T.A. Efficacy and mortality in treatment of refractory generalized convulsive status epilepticus in children: a meta-analysis. J Child Neurol 1999; 14:602–609

    Article  PubMed  CAS  Google Scholar 

  • Glass M., Dragunow M. Neurochemical and morphological changes associated with human epilepsy. Brain Res Brain Res Rev 1995; Jul;21(1):29–41

    Article  PubMed  CAS  Google Scholar 

  • Glazner G.W., Mattson M.P. Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp Neurol 2000; Feb;161(2):442–52

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z., Spiller A., Cottrell G.A., Racine R.I., Mcintyre Burnham W. Mossy fiber sprout ing induced by repeated electroconvulsive shock seizures. Brain Res 1999; Oct 9;844(1–2):28–33

    Article  PubMed  CAS  Google Scholar 

  • Goodman J.H. “Experimental models of status epilepticus.” In Neuropharmacological Methods in Epilepsy Research, S.L. Peterson and T.E. Albertson, eds. Boca Raton: CRC Press, 1998.

    Google Scholar 

  • Gordon T. Fatigue in adapted systems. Overuse and underuse paradigms. Adv Exp Med Biol 1995; 384:429–56

    PubMed  CAS  Google Scholar 

  • Gorter J.A., Van Vliet E.A., Proper E.A., De Graan P.N., Ghijsen W.E., Lopes Da Silva F.H., Aronica E. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats. J Comp Neurol 2002; Jan 21;442(4):365–77

    Article  PubMed  CAS  Google Scholar 

  • Gould E., Woolley C.S., McEwen B.S. Short-term glucocort icoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 1990; 37(2):367–75

    Article  PubMed  CAS  Google Scholar 

  • Gould E., Woolley C.S., McEwen B.S. Naturally occurring cell death in the developing dentate gyrus of the rat. J Comp Neurology 1991; 304:408–418

    Article  CAS  Google Scholar 

  • Gray N.A., Zhou R., Du J., Moore G.J., Manji H.K. The use of mood stabilizers as plasticity enhancers in the treatment of neuropsychiatric disorders. J Clin Psychiatry 2003; 64 Suppl 5:3–17

    PubMed  CAS  Google Scholar 

  • Grunewald R.A., Farrow T., Vaughan P., Rittey C.D., Mundy J. A magnetic resonance study of complicated early childhood convulsion. J Neurol Neurosurg Psychiatry 2001; Nov;71(5):638–42

    Article  PubMed  CAS  Google Scholar 

  • Gunderson V.M., Dubach M., Szot P., Born D.E., Wenzel H.J., Maravilla K.R., Zierath D.K., Robbins C.A., Schwartzkroin P.A. Development of a model of status epilepticus in pigtailed macaque infant monkeys. Dev Neurosci 1999; Nov;21(3–5):352–64

    Article  PubMed  CAS  Google Scholar 

  • Gwinn R.P., Kondratyev A., Gale K. Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 2002; 114(2):403–9

    Article  PubMed  CAS  Google Scholar 

  • Haas K.Z., Sperber E.F., Opanashuk L.A., Staton P.K., Moshe S.L. Resistance of immature hippocampus to morphologic and physiologic alteration following status epilepticus or kindling. Hippocampus 2001; 11(6):615–625

    Article  PubMed  CAS  Google Scholar 

  • Hamm R.J., Pike B.R., Temple M.D., O’Dell D.M., Lyeth B.G. The effect of postinjury kindled seizures on cognitive performance of traumatically brain-injured rats. Exp Neurol 1995; Dec;136(2):143–8

    Article  PubMed  CAS  Google Scholar 

  • Hauser W.A. Status epilepticus: epidemiologic considerations. Neurology 1990; 40(suppl 2):9–13.

    PubMed  CAS  Google Scholar 

  • Henshall D.C., Chen J., Simon R.P. Involvement of caspase-3 like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 2000; 74:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Hermann B. Neurodevelopmental and Progressive Adverse Effects of Epilepsy on Higher Cognitive Functioning 2002 http://www.aesnet.org/edu_pub/PresidentiaISymposium.cfm

  • Hernandez T.D., Holling L.C. Disruption of behavioral recovery by the anti-convulsant phenobarbital. Brain Res 1994; Jan 28; 635(1–2):300–6

    Article  PubMed  CAS  Google Scholar 

  • Hernandez T.D., Schallert T. Seizures and recovery from experimental brain damage. Exp Neurol 1988; Dec; 102(3):318–24

    Article  PubMed  CAS  Google Scholar 

  • Holmes G. L. Do seizures cause brain damage? Epilepsia 1991; 32:(suppl. 5) S14–S28

    PubMed  Google Scholar 

  • Holmes G. L. The long term effects of seizures on the developing brain: clinical and laboratory issues. Brain Dev 1991; 13:393–409

    Article  PubMed  CAS  Google Scholar 

  • Holmes G.L., Khazipov R., Ben-Ari Y. New concepts in neonatal seizures. Neuroreport 2002; 13:A3–8

    Article  PubMed  Google Scholar 

  • Holmes G.L., Ben-Ari Y. Seizures in the developing brain: perhaps not so benign after all. Neuron 1998; Dec;21(6):1231–4

    Article  PubMed  CAS  Google Scholar 

  • Holmes G.L. Seizure-induced neuronal injury: animal data. Neurology 2002; Nov 12;59(9 Suppl 5):S3–6

    Article  PubMed  Google Scholar 

  • Houser C.R. Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv Neurol 1999; 79:743–761

    PubMed  CAS  Google Scholar 

  • Huang L., Cilio M. R., Silveira D.C., McCabe B.K., Sogawa Y., Stafstrom C.E., Holmes G.L. Long-term effects of neonatal seizures: a behavioral, electrophysiological, and histological study, Dev Brain Res 1999; 118:99–107

    Article  CAS  Google Scholar 

  • Hughes P.E., Alexi T., Walton M., Williams C.E., Dragunow M., Clark R.G., Gluckman P.D. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 1999; Feb;57(4):421–50

    Article  PubMed  CAS  Google Scholar 

  • Husseini M.K., Jorge Q.A., Sporn J., Payne J.L., Denicoff K., Gray N.A., Zarate Jr. C.A., Charney D.S. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; Apr 15; 53(8): 707–742

    Article  CAS  Google Scholar 

  • Huttenlocher P.R., Hapke R.J. A follow-up study of intractable seizures in childhood. Ann. Neurol 1990; 28:699–705

    Article  PubMed  CAS  Google Scholar 

  • Ikononomidou C., Bosch F., Miksa M., Bittigua P., Vockler J., Dikranian K., Tenkova T., Stefovska V., Turski L., Olney J. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283:74

    Article  Google Scholar 

  • Jefferys J.G., Evans B.J., Hughes S.A., Williams S.F. Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in rat: preservation of pyramidal cells and incidence of dark cells. Neuropathol Appl Neurobiol 1992; Feb;18(1):53–70

    Article  PubMed  CAS  Google Scholar 

  • Jensen F.E., Baram T.Z. Developmental seizures induced by common early-life insults: short-and long-term effects on seizure susceptibility. Ment Retard Dev Disabil Res Rev 2000; 6(4):253–7.

    Article  PubMed  CAS  Google Scholar 

  • Jones P.A., Smith R.A., Stone T.W. Nitric oxide synthase inhibitors L-NAME and 7-nitroindazole protect rat hippocampus against kainate-induced excitotoxicity, Neurosci Lett 1998; Jun 19;249(2–3):75–8

    Article  PubMed  CAS  Google Scholar 

  • Jope R.S., Morrisett R.A., Snead D.C. Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats. Exp Neurol 1986; Mar;91(3):471–80

    Article  PubMed  CAS  Google Scholar 

  • Kant R., Bogyi A.M., Carosella N.W., Fishman E., Kane V., Coffey C.E. ECT as a therapeutic option in severe brain injury. Convuls Ther 1995; Mar; 11(1):45–50

    PubMed  CAS  Google Scholar 

  • Kellner C.H., Beale M.D., Pritchett J.T., Bernstein H.J., Bums C.M. Electroconvulsive therapy and Parkinson’s disease: the case for further study. Psychopharmacol Bull 1994; 30(3):495–500

    PubMed  CAS  Google Scholar 

  • Kelly M.E., McIntyre D.C. Hippocampal kindling protects several structures from the neuronal damage resulting from kainic acid-induced status epilepticus. Brain Res 1994; Jan 21;634(2):245–56

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G., Van Praag H., Gage F. H. Activity-dependent regulation of neuronal plasticity and self repair. Prog. Brain Res 2000; 127:35–48

    Article  PubMed  CAS  Google Scholar 

  • Klitgaard H., Matagne A., Vanneste-Goemaere J., Margineanu D.G. Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 2002; Sep;51(1–2):93–107

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi E., Li L.M., Lopes-Cendes I., Cendes F. Magnetic resonance imaging evidence of hippocampal sclerosis in asymptomatic, first-degree relatives of patients with familial mesial temporal lobe epilepsy. Arch Neurol 2002; Dec;59(12): 1891–4

    Article  PubMed  Google Scholar 

  • Kondratyev A., Ved R., Gale K. The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 2002; 114(2):411–6

    Article  PubMed  CAS  Google Scholar 

  • Kondratyev A., Gale K. Temporal and spatial patterns of DNA fragmentation following focally or systemically-evoked status epilepticus in rats. Neurosci Lett 2001; 310:13–16

    Article  PubMed  CAS  Google Scholar 

  • Kondratyev A., Sahibzada N., Gale K. Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Mol Brain Res 2001; 91: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Kondratyev A., Gale K. Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Brain Res Mol Brain Res 2000; 75: 216–224

    Article  PubMed  CAS  Google Scholar 

  • Kornblum H.I., Sankar R., Shin D.H., Wasterlain CG., Gall C.M. Induction of brain derived neurotrophic factor mRNA by seizures in neonatal and juvenile rat brain. Mol Brain Res 1997; 44:219–228

    Article  PubMed  CAS  Google Scholar 

  • Kotloski R., Lynch M., Lauersdorf S., Sutula T. Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog Brain Res 2002; 135:95–110

    Article  PubMed  Google Scholar 

  • Kuan C.Y., Roth K.A., Flavell R.A., Rakic P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci 2000; 23:291–297

    Article  PubMed  CAS  Google Scholar 

  • Kudryashov I.E., Onufriev M.V., Kudryashova I.V., Gulyaeva N.V. Periods of postnatal maturation of hippocampus: synaptic modifications and neuronal disconnection. Dev Brain Res 2001; 132:113–120

    Article  CAS  Google Scholar 

  • Kuks J.B., Cook M.J., Fish D.R., Stevens J.M., Shorvon S.D. Hippocampal sclerosis in epilepsy and childhood febrile seizures. Lancet 1993; Dec 4;342(8884): 1391–4

    Article  PubMed  CAS  Google Scholar 

  • Kunz W.S., Goussakov I.V., Beck H., Elger C.E. Altered mitochondrial oxidative phosphorylation in hippocampal slices of kainate-treated rats. Brain Res 1999; 826:236–242

    Article  PubMed  CAS  Google Scholar 

  • Kunz W.S., Kudin A.P., Vielhaber S., Blumcke I., Zuschratter W., Schramm J., Beck H., Elger C.E. Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann. Neurol 2000; 48:766–773

    Article  PubMed  CAS  Google Scholar 

  • Lado F.A., Sankar R., Lowenstein D., Moshe S.L. Age-dependent consequences of seizures: relationship to seizure frequency, brain damage, and circuitry reorganization. Ment Retard Dev Disabil Res Rev 2000; 6(4):242–52

    Article  PubMed  CAS  Google Scholar 

  • Lewis D.V., Barboriak D.P., MacFall J.R., Provenzale J.M., Mitchell T.V., VanLandingham K.E. Do prolonged febrile seizures produce medial temporal sclerosis? Hypotheses, MRI evidence and unanswered questions. Prog Brain Res 2002; 135:263–78

    Article  PubMed  Google Scholar 

  • Lewis D.V. Febrile convulsions and mesial temporal sclerosis. Curr Opin Neurol 1999; Apr; 12(2):197–201

    Article  PubMed  CAS  Google Scholar 

  • Liang L.P., Ho Y.S., Patel M. Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 2000; 101(3):563–70

    Article  PubMed  CAS  Google Scholar 

  • Liou A.K., Clark R.S., Henshall D.C., Yin X.M., Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003; Feb;69(2):103–42

    Article  PubMed  CAS  Google Scholar 

  • Liposits Z., Kallo I., Hrabovszky E., Gallyas F. Ultrastructural pathology of degenerating “dark” granule cells in the hippocampal dentate gyrus of adrenalectomized rats. Acta Biol Hung 1997; 48(2):173–87

    PubMed  CAS  Google Scholar 

  • Liu Z., D’Amore P.A., Mikati M., Gatt A., Holmes G.L. Neuroprotective effect of chronic infusion of basic fibroblast growth factor on seizure-associated hippocampal damage. Brain Res 1993; Oct 29;626 (1–2):335–8

    Article  PubMed  CAS  Google Scholar 

  • Liu Z., Holmes G.L. Basic fibroblast growth factor is highly neuroprotective against seizure-induced long-term behavioural deficits. Neuroscience 1997; Feb;76(4):1129–38

    Article  PubMed  CAS  Google Scholar 

  • Liu Z., Yang Y., Silveira D.C., Sarkisian M.R., Tandon P., Huang L.T., Stafstrom C.E., Holmes G.L. Consequences of recurrent seizures during early brain development. Neuroscience 1999; 92:1443–1454

    Article  PubMed  CAS  Google Scholar 

  • Lothman E.W., Bertram E.H. 3rd. Epileptogenic effects of status epilepticus. Epilepsia 1993; 34 Suppl 1:S59–70

    Article  PubMed  Google Scholar 

  • Lowenstein D.H., Arsenault L. The effects of growth factors on the survival and differentiation of cultured dentate gyrus neurons. J Neurosci 1996; 16:1759–1769

    PubMed  CAS  Google Scholar 

  • Lumme A., Soinila S., Sadeniemi M., Halonen T., Vanhatalo S. Nitric oxide synthase immunoreactivity in the rat hippocampus after status epilepticus induced by perforant pathway stimulation. Brain Res 2000; 871:303–310

    Article  PubMed  CAS  Google Scholar 

  • Lynch M., Sayin U., Bownds J., Janumpalli S., Sutula T. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci 2000; Jul;12(7):2252–64

    Article  PubMed  CAS  Google Scholar 

  • Maggio R., Liminga U., Gale K. Selective stimulation of kainate but not quisqualate or NMDA receptors in substantia nigra evokes limbic motor seizures. Brain Res 1990; Oct 1;528(2):223–30

    Article  PubMed  CAS  Google Scholar 

  • Maher J., McLachlan R.S. Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy? Brain 1995; Dec;118 (Pt 6):1521–8

    Article  PubMed  Google Scholar 

  • Maher J., McLachlan R.S. Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy? Brain 1995; Dec;118 (Pt 6):1521–8

    Article  PubMed  Google Scholar 

  • Manji H.K., Quiroz J.A., Sporn J., Payne J.L., Denicoff K.A., Gray N., Zarate C.A. Jr., Charney D.S. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; Apr 15;53(8):707–42

    Article  PubMed  CAS  Google Scholar 

  • Masco D., Sahibzada N., Switzer R., Gale K. Electroshock seizures protect against apoptotic hippocampal cell death induced by adrenalectomy. Neuroscience 1999; 91(4):1315–1319

    Article  PubMed  CAS  Google Scholar 

  • Mathern G.W., Adelson P.D., Cahan L.D., Leite J.P. Hippocampal neuron damage in human epilepsy: Meyer’s hypothesis revisited. Prog Brain Res 2002; 135:237–51

    Article  PubMed  Google Scholar 

  • Mattson M.P., Kumar K.N., Wang H., Cheng B., Michaelis E.K. Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci 1993; Nov;13(11):4575–88

    PubMed  CAS  Google Scholar 

  • Mattson M.P., Lovell M.A., Furukawa K., Markesbery W.R. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 1995; Oct;65(4):1740–51

    Google Scholar 

  • Mayat E., Lerner-Natoli M., Rondouin G., Lebrun F., Sassetti I., Reasens M. Kainate-induced status epilepticus leads to a delayed increase in various specific glutamate metabotropic receptor responses in the hippocampus. Brain Res 1994; May 9;645(1–2):186–200

    Article  PubMed  CAS  Google Scholar 

  • McIntyre D.C., Nathanson D., Edson N. A new model of partial status epilepticus based on kindling. Brain Res 1982; Oct 28;250(1):53–63

    Article  PubMed  CAS  Google Scholar 

  • McIntyre D.C., Poulter M.O., Gilby K. Kindling: some old and some new. Epilepsy Res 2002; Jun;50(1–12):79–92

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Finch A., Evan G. Apoptosis in development. Nature 2000; 407: 797–801

    Article  Google Scholar 

  • Meldrum B.S., Horton R.W., Brierley J.B. Epileptic brain damage in adolescent baboons following seizures induced by allylgycine. Brain 1974; Jun;97(2):407–18

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B.S., Papy J.J., Toure M.F., Brierley J.B. Four models for studying cerebral lesions secondary to epileptic seizures. Adv Neurol 1975; 10:147–61

    PubMed  CAS  Google Scholar 

  • Meldrum B.S., Vigouroux R.A., Brierley J.B. Systemic factors and epileptic brain damage. Prolonged seizures in paralyzed artificially ventilated baboons. Arch Neurol 1973a; Aug;29(2):82–7

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B.S., Vigouroux R.A., Rage P., Brierley J.B. Hippocampal lesions produced by prolonged seizures in paralyzed artificially ventilated baboons. Experientia 1973b; May 15;29(5):561–3

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B.S. Metabolic factors during prolonged seizures and their relation to nerve cell death. Adv Neurol 1983; 34:261–75

    PubMed  CAS  Google Scholar 

  • Meldrum B.S. Excitotoxicity and epileptic brain damage. Epilepsy Res 1991; 10:55–61

    Article  PubMed  CAS  Google Scholar 

  • Meletti S., Benuzzi F., Rubboli G., Cantalupo G., Stanzani Maserati M., Nichelli P., Tassinari C.A. Impaired facial emotion recognition in early-onset right mesial temporal lobe epilepsy. Neurology 2003; Feb 11;60(3):426–31

    Article  PubMed  CAS  Google Scholar 

  • Milatovic D., Gupta R.C., Dettbam W.D. Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Research 2002; 957:330–337

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi E.M., Clancy R.R. Neonatal seizures: early-onset seizure syndromes and their consequences for development. Ment Retard Dev Disabil Res Rev 2000; 6(4):229–41

    Article  PubMed  CAS  Google Scholar 

  • Mody I. Synaptic plasticity in kindling. Adv Neurol 1999; 79:631–43

    PubMed  CAS  Google Scholar 

  • Mohapel P., Dufresne C., Kelly M.E., McIntyre D.C. Differential sensitivity of various temporal lobe structures in the rat to kindling and status epilepticus induction. Epilepsy Res 1996; Apr;23(3):179–87

    Article  PubMed  CAS  Google Scholar 

  • Montecot C., Rondi-Reig L., Springhetti V., Seylaz J., Pinard E. Inhibition of neuronal (type 1) nitric oxide synthase prevents hyperaemia and hippocampal lesions resulting from kainate-induced seizures. Neuroscience 1998; Jun;84(3):791–800

    Article  PubMed  CAS  Google Scholar 

  • Morrisett R.A., Jope R.S., Snead O.C. III. Status epilepticus is produced by administration of cholinergic agonists to lithiumtreated rats: comparison with kainic acid. Exp Neurol 1987; 98:594–605

    Article  PubMed  CAS  Google Scholar 

  • Morrison R.S., Wenzel H.J., Kinoshita Y., Robbins C.A., Donehower L.A., Schwartzkroin P. A. Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 1996; Feb 5;16(4):1337–45

    PubMed  CAS  Google Scholar 

  • Moshe S.L. Brain injury with prolonged seizures in children and adults. J Child Neurol 1998; Oct;13 Suppl 1:S3–6

    Article  PubMed  Google Scholar 

  • Najm I.M., Hadam J., Ckakraverty D., Mikuni N., Penrod C., Sopa C., Markarian G., Luders H.O., Babb T., Baudry M. A short episode of seizure activity protects from status epilepticus-induced neuronal damage in rat brain. Brain Res 1998; Nov 9;81O(1–12):72–5

    Article  Google Scholar 

  • Narkilahti S., Nissinen J., Pitkanen A. Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. Neuropharmacology 2003; Jun;44(8):1068–88

    Article  PubMed  CAS  Google Scholar 

  • Naruse I., Keino H. Apoptosis in the developing CNS. Prog Neurobiol 1995; 47:135–155

    Article  PubMed  CAS  Google Scholar 

  • Naylor P., Stewart C.A., Wright S.R., Pearson R.C., Reid I.C. Repeated ECS induces GluRI mRNA but not NMDARIA-G mRNA in the rat hippocampus. Brain Res Mol Brain Res 1996; Jan;35(1–2):349–53

    Article  PubMed  CAS  Google Scholar 

  • Nevander G., Ingvar M., Auer R., Siesjo B.K. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol 1985; 18:281–90

    Article  PubMed  CAS  Google Scholar 

  • Nibuya M., Morinobu S., Duman R.S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; Nov;15(11):7539–47

    PubMed  CAS  Google Scholar 

  • Olney J.W., Wozniak D.F., Jevtovic-Todorovic Y., Farber N.B., Bittigau P., Ikonomidou C. Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol 2002; Oct;12(4):488–98

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim R W. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14:453–501

    Article  PubMed  CAS  Google Scholar 

  • Pekary A.E., Meyerhoff J.L, Sattin A. Electroconvulsive seizures modulate levels of thyrotrop in releasing hormone and related peptides in rat hypothalamus, cingulate and lateral cerebellum. Brain Res 2000; Nov 24;884(1–2):174–83

    Article  Google Scholar 

  • Pelletier M.R., Wadia J.S., Mills L.R., Carlen P.L. Seizure-induced cell death produced by repeated tetanic stimulation in vitro: possible role of endoplasmic reticulum calcium stores. J Neurophysiol 1999; 81:3054–3064

    PubMed  CAS  Google Scholar 

  • Penner M.R., Pinaud R., Robertson H.A. Rapid kindling of the hippocampus protects against neural damage resulting from status epilepticus. NeuroReport 2001; 12(3): 453–457

    Article  PubMed  CAS  Google Scholar 

  • Pinard E., Tremblay E., Ben-Ari Y., Seylaz J. Blood flow compensates oxygen demand in the vulnerable CA3 regions of the hippocampus during kainate-induced seizures. Neuroscience 1984; 13:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Plamondon H., Blondeau N., Heurteaux C., Lazdunski M. Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab 1999; Dec;19(12):1296–308

    Article  PubMed  CAS  Google Scholar 

  • Pollard H., Cantagrel S., Charriaut-Marlangue C., Moreau J., Ben-Ari Y. Apoptosis associated DNA fragmentation in epileptic brain damage. NeuroReport 1994; 5:1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C., Price D.L., Martin L.J. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 1997; Feb 3;378(1):70–87

    PubMed  CAS  Google Scholar 

  • Portera-Cailliau C., Price D.L., Martin L.J. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 1997; Feb 3;378(1):88–104

    Article  PubMed  CAS  Google Scholar 

  • Pridmore S., Pollard C. Electroconvulsive therapy in Parkinson’s disease: 30 month follow up. J Neurol Neurosurg Psychiatry 1996; Jun;60(6):693

    Article  PubMed  CAS  Google Scholar 

  • Puig B., Ferrer I. Caspase-3-associated apoptotic cell death in excitotoxic necrosis of the entorhinal cortex following intraperitoneal injection of kainic acid in the rat. Neurosci Lett 2002; Mar 22;321(3):182–6

    Article  PubMed  CAS  Google Scholar 

  • Racine R.J., Adams B., Osehobo P., Fahnestock M. Neural growth, neural damage and neurotroph ins in the kindling model of epilepsy. Adv Exp Med Biol 2002; 497:149–70

    Article  PubMed  Google Scholar 

  • Rasmussen K., Abrams R. Treatment of Parkinson’s disease with electroconvulsive therapy. Psychiatr Clin North Am 1991; Dec;14(4):925–33

    PubMed  CAS  Google Scholar 

  • Reti I.M., Baraban J.M. Sustained increase in Narp protein expression foIlowing repeated electroconvulsive seizure. Neuropsychopharmacology 2000; Oct;23(4):439–43

    Article  PubMed  CAS  Google Scholar 

  • Roy M., Sapolsky R. Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci 1999; Oct;22(10):419–22

    Article  PubMed  CAS  Google Scholar 

  • Sakhi S., Sun N., Wing L.L., Mehta P., Schreiber S.S. Nuclear accumulation of p53 protein following kainic acid-induced seizures. NeuroReport 1996; 7:493–496

    Article  PubMed  CAS  Google Scholar 

  • Sandyk R. Mechanisms of action of ECT in Parkinson’s disease: possible role of pineal melatonin. Int J Neurosci 1990; Jan;50(1–2):83–94

    Article  PubMed  CAS  Google Scholar 

  • Sankar R., Shin D.H., Liu H., Mazarati A., Pereira de Vasconcelos A., Wasterlain C.G. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998; 18:8382–93

    PubMed  CAS  Google Scholar 

  • Sasahira M., Lowry T., Simon R.P., Greenberg D.A. Epileptic tolerance: prior seizures protect against seizure-induced neuronal injury. Neurosci Lett 1995; Feb 9;185(2):95–8

    Article  PubMed  CAS  Google Scholar 

  • Sasahira M., Simon R.P., Greenberg D.A. Neuronal injury in experimental status epilepticus in the rat: role of hypoxia. Neurosci Lett 1997; Feb 7;222(3):207–9

    Article  PubMed  CAS  Google Scholar 

  • Sasahira M., Lowry T., Simon R.P., Greenberg D.A. Epileptic tolerance: prior seizures protect against seizure-induced neuronal injury. Neurosci. Lett 1995; 185:95–98

    Article  PubMed  CAS  Google Scholar 

  • Sater R.A., Nadler J.V. On the relation between seizures and brain lesions after intracerebroventricular kainic acid. Neurosci Lett 1988; Jan 11;84(1):73–8

    Article  PubMed  CAS  Google Scholar 

  • Sato K., Kashihara K., Morimoto K., Hayabara T. Regional increases in brain-derived neurotrophic factor and nerve growth factor mRNAs during amygdaloid kindling, but not in acidic and basic fibroblast growth factor mRNAs. Epilepsia 1996; Jan;37(1):6–14

    Article  PubMed  CAS  Google Scholar 

  • Schallert T., Hernandez T.D., Barth T.M. Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res 1986; Jul 30;379(1):104–11

    Article  PubMed  CAS  Google Scholar 

  • Schauwecker P.E. Complications associated with genetic background effects in models of experimental epilepsy. Prog Brain Res 2002; 135:139–48

    Article  PubMed  CAS  Google Scholar 

  • Schauwecker P.E. Genetic background as a determinant of seizure-induced ceIl death 2002 http://www.aesnet.org/edu_pub/PresidentialSymposium.cfm

  • Schmid R., Tandon P., Stafstrom C.E., Holmes G.L. Effects of neonatal seizures on subsequent seizure-induced brain injury. Neurology 1999; 53(8):1754–1761

    Article  PubMed  CAS  Google Scholar 

  • Schulz R., Ebner A. Prolonged febrile convulsions and mesial temporal lobe epilepsy in an identical twin. Neurology 2001; Jul 24;57(2):318–20

    Article  PubMed  CAS  Google Scholar 

  • Schwob J.E., Fuller T., Price J.L., Olney J.W. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience 1980; 5:991–1014

    Article  PubMed  CAS  Google Scholar 

  • Scott R.C., Gadian D.G., King M.D., Chong W.K., Cox T.C., Neville B.G., Connelly A. Magnetic resonance imaging findings within 5 days of status epilepticus in childhood. Brain 2002; Sep;125(Pt 9):1951–9. Erratum in: Brain 2002; Dec; 125(Pt 12):2792

    Article  PubMed  Google Scholar 

  • Sheline Y.I., Sanghavi M., Mintun M.A., Gado M.H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19(12): 5034–5043

    PubMed  CAS  Google Scholar 

  • Shimosaka S., So Y.T., Simon R.P. Distribution of HSP72 induction and neuronal death following limbic seizures. Neurosci Lett 1992; Apr 27; 138(2):202–6

    Article  PubMed  CAS  Google Scholar 

  • Shinnar S., Berg A.T., Moshe S.L., O’Dell C., Alemany M., Newstein D., Kang H., Goldensohn E.S., Hauser W.A. The risk of seizure recurrence after a first unprovoked afebrile seizure in childhood: an extended follow-up. Pediatrics 1996; Aug;98(2 Pt 1):216–25

    PubMed  CAS  Google Scholar 

  • Shinnar S., Glauser T.A. Febrile seizures. J Child Neurol 2002; Jan; 17 Suppl 1:S44–52

    Article  PubMed  Google Scholar 

  • Shinnar S., Pellock J.M., Berg A.T., O’Dell C., Driscoll S.M., Maytal J., Moshe S.L., DeLorenzo R.J. Short-term outcomes of children with febrile status epilepticus. Epilepsia 2001; Jan;42(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Shorvon S. Status Epilepticus. J Neurol Neurosurg Psychiatry 2001; Jun;70 Suppl 2:1122–7

    Google Scholar 

  • Sloviter R.S. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett 1992; 137:91–96

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R.S., Dean E., Neubort S. Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J Comp Neurol 1993; Apr 15;330(3):337–51

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R.S., Dean E., Sollas A.L., Goodman J.H. Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 1996; Mar 11;366(3):516–33

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R.S., Lowenstein D.H. Heat shock protein expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. J Neurosci 1992; Aug;12(8):3004–9

    PubMed  CAS  Google Scholar 

  • Sloviter R.S., Valiquette G., Abrams G.M., Ronk E.C., Sollas A.L., Paul L.A., Neubort S. Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 1989; Jan 27;243(4890):535–8

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R.S., Damiano B.P. Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci. Lett 1981; 24:279–284

    Article  PubMed  CAS  Google Scholar 

  • Sogawa Y., Monokoshi M., Silveira D.C., Cha B.H., Cilio M.R., McCabe B.K., Liu X., Hu Y, Holmes G.L. Timing of cognitive deficits following neonatal seizures: relationship to histological changes in the hippocampus. Brain Res Dev Brain Res 2001; 26:73–83

    Article  Google Scholar 

  • Sommer C., Roth S.U., Kiessling M. Kainate-induced epilepsy alters protein expression of AMPA receptor subunits GluR1, GluR2 and AMPA receptor binding protein in the rat hippocampus. Acta Neuropathol (Berl) 2001; May; 101(5):460–8

    CAS  Google Scholar 

  • Sperber E.F., Haas K.Z., Stanton P.K., Moshe S.L. Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Brain Res Dev Brain Res 1991; 60:88–93

    Article  PubMed  CAS  Google Scholar 

  • Sperber E.F., Haas K.Z., Romero M.T., Stanton P.K. Flurothyl status epilepticus in developing rats: behavioral, electrographic histological and electrophysiological studies. Brain Res Dev Brain Res 1999; Aug 5;116(1):59–68

    Article  PubMed  CAS  Google Scholar 

  • Sperk G., Lassmannv H., Baran H., Kish S.J., Seitelberger F., Hornykiewicz O. Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 1983; 10:1301–1315

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom C.E., Thompson J.L., Holmes G.L. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res Dev Brain Res 1992; Feb 21;65(2):227–36

    Article  PubMed  CAS  Google Scholar 

  • Stern M.B. Electroconvulsive therapy in untreated Parkinson’s disease. Mov Disord 1991; 6(3):265

    Article  PubMed  CAS  Google Scholar 

  • Sullivan P.G., Dube C., Dorenbos K., Steward O., Baram T.Z. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 2003; 53(6):711–7

    Article  PubMed  CAS  Google Scholar 

  • Sutula T.P., Pitkanen A. More evidence for seizure-induced neuron loss: is hippocampal sclerosis both cause and effect of epilepsy? Neurology 2001; Jul 24;57(2):169–70

    Article  PubMed  CAS  Google Scholar 

  • Swann J., Smith K., Lee C. Neuronal activity and the establishment of normal and epileptic circuits during brain development. Int’l Rev Neurobio 2001; 45:89–118

    Article  CAS  Google Scholar 

  • Tanaka K., Simon R.P. The pattern of neuronal injury following seizures induced by intranigral kainic acid. Neurosci Lett 1994; Aug 1;176(2):205–8

    Article  PubMed  CAS  Google Scholar 

  • Tandon P., Yang Y., Das K., Holmes G.L., Stafstrom C.E. Neuroprotective effects of brain derived neurotrophic factor in seizures during development. Neuroscience 1999; 91:293–303

    Article  PubMed  CAS  Google Scholar 

  • Tang F.R., Lee W.L., Yang J., Sim M.K., Ling E.A. Expression of metabotropic glutamate receptor 1alpha in the hippocampus of rat pilocarpine model of status epilepticus. Epilepsy Res 2001; Aug;46(2): 179–89

    Article  PubMed  CAS  Google Scholar 

  • Tang F.R., Lee W.L., Yang J., Sim M.K., Ling E.A. Metabotropic glutamate receptor 8 in the rat hippocampus after pilocarpine induced status epilepticus. Neurosci Lett 2001; Mar 16;300(3):137–40

    Article  PubMed  CAS  Google Scholar 

  • Tarkka R., Paakko E., Pyhtinen J., Uhari M., Rantala H. Febrile seizures and mesial temporal sclerosis: No association in a long-term follow-up study. Neurology 2003; Jan 28;60(2):215–8

    Article  PubMed  CAS  Google Scholar 

  • Tasch E., Cendes F., Li L.M., Dubeau F., Andermann F., Arnold D.L. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol 1999;45: 568–76

    Article  PubMed  CAS  Google Scholar 

  • Theodore W.H., Bhatia S., Hatta J., Fazilat S., DeCarli C., Bookheimer S.Y., et al. Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 1999; 52:132–6

    Article  PubMed  CAS  Google Scholar 

  • Theodore W.H., DeCarli C., Gaillard W.D. Total cerebral volume is reduced in patients with localization-related epilepsy and a history of complex febrile seizures. Arch Neurol 2003; Feb;60(2):250–2

    Article  PubMed  Google Scholar 

  • Toth Z., Yan X., Haftoglou S., Ribak C., Baram T. Seizure-induced neuronal injury: Vulnerability to febrile seizures in an immature rat model. J. Neuroscience 1998; 18(11):4285–4294

    CAS  Google Scholar 

  • Towfighi J., Housman C., Mauger D., Vannucci R.C. Effect of seizures on cerebral hypoxic-ischemic lesions in immature rats. Brain Res Dev Brain Res 1999; Mar 12;113(1–2): 83–95

    Article  Google Scholar 

  • Treiman D.M., Walton N.Y., Gunawan S. Brain amino acid concentrations during specific electroencephalographic stages of status epilepticus in the rat. Epilepsy Res 1992 Suppl. 8:283–94

    Google Scholar 

  • Turski L., Ikonomidou C., Turski W.A., Bortolotto Z.A., Cavalheiro E.A. Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel model of intractable epilepsy. Synapse 1989; 3:154–171

    Article  PubMed  CAS  Google Scholar 

  • Tuunanen J., Pitkanen A. Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Res 2000; Apr;39(2):171–6

    Article  PubMed  CAS  Google Scholar 

  • Ulas J., Satou T., Ivins K.J., Kesslak J.P., Cotman C.W., Balazs R. Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia 2000; Jun;30(4):352–61

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A., Moneta D., Richichi C., Aliprandi M., Burrows S.J., Ravizza T., Perego C., De Simoni M.G. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 2002; 43 Suppl 5:30–5

    Article  PubMed  CAS  Google Scholar 

  • Wasterlain C.G., Shirasaka Y., Mazarati A.M., Spigelman I. Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Res 1996; Dec;26(1):255–65

    Article  PubMed  CAS  Google Scholar 

  • Yager J.Y., Armstrong E.A., Miyashita H., Wirrell E.C. Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci 2002; 24(5):367–81

    Article  PubMed  CAS  Google Scholar 

  • Yang Y., Tandon P., Liu Z., Sarkisian M.R., Stafstrom C.E., Holmes G.L. Synaptic reorganization following kainic acid-induced seizures during development. Brain Res Dev Brain Res 1998; 107:169–177

    Article  PubMed  CAS  Google Scholar 

  • Yang D.D., Kuan C.Y., Whitmarsh A.J., Rincon M., Zheng T.S., Davis R.J., Rakic P., Flavell R.A. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997; 389:865–870

    Article  PubMed  CAS  Google Scholar 

  • Zhang J., Lee H., Agarwala A., Wen Lou D., Xu M. DNA fragmentation factor 45 mutant mice exhibit resistance to kainic acid-induced neuronal cell death. Biochem Biophys Res Commun 2001; Aug 3;285(5):1143–9

    Article  PubMed  CAS  Google Scholar 

  • Zhang L.X., Smith M.A., Kim S.Y., Rosen J.B., Weiss S.R., Post R.M. Changes in cholecystokinin mRNA expression after amygdala kindled seizures: an in situ hybridization study. Brain Res Mol Brain Res 1996; Jan;35(1–2);278–84

    Article  PubMed  CAS  Google Scholar 

  • Zhang X., Cui S.S., Wallace A.E., Hannesson D.K., Schmued L.C., Saucier D.M., Honer W.G., Corcoran M.E. Relations between brain pathology and temporal lobe epilepsy. J Neurosci 2002; Jul 15;22(14):6052–61

    PubMed  CAS  Google Scholar 

  • Zhang X., Gelowitz D.L., Lai C.T., Boulton A.A., Yu P.H. Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70. Eur J Neurosci 1997; 9:760–769

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gale, K. (2004). Epilepsy and Seizures: Excitotoxicity or Excitotrophicity?. In: Ferrarese, C., Beal, M.F. (eds) Excitotoxicity in Neurological Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8959-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8959-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4736-1

  • Online ISBN: 978-1-4419-8959-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics