Skip to main content

Microwave Engineering Fundamentals and Spectrometer Design

  • Chapter

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 21))

Abstract

This introductory chapter is intended as a concise overview of microwave technology and the various devices that comprise a conventional electron magnetic resonance spectrometer. It is hoped that it will serve the reader with background information that is relevant to the necessary understanding of instrument operation, as well as be a precursor to the chapters that follow and describe many of the new advances in EMR spectrometer technology. The three major sections of this chapter correspond to the functional subsystems that would exist in a typical spectrometer, namely the microwave source, transmission line devices, and the receiver.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abragam, A., 1961, The Principles of Nuclear Magnetism, Oxford University Press, Oxford.

    Google Scholar 

  • Abrie, P.C.D, 1951, The Design of Impedance-Matching Networks for Radio-Frequency and Microwave Amplifiers, Artech House, Norwood.

    Google Scholar 

  • Adler, R., 1946, A Study of Locking Phenomena in Oscillators ’, Proc. IRE, 34: 351 A.,

    Article  Google Scholar 

  • Aharoni, J., 1946, Antennae, Oxford University Press, Oxford.

    Google Scholar 

  • Alger, R.S., 1968, Electron Paramagnetic Resonance: Techniques and Applications, Interscience, New York.

    Google Scholar 

  • Angelo, E.J., 1958, Electronic Circuits: A Unified Treatment of Vacuum Tubes and Transistors, McGraw-Hill, New York.

    Google Scholar 

  • Auld, B.A., 1952, Applications of Group Theory in the Study of Symmetrical Wave Guide Junctions,Microwave Laboratory Report 157, Stanford University, Palo Alto.

    Google Scholar 

  • von Aulock, W.H., 1965, Handbook of Microwave Ferrite Materials, Academic Press, New York.

    Google Scholar 

  • Baden Fuller, A. J., 1987, Ferrites at Microwave Frequencies, Peter Peregrinus, London.

    Book  Google Scholar 

  • Bailey, A.E., 1989, Microwave Measurements, 2nd ed., Peter Peregrinus, London.

    Google Scholar 

  • Barber, R.E., 1971, ‘Short Term Frequency Stability of Precision Oscillators and Frequency Generators’, Bell System Tech. J., 50: 881.

    Google Scholar 

  • Barrow, W.L., and Meiher, W.W., 1940, ‘Natural Oscillations of Electrical Cavity Resonators’, Proc. IRE, 28: 184.

    Article  Google Scholar 

  • Beatty, R.W., 1973, Applications of Waveguide and Circuit Theory to the Development of Accurate Microwave Measurements, National Bureau of Standards Monograph 137, US Government Printing Office, Washington DC.

    Google Scholar 

  • Beck, A.H.W., 1948, Velocity Modulated Thermionic Tubes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Beck, A.H.W., 1958, Space Charge Waves and Slow Electromagnetic Waves, Pergamon Press, New York.

    Google Scholar 

  • Begovich, N.A., 1966, ‘Frequency Scanning’, In: Microwave Scanning Antennas, (R.C. Hansen, ed.), Volume 3: Array Systems, Academic Press, New York, pi35.

    Google Scholar 

  • Bell, D.A., 1985, Noise in the Solid State, Wiley, New York.

    Google Scholar 

  • Bender, C.J., and Peisach, J., 1998, ‘Electron Spin Echo Modulation Spectroscopic Study of the Type I Copper Center Associated with Stellacyanin from Ż\it Rhus verniciferaŽ’, J. Chem. Soc, Faraday Trans., 94: 375.

    Article  CAS  Google Scholar 

  • Benham, W.E., 1957, The Ultra-high Frequency Performance of Receiving Tubes, McGrawHill, New York.

    Google Scholar 

  • Berlin, H.M., 1978, The Design of Phase-locked Loop Circuits with Experiments, Howard Sams, Indianapolis.

    Google Scholar 

  • Bevensee, R.M., 1964, Electromagnetic Slow Wave Systems, Wiley, New York.

    Google Scholar 

  • Bhattacharyya, A.K., Shafai, L., and Garg, R., 1991, ‘Microstrip Antenna: A Generalized Transmission Line’, In: Progress in Electromagnetic Research, Vol. 4 (J.A. Kong, ed.), Elsevier, New York. p45.

    Google Scholar 

  • Blanchard, A., 1976, Phase Locked Loops, Wiley, New York.

    Google Scholar 

  • Bleaney, B., and Stevens, K.W.H., 1953, ‘Paramagnetic Resonance’, Rep. Prog. Phys., 16: 108.

    Article  Google Scholar 

  • Bosch, B.G., and Engelmann, R.W.H., 1975, Gunn-Effect Electronics, Wiley, New York.

    Google Scholar 

  • Bradley, E.H., 1956, ‘Design and Development of Strip Line Filters ’, IRE Trans., MTT-4:86.

    Article  Google Scholar 

  • Bramley, R., and Strach, S.J., 1983, ‘Electron Paramagnetic Resonance at Zero Magnetic Field‘, Chem. Rev., 83: 49.

    Article  CAS  Google Scholar 

  • Bronwell, A.B., and Beam, R.E., 1947, Theory and Application of Microwaves, McGraw-Hill, New York.

    Google Scholar 

  • Bruin, F., 1961, ‘The Autodyne as Applied to Paramagnetic Resonance’, In: Advances in Electronics and Electron Physics,Vol. 15 (L. Marton, ed.), Academic Press, New York. p327.

    Chapter  Google Scholar 

  • Carroll, J.E., 1970, Hot Electron Microwave Generation, Edward Arnold, London.

    Google Scholar 

  • Casper, S., 1963, ‘Bolometer Characteristics’, Microwaves, 2(12): 56.

    Google Scholar 

  • Caulton, M., Hughes, J.J., and Sobol, H., 1966, ‘Measurements on the Properties of Microstrip Transmission Lines for Microwave Integrated Circuits’, RCA RevŽ 27: 377.

    Google Scholar 

  • Chait, H.N., and Curry, T.R., 1959, ‘Y-Circulators’, J. Appl. Phys., 30: 15 S.

    Article  Google Scholar 

  • Chatterjee, R., 1988, Advanced Microwave Engineering: Special Advanced Topics, Ellis Horwood, Chichester.

    Google Scholar 

  • Christen, P., Baude, A., and Giinthard, Hs.H., 1972, ‘Backward Diodes as Sensitive Detectors for Microwave pectroscopy’, Rev. Sci. Instrum., 43: 349.

    Article  Google Scholar 

  • Chronos Group, 1994, Frequency Measurement and Control, Chapman & Hall, London.

    Google Scholar 

  • Clarricoats, P.J.B., 1961, Microwave Ferrites, Wiley, New York.

    Google Scholar 

  • Cleeton, C.E., and Williams, N.H., 1934, ‘Electromagnetic Waves of 1.1 cm Wavelength and the Absorption Spectrum of Ammonia’, Phys. Rev., 45: 234.

    Article  CAS  Google Scholar 

  • Collin, R.E., 1966, Foundations for Microwave Engineering, McGraw-Hill, New York.

    Google Scholar 

  • Cook, A.B., and Liff, A.A., 1968, Frequency Modulation Receivers, Prentice-Hall, Engelwood Cliffs.

    Google Scholar 

  • Cook, J.S., Kaempfner, R., and Quate, C.F., 1956, ‘Coupled Helices’, Bell System Tech. J., 35:127.

    Google Scholar 

  • Crosby, M.G., 1937, ‘Frequency Modulation Noise Characteristics’, Proc. IRE, 25: 427.

    Article  Google Scholar 

  • Czoch, R., and Francik, A., 1989, Instrumental Effects in Homodyne Electron Paramagnetic Resonance Spectrometers,Ellis Harwood, Chichester.

    Google Scholar 

  • Dammers, B.G., Haantjes, J., Otte, J., and van Suchtelen, V., 1950, Applications of the Electron Valve in Radio Receivers and Amplifiers, Volume 1: RF and IF AmplificationFrequency Changing - Determining the Tracking Curve - Parasitic Effects and Distributions due to Curvature of Valve Characteristics - Detection, N.V. Phillips, Eindoven.

    Google Scholar 

  • Dammers, B.G., Haantjes, J., Otte, J., and van Suchtelen, v., 1950, Application of the Electron Valve in Radio Receivers and Amplifiers, Volume 2: AF Amplification - The Output Stage - Power Supplies, N.V. Phillips, Eindoven.

    Google Scholar 

  • Davis, E.E., 1948, Locking Phenomena in Microwave OscillatorsŽ,MIT Research Laboratory Electrical Technology Report No. 63, Cambridge.

    Google Scholar 

  • Dawirs, H.N., 1962, ‘How to Design Impedance Matching Transformers’, Microwaves, 1(3): 22.

    Google Scholar 

  • Durling, I.N., 1995, Compact Sources of Ultrashort Pulses, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Erst, R.R., 1984, Receiving Systems Design, Artech House, Norwood.

    Google Scholar 

  • Freymann, R., and Soutif, M., 1960, La Spectroscopic Hertzienne Applique a la Chimie: Absorption Dipolaire, Rotation Moleculaire, Resonances Magnetique, Dunod, Paris.

    Google Scholar 

  • Gewartowski, J.W., and Watson, H.A., 1965, Principles of Electron Tubes, Including GridControlled Tubes, Microwave Tubes, and Gas Tubes,van Nostrand, Princeton.

    Google Scholar 

  • Gilmour, A.S., 1986, Microwave Tubes, Artech House, Norwood.

    Google Scholar 

  • Ginzton, E.L., 1957, Microwave Measurements, McGraw-Hill, New York.

    Google Scholar 

  • Gittens, J.F., 1965, Power Traveling Wave Tubes, Elsevier, New York.

    Google Scholar 

  • Golding, E.W., and Widdis, F.C., 1963, Electrical Measurements and Measuring Instruments,5th ed., Pitman, London.

    Google Scholar 

  • Goubau, G., 1961, Electromagnetic Waveguides and Cavities, Pergamon Press, New York.

    Google Scholar 

  • Gordy, W., Smith, W.V., and Trambarulo, R.F., 1953, Microwave Spectroscopy, Wiley, New York.

    Google Scholar 

  • Griemsmann, J.W.E., 1963, ‘Oversized Waveguides’, Microwaves, 2(12): 20.

    Google Scholar 

  • Grivet, P., 1965, La Resonance Paramagnetique Nucleaire: Dipolaires et Quadrupolaires, Centre Nationale Recherche Scientifique, Paris.

    Google Scholar 

  • Grivet, P., 1976, Physics of Transmission Lines at High Frequency, Academic Press, London.

    Google Scholar 

  • Groll, H., 1969, Mikrowellennesstechnik, Vieweg & Sohn, Braunschweig.

    Book  Google Scholar 

  • Groszkowski, J., 1964, Frequency of Self Oscillation, MacMillan Co., New York.

    Google Scholar 

  • Gunn, J.M., 1963, ‘Microwave Oscillations of Current in Ill-V Semiconductors’, Solid State Comm., 11: 63.

    Google Scholar 

  • Gunston, M.A.R., 1972, Microwave Transmission-Line Impedance Data, van Nostrand, London.

    Google Scholar 

  • Gupta, M.S., 1971, ‘Noise in Avalanche Transit-Time Devices’, Proc. IEEE, 59: 1674.

    Article  Google Scholar 

  • Haantjes, J.C., 1960, Classification of Electron Tubes, MacMillan, New York.

    Google Scholar 

  • Haggblom, H., 1959, ‘The Spectral Density ofAMNoise in Reflex Klystrons’, Proc. IEE, 106B: 497.

    Google Scholar 

  • Hague, B., 1971, Alternating Current Bridge Methods, 6th ed., Pitman, London.

    Google Scholar 

  • Hakki, B.W., and Irwin, J.C., 1965, ‘cw-Microwave Oscillations in GaAs’, Proc. IEEE, 53: 80.

    Article  Google Scholar 

  • Harrison, A.E., 1947, Klystron Tubes, McGraw-Hill, New York.

    Google Scholar 

  • Harvey, A.F., 1959, ‘Optical Techniques at Microwave Frequencies’, Proc. IEE, 106B: 141.

    Google Scholar 

  • Harvey, A.F., 1963, Microwave Engineering, Academic Press, New York.

    Google Scholar 

  • Helszajn, J., 1969, Principles of Microwave Ferrite Engineering, Wiley, London.

    Google Scholar 

  • Helszajn, J., 1985, YIG Resonators and Filters, Wiley, Chichester.

    Google Scholar 

  • Hilsum, C, 1962, ‘Transferred Electron Amplifiers and Oscillators’, Proc. IRE, 50: 185.

    Article  Google Scholar 

  • Horowitz, P., and Hill, W., 1989, The Art of Electronics, 2nd ed., Cambridge University Press, New York.

    Google Scholar 

  • Howe, H., 1974, Stripline Circuit Design,Artech House, Norwood.

    Google Scholar 

  • Howes, M.J., 1976, Microwave Devices: Device-Circuit Interactions, Wiley, New York.

    Google Scholar 

  • Hund, A., 1933, High Frequency Measurements, McGraw-Hill, New York.

    Google Scholar 

  • Huntoon, R.D., and Weiss, A., 1947, ‘Synchronization of Oscillators’, Proc. IRE, 35: 1415.

    Article  Google Scholar 

  • Hyde, J.S., and Froncisz, W., 1989, ‘Loop Gap Resonators’, In: Advanced EPR: Applicationsin Biology and Biochemistry, (A.J. Hoff, ed.), Elsevier, Amsterdam. p277.

    Google Scholar 

  • Ishii, T.K., 1990, Practical Microwave Electron Devices, Academic Press, San Diego.

    Google Scholar 

  • Johns, E.M.T., and Bolljahn, J.T., 1956, ‘Coupled Strip Transmission Line Filters and Directional Couplers’, IRE Trans., MTT-4:75.

    Google Scholar 

  • Kajfez, D., 1995, Q Factor, Vector Fields, Urbana.

    Google Scholar 

  • Kenney, J.M., 1980, Semiconductor Measurement Technology: Modulation Measurements and Microwave Mixers,National Bureau of Standards Document NBS 400-16, US Government Printing Office, Washington DC.

    Google Scholar 

  • Kharkovich, A. A., 1962, Nonlinear and Parametric Phenomena in Radio EngineeringRider, New York.

    Google Scholar 

  • King, R.J., 1978, Microwave Homodyne Systems,Peter Peregrinus, London.

    Google Scholar 

  • Kochelaev, B.I., and Yablokov, Y.V., 1995, The Beginning of Paramagnetic Resonance,World Scientific, Singapore.

    Book  Google Scholar 

  • Kraus, J.D., 1950, Antennas, McGraw-Hill, New York.

    Google Scholar 

  • Lancaster, G., 1980, DC and AC Circuits, 2nd ed., Clarendon Press, Oxford.

    Google Scholar 

  • Lancaster, G., 1992, Introduction to Fields and Circuits, Oxford University Press, Oxford.

    Google Scholar 

  • Laverghetta, T., 1991, Microwave Materials and Fabrication Techniques, Artech House, Norwood.

    Google Scholar 

  • Lax, B., and Button, K.J., 1962, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New

    Google Scholar 

  • York. Leibrecht, K., 1968, ‘New Method for the Measurement of the Q Factor of Cavities and itsApplication to Research in Solid State Physics’, Rev. Sci. Instrum. 39: 1919.

    Article  Google Scholar 

  • Lewin, L., 1959, ‘Phase Measurements Through Tapered Junctions’, Proc. IEE, 106B: 495.

    Google Scholar 

  • Lubkin, Y.J., 1963, ‘Diode Mixers’, Microwaves, 2(6): 34.

    Google Scholar 

  • Malherbe, J.A.G., 1979, Microwave Transmission Line Filters, Artech House, Norwood.

    Google Scholar 

  • Manassewitch, V., 1987, Frequency Synthesizers, 3rded., Wiley, New York.

    Google Scholar 

  • Marcuvitz, N., 1951, Waveguide Handbook, McGraw-Hill, New York.

    Google Scholar 

  • Marsh, J.A., 1951, ‘Measured Current Distributions on Helical Antennas’, Proc. IRE, 39: 668.

    Article  Google Scholar 

  • Matare, H.F., 1960, >‘Recent Developments in the Field of Semiconductor Devices for HighFrequency>’, In: Fortschritte der Hochfrequenztechik, (M. Strutt and F. Vilbig, eds.), Bande 5, Akademische Verlagsgesellschaft, Frankfurt. p347.

    Google Scholar 

  • Matthaei, G., Young, L., and Jones, E.M.T., 1980, Microwave Filters, Impedance Matching Networks, and Coupling Structures, Artech House, Dedham.

    Google Scholar 

  • Matthews, P.A., and Stephenson, I.M., 1968, Microwave Components, Chapman & Hall, London.

    Google Scholar 

  • Messinger, G.C., and McCoy, C.T., 1957, ‘Theory and Operation of Crystal Diodes as Mixers’, Proc. IRE, 45: 1269.

    Article  Google Scholar 

  • Montgomery, F., 1947, Techniques of Microwave Measurements, McGraw-Hill, New York.

    Google Scholar 

  • Morrison, R., 1992, Noise and Other Interfering Signals, Wiley, New York.

    Google Scholar 

  • Morse, R.A., and Beam, R.E., 1956, Proceedings of the National Electronics Conference,Inc., Chicago.

    Google Scholar 

  • Nilson, J.W., 1983, Electric Circuits, Addison-Wesley, Reading.

    Google Scholar 

  • Pettai, P., 1984, Noise in Receiving Systems, Wiley, New York.

    Google Scholar 

  • Penfield, P., and Rafuse, R.P., 1962, Varactor ApplicationsŽ, MIT Press, Cambridge.

    Google Scholar 

  • Pengelley, R.S., 1986, Microwave Field Effect Transistors - Theory, Design, and Applications, 2nded., Research Studies Press, Letchfield.

    Google Scholar 

  • Pierce, J.R., and Shepard, W.G., 1947, ‘Reflex Oscillators’, Bell System Tech. J., 26: 460.

    Google Scholar 

  • Pierce, J.R., 1951, ‘Waves in Electron Streams and Circuits’, Bell System Tech. J., 30: 626.

    Google Scholar 

  • Poole, C.P., 1967, Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques, Wiley, New York.

    Google Scholar 

  • Poole, C.P., 1983, Electron Spin Resonance. A Comprehensive Treatise on Experimental Technique, 2nded., Wiley, New York.

    Google Scholar 

  • Pound, R.V., 1948, Microwave Mixers, McGraw-Hill, New York.

    Google Scholar 

  • Pritchard, W.L., 1961, ‘Loading Effects’, In: Crossed-Field Microwave Devices,(E. Okress, ed.), Vol. 2, Academic Press, New York. p423.

    Google Scholar 

  • Ragan, G.L., 1948, Microwave Transmission Circuits, McGraw-Hill, NewYork.

    Google Scholar 

  • Read, W.T., 1958, ‘A Proposed High-Frequency Negative-Resistance Diode’, Bell SystemTech. J., 37: 401.

    Google Scholar 

  • Reich, H.J., Skalnik, J.G., Ordung, P.F., and Kraus, H.L., 1957, Microwave Principles, van Nostrand, Princeton.

    Google Scholar 

  • Reich, H.J., 1961, Functional Circuits and Oscillators, van Nostrand, Princeton.

    Google Scholar 

  • Reintjes, J.F., and Coate, G.T., 1952, Principles of Radar, McGraw-Hill, New York.

    Google Scholar 

  • Rhea, R.W., 1994, HF Filter Design and Computer Simulation, Noble Publishing, Atlanta.

    Google Scholar 

  • Ridenour, L.N., 1964, Radar System Engineering, McGraw-Hill, New York.

    Google Scholar 

  • Rider, J.F., 1937, Automatic Frequency Control, Rider, New York.

    Google Scholar 

  • Robins, W.P., 1982, Phase Noise in Signal Systems: Theory and Applications,Peter Peregrinus, London.

    Google Scholar 

  • Robinson, B.H., Thomann, H., Beth, A.H., Fajer, P., and Dalton, L.R., 1985, ‘Experimental Considerations: Instrumentation and Methodology ’, In: EPR and Advanced EPR Studies of Biological Systems(L.R. Dalton, ed.), CRC Press, Boca Raton, p1ll.

    Google Scholar 

  • Robson, P.N., 1993, ‘Microwave Receivers’, In: Handbook on Semiconductors, CompletelyRevised Edition (T.S. Moss, ed.), Vol. 4: Device Physics (C. Hilsum, ed.), Elsevier, Amsterdam, p 545.

    Google Scholar 

  • Schneider, F., and Plato, M., 1971, Elektronenspin-resonanz, Experimental Technik,K. Thiemig, Mlmchen.

    Google Scholar 

  • Schneider, M.V., 1969, ‘Microstrip Lines for Microwave Integrated Circuits’, Bell System Tech. J., 48: 1421.

    CAS  Google Scholar 

  • Schwartz, M., 1959, Information, Transmission, Modulation, and Noise. A Approach to Communication Systems, McGraw-Hill, New York.

    Google Scholar 

  • Sevin, L.J., 1965, Field Effect Transistors, McGraw-Hill, New York.

    Google Scholar 

  • Shevichik, V.N., 1963, Fundamentals of Microwave Electronics, Pergamon Press, Oxford.

    Google Scholar 

  • Siegman, A.E., 1959, Traveling Wave Techniques for Microwave Resonance Measurements, Technical Report 155-3, Signal Corps. Contract DA 36(039) SC73178, Electron Devices Laboratory, Stanford University, Palo Alto.

    Google Scholar 

  • Siegman, A.E., 1960, ‘Traveling Wave Techniques for Microwave Resonance Measurements’, In: Quantum Electronics (C.H. Townes, ed.), Columbia University Press, New York.

    Google Scholar 

  • Silvan, L., 1996, Microwave Tube TransmittersŽ, Chapman & Hall, New York.

    Google Scholar 

  • Silver, S., 1949, Microwave Antenna Theory and DesignŽ, McGraw-Hill, New York.

    Google Scholar 

  • Sinclair, G., 1948, ‘Patterns of Slotted-Cylinder Antennas’, Proc. IRE, 36: 1487.

    Article  Google Scholar 

  • Stalling, H.H., 1952, Transient Electric Currents, McGraw-Hill, New York.

    Google Scholar 

  • Slater, J.C., 1942, Microwave Transmission, McGraw-Hill, New York.

    Google Scholar 

  • Slater, J.C., 1946, ‘Microwave Electronics’, Rev. Mod. Phys., 18: 441.

    Article  Google Scholar 

  • Slater, J.C., 1950, Microwave Electronics, van Nostrand, Princeton.

    Google Scholar 

  • Smith, D.C., 1993, High Frequency Measurements and Noise in Electronic Ciruits, van Nostrand, New York.

    Google Scholar 

  • Snoller, T.C., Brown, E.R., and Lee, H.Q., 1988, ‘Microwave and Millimeter Wave Resonant Tunneling Diodes’, Lincoln Lab. J., 1: 89.

    Google Scholar 

  • Soohoo, R.F., 1960, Theory and Applications ofFerrites, Prentice-Hall, Engelwood Cliffs.

    Google Scholar 

  • Sporleder, F., and Unger, H.-G., 1979, Waveguide Tapers, Transitions, and Couplers, Peter Peregrinus, London.

    Google Scholar 

  • Strandberg, M.W.P., 1972, ‘Sensitivity of Radio Frequency Measurements in the Presence of Oscillator Noise’, Rev. Sci. Instrum., 43Ž: 307.

    Article  Google Scholar 

  • Strangeway, R.A., Ishii, T.K., and Hyde, J.S., 1988, ‘Low Phase-Noise Gunn Diode Oscillator Design’, IEEE Trans. Microwave Theory Tech., 36: 792.

    Article  Google Scholar 

  • Sugiura, T., and Sugimoto, S., 1969, ‘FM Noise Reduction ofGunn Effect Oscillators by Injection Locking’, Proc. IEEE, 57: 77.

    Article  Google Scholar 

  • Swaminathan, V., and Macrander, A.T., 1991, Materials Aspects ofGaASandlnP Based Structures, Prentice-Hall, Engelwood Cliffs.

    Google Scholar 

  • Sze, S.M., 1981, Physics of Semiconductor Devices, 2nded., Wiley, New York.

    Google Scholar 

  • Sze, S.M., 1991, Semiconducting Devices: Pioneering Papers, World Scientific, Singapore.

    Google Scholar 

  • Terman, F.E., 1934, ‘Resonant Lines in Radio Circu its’, Elect. Eng., 53: 1046.

    Google Scholar 

  • Thim, H.W., 1993, ‘Microwave Sources’, In: Handbook on Semiconductors,Completely Revised Edition (T.S. Moss, ed.), Vol. 4, Device Physics (C. Hilsum, ed.), Elsevier, Amsterdam. p475.

    Google Scholar 

  • Thomas, R.L., 1976, Practical Introduction to Impedance Matching, Artech House, Dedham.

    Google Scholar 

  • de Thomasson, M., 1962, ‘Nature of mm-Tubes’, Microwaves,1(5): 38.

    Google Scholar 

  • Thourel, L., 1964, The Use of Ferrites at Microwave Frequencies(translation from the French by J.B. Arthur), Pergamon Press, Oxford.

    Google Scholar 

  • Tice, T.E., and Kraus, J.D., 1949, ‘The Influence of Conductor Size on the Properties of Helical Beam Antennas’, Proc. IRE, 37: 1296.

    Google Scholar 

  • Tien, P.J., 1953, ‘Traveling Wave Tube Helix Impedance’, Proc. IRE, 41: 1617.

    Google Scholar 

  • Tischer, F.J., 1958, Mikrowellen-Messtechnik, Springer, Berlin.

    Book  Google Scholar 

  • Tischer, F.J., 1959, ‘Properties of the H-Guide at Microwave and Millimetre Wave Regions’, Proc. IEE, 106(B, Suppl. 13): 47.

    Google Scholar 

  • Townes, C.H., and Schawlow, A.L., 1955, Microwave Spectroscopy, McGraw-Hill, New York.

    Google Scholar 

  • Tralle, G.E., 1962, ‘Guide to Noise Figure’, Microwaves, 1(1): 22.

    Google Scholar 

  • Tsui, J.B.-Y., 1983, Microwave Receivers and Related Devices, US Department of Commerce, National Technical Information Service, PB84-108711, Washington DC.

    Google Scholar 

  • Vizmuller, P., 1987, Filters With Helical and Folded Helical Resonators, Artech House, Norwood.

    Google Scholar 

  • Volino, F., Csakvary, F., and Servoz-Gavin, P., 1968, ‘Resonant Helices and Their Application to Magnetic Resonance’, Rev. Sci. Instrum., 39: 1660.

    Article  Google Scholar 

  • Waldron, R.A., 1961, Ferrites: An Introduction for Microwave Engineers, van Nostrand, London.

    Google Scholar 

  • Walter, C.H., 1965, Traveling Wave Antennas, McGraw-Hill, New York.

    Google Scholar 

  • Watson, H.A., 1968, Microwave Semiconductor Devices and Their Circuit Application, McGraw-Hill, New York.

    Google Scholar 

  • Welsby, V.G., 1960, The Theory and Design of Induction Coils, 2nded., MacDonald, London.

    Google Scholar 

  • Wilmhurst, T.H., 1968, Electron Spin Resonance Spectrometers, Plenum Press, New York.

    Google Scholar 

  • Young, L., 1972, Microwave Filters Using Parallel Coupled Lines, Artech House, Dedham.

    Google Scholar 

  • Yunik, M., 1973, Design of Modern Transistor Circuits, Prentice-Hall, Engelwood Cliffs.

    Google Scholar 

  • Zverev, A.I., 1967, Handbook of Filter Synthesis, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bender, C.J. (2004). Microwave Engineering Fundamentals and Spectrometer Design. In: Berliner, L.J., Bender, C.J. (eds) EPR: Instrumental Methods. Biological Magnetic Resonance, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8951-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8951-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4733-0

  • Online ISBN: 978-1-4419-8951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics