Skip to main content

Vasculogenesis and Angiogenesis

  • Chapter
Book cover Angiogenesis in Brain Tumors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 117))

Abstract

Two distinct mechanisms, vasculogenesis and angiogenesis implement the formation of the vascular network in the embryo. Vasculogenesis gives rise to the heart and the first primitive vascular plexus inside the embryo and in its surrounding membranes, as the yolk sac circulation. Angiogenesis is responsible for the remodeling and expansion of this network. While vasculogenesis refers to in situ differentiation and growth of blood vessels from mesodermal derived hemangioblasts, angiogenesis comprises two different mechanisms: endothelial sprouting and intussusceptive microvascular growth (IMG). The sprouting process is based on endothelial cell migration, proliferation and tube formation. IMG divides existing vessel lumens by formation and insertion of tissue folds and columns of interstitial tissue into the vessel lumen. The latter are termed interstitial or intervascular tissue structures (ITSs) and tissue pillars or posts. Intussusception also includes the establishment of new vessels by in situ loop formation in the wall of large veins. The molecular regulation of these distinct mechanisms is discussed in respect to the most important positive regulators, VEGF and its receptors flk-1 (KDR) and flt-1, the Angiopoietin/tie system and the ephrin-B/EpH-B system. The cellular mechanisms and the molecular regulation of angiogenesis in the pathological state are summarized and the differences of physiological and pathological angiogenesis elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: Two distinct morphogenetic mechanisms establish the embryonic vascular pattern. J. Exp. Zool. 251: 224–2331, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Coffin JD, Harrison J, Schwartz S, Heimark R. Angioblast differentiation and morpho-genesis of the vascular endothelium in the mouse embryo. Dev. Biol. 148: 51–62, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Miquerol L, Gertsenstein M, Harpal K, Rossant J, Nagy A. Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev. Biol. 212: 307–322, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Patan S, Heanni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorio-allantoic membrane (CAM): Pillar formation by folding of the capillary wall. Microvasc. Res. 51: 80–98, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorio-allantoic membrane (CAM): Pillar formation by capillary fusion. Microvasc. Res. 53: 33–52, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc. Res. 56: 1–21, 1998.

    Article  PubMed  CAS  Google Scholar 

  7. Risau W. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. In: Feinberg RN, Sherer GK, Auerbach R (eds). The development of the vascular system. Issues Biomed., Karger, Basel 14: 58–68, 1991.

    Google Scholar 

  8. Risau W. Mechanisms of angiogenesis. Nature 386: 671–674, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. His W. Untersuchungen über die erste Anlage des Wirbelthierleibes. Leipzig, 1868.

    Google Scholar 

  10. Reagan FP. Vascularization phenomena in fragments of embryonic bodies completely isolated from yolk-sac blastoderm. Anat. Rec. 9: 329–341, 1915.

    Article  Google Scholar 

  11. Stockard GR. The origin of blood and vascular endothelium in embryos without a circulation of the blood and in the normal embryo. Am. J. Anat. 18: 227–327, 1915.

    Article  Google Scholar 

  12. Sabin FR. Studies on the origin of blood-vessels and of red blood-corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contributions to Embryology 36: 213–259, 1920.

    Google Scholar 

  13. Risau W, Flamme I. Vasculogenesis. Annu. Rev. Cell Dev. Biol.11: 73–91, 1995.

    Article  CAS  Google Scholar 

  14. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck CA. Vasculogenesis in the early quail blastodisc as studied with a monclonal antibody recognizing endothelial cells. Development 100: 339–349, 1987.

    PubMed  CAS  Google Scholar 

  15. Pardanaud L, Yassine F, Dieterlen-Lièvre F. Relationship between vasculogenesis, angiogenesis and hematopoiesis during avian ontogeny. Development 105: 473–485, 1989.

    PubMed  CAS  Google Scholar 

  16. Sabin FR. Origin and development of the primitive vessels of the chick and of the pig. Contrib. Embryol. Carnegie Inst. Publ. Wash. 6: 61–124, 1917.

    Google Scholar 

  17. Poole TJ, Coffin D. Morphogenetic mechanisms in avian vascular development. In: Feinberg, RN, Sherer GK, Auerbach R (eds). The development of the vascular system. Issues Biomed., Karger, Basel 14: 25–36, 1991.

    Google Scholar 

  18. Noden DM. The formation of avian embryonic blood vessels. Am. Rev. Respir. Dis. 140: 1097–1103, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Le Douarin NM. Cell migration in embryos. Cell 38: 353–360, 1984.

    Article  PubMed  Google Scholar 

  20. Christ B, Poelmann RE, Mentink MMT, Gittenberger-De Groot AC. Vascular endothelial cells migrate centripetally within the embryonic arteries. Anat. Embryol 181: 333 339, 1990.

    Google Scholar 

  21. Kurz H, Gartner T, Eggli PS, Christ B. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev. Biol. 173:133–47, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lièvre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122: 1363–1371, 1996.

    PubMed  CAS  Google Scholar 

  23. Flamme I. Is extraembryonic angiogensis in the chick embryo controlled by the endoderm? Anat. Embryo]. 180: 259–272, 1989.

    Article  CAS  Google Scholar 

  24. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neuroectodermal cell fate in the mouse embryo. Development 128: 1717–1730, 2001.

    PubMed  CAS  Google Scholar 

  25. Flamme I, Breier G, Risau W. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev. Biol. 169: 699–712, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Kremer C, Breier G, Risau W, Plate KH. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res. 57: 3852–3859, 1997.

    PubMed  CAS  Google Scholar 

  27. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in FLK-1-deficient mice. Nature 376: 62–66. 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Shalaby F, Ho J, Stanford WL, Fischer WD, Schuh AC, Schwartz L, Bernstein A, Rossant J A. requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligands suggests a paracrine regulation of murine vascular development. Dev. Dyn. 204: 228–239, 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70, 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrara N, Carver Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MMW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein L, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. Nagy A, Rossant J. Production and analysis of ES cell aggregation chimeras. In: Gene Targeting: A practical Approach (ed. A. Joyner), sec. ed., 177–206, New York, Oxford University Press, 1999.

    Google Scholar 

  34. Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127: 3941–3946, 2000.

    PubMed  CAS  Google Scholar 

  35. Dickson MC, Martin JS, Cousins FM, Kulkami AB, Karlsson S, Akhurst RJ. Defective hematopoiesis and vasculogenesis in transforming growth-factor-betal knockout mice. Development 121: 1845–1854,1995.

    PubMed  CAS  Google Scholar 

  36. Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179: 297–302, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8: 21–43, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Agah R, Prasad KS, Linnemann R, Firpo MT, Quertermous T, Dichek DA. Cardiovascular overexpression of transforming growth factor-I31 causes abnormal yolk sac vasculogenesis and early embryonic death. Circ. Res. 86: 1024–1030, 2000.

    Article  PubMed  CAS  Google Scholar 

  39. Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich III HW, Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI.. The cloche and spade-tail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197:248269, 1998.

    Google Scholar 

  40. Harris CRS. The heart and the vascular system in ancient Greek medicine. Clarendon Press, Oxford, 1973.

    Google Scholar 

  41. Fülleborn F. Beiträge zur Entwicklung der Allantois der Vögel. Inaug. Diss., Francke, Berlin, 1895.

    Google Scholar 

  42. Danchakoff V. The position of the respiratory vascular net in the allantois of the chick. Am. J. Anat. 21: 407–420, 1917.

    Article  Google Scholar 

  43. Clark ER. Studies on the growth of blood vessels, by observation of living tadpoles and by experiments on chick embryos. Anat. Rec. 9: 67–68, 1915.

    Google Scholar 

  44. Clark ER. Studies on the growth of blood-vessels in the tail of the frog larva - by observation and experiment on the living animal. Am. J. Anat. 23: 37–88, 1918.

    Article  Google Scholar 

  45. Clark ER, Clark EL: Microscopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat. 64: 251–299, 1939.

    Article  Google Scholar 

  46. Ausprunk D, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14: 53–65, 1977.

    Article  PubMed  CAS  Google Scholar 

  47. Gimbrone MA Jr., Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: an experimental model using the rat cornea. J. Natl. Cancer Inst. 52: 413–427, 1974.

    PubMed  Google Scholar 

  48. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46: 467–473, 1986.

    PubMed  CAS  Google Scholar 

  49. Short RHD. Alveolar epithelium in relation to growth of the lung. Philos. Trans. R. Soc. London Ser. B 235: 35–87, 1950.

    Article  Google Scholar 

  50. Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat. Rec. 216: 154–164, 1986.

    Article  PubMed  CAS  Google Scholar 

  51. Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat. Rec. 228: 35–45, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Van Groningen JP, Wenink ACG, Testers LHM. Myocardial capillaries: Increase in number by splitting of existing vessels. Anat. Embryol. 184: 65–70, 1991.

    Article  PubMed  Google Scholar 

  53. Patan S, Alvarez MJ, Schittny JC, Burri PH. Intussusceptive microvascular growth: A common alternative to endothelial sprouting. Arch. Histol. Cytol. 55: 65–75, Suppl., 1992.

    Article  PubMed  Google Scholar 

  54. Patan S, Haenni B, Burri PH. Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat. Embryol. 187: 121–130, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Patan S, Munn LL, Jain RK. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvasc. Res. 51: 260–272, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Patan S, Tanda S, Roberge S, Jones RC, Jain RK, Munn LL. Vascular morphogenesis and remodeling in a human tumor xenograft. Blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circ. Res. 89:723–731, 2001.

    Article  PubMed  CAS  Google Scholar 

  57. Patan S, Munn LL, Tanda S, Roberge S, Jain RK, Jones RC. Vascular morphogenesis and remodeling in a model of tissue repair. Blood vessel formation and growth after ovariectomy and tumor implantation. Circ. Res. 89:732–739, 2001.

    Article  PubMed  CAS  Google Scholar 

  58. St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 289:1197–1202, 2000.

    Article  PubMed  CAS  Google Scholar 

  59. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos, GD. Requisite role ofAngiopoietin-1, a ligand for the TIE2 receptor during embryonic angiogenesis. Cell 87: 1171–1180, 1996.

    Article  PubMed  CAS  Google Scholar 

  60. Tardy Y, Resnick N, Nagel T, Gimbrone MA Jr, Dewey CF Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17: 3102–3106, 1997.

    CAS  Google Scholar 

  61. Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T, Gimbrone MA Jr, Resnick N. Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler. Thromb. Vasc. Biol. 18: 349–355, 1998.

    CAS  Google Scholar 

  62. Nagel T, Resnick N, Dewey CF Jr., Gimbrone MA Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19: 1825–1834, 1999.

    Article  CAS  Google Scholar 

  63. Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nature Med. 3: 158–164, 1997.

    Article  PubMed  CAS  Google Scholar 

  64. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radijewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the angiogenic TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169,1996.

    Google Scholar 

  65. Wang HU, Chen CF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741–753, 1998.

    Article  PubMed  CAS  Google Scholar 

  66. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. Roles of ephrin-B ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 3: 295–306, 1999.

    Article  Google Scholar 

  67. Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors: Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271: 5638–5646, 1996.

    Article  PubMed  CAS  Google Scholar 

  68. Carmeliet P, Ng Y-S, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard J-C, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5: 495–502, 1999.

    Article  PubMed  CAS  Google Scholar 

  69. Barleon B, Siemeister G, Martiny-Baron G, Weindel K, Herzog C, Marmé D. Vascular endothelial growth factor up-regulates its receptor fms-like kinase 1 (Flt-l) and a soluble variant of Flt-1 in human vascular endothelial cells. Cancer Res. 57: 5421–5425, 1997.

    PubMed  CAS  Google Scholar 

  70. Dumont DJ, Fong G-H, Puri MC, Gradwohl G, Alitalo K, Breitman ML. Vascularization of the mouse embryo: A study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203: 80–92, 1995.

    Article  PubMed  CAS  Google Scholar 

  71. Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K. A novel endothelial surface receptor tyrosine kinase with ex tracellularepidermal growth factor homology domains. Mol. Cell. BioI. 12: 1698–1707, 1992.

    CAS  Google Scholar 

  72. Iwama A, Hamaguchi I, Hashijama M, Murajama Y, Yasunaga K, Suda T. Molecular cloning and characterization of mouse Tie and Tek receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem. Biophys. Res. Commun. 195: 301–309, 1993.

    CAS  Google Scholar 

  73. Maisonpierre PC, Goldfarb M, Yancopoulos GD, Gao G. Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 8: 1631–1637, 1993.

    Google Scholar 

  74. Sato TN, Quin Y, Kozak CA, Audus KL. tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. USA 90: 9355–9358, 1993.

    Article  CAS  Google Scholar 

  75. Schnurch H, Risau W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119: 957–968, 1993.

    PubMed  CAS  Google Scholar 

  76. Ziegler SF, Bird TA, Schneringer KA, Schooley KA, Baum PR. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene 8: 663–670, 1993.

    PubMed  CAS  Google Scholar 

  77. Dumont DJ, Gradwohl G, Fong G-H, Puri MC, Gerstenstein M, Auerbach A, Breitman ML. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8: 1897–1909, 1994.

    Google Scholar 

  78. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Quin Y. Distinct roles of the receptor tyrosine kinases TIE1 and TIE2 in blood vessel formation. Nature 376: 70–74, 1995.

    Article  PubMed  CAS  Google Scholar 

  79. Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14: 5884–5891, 1995.

    PubMed  CAS  Google Scholar 

  80. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J. Biol. Chem. 273: 18514–18521, 1998.

    Article  PubMed  CAS  Google Scholar 

  81. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8: 529–532, 1998.

    Article  PubMed  CAS  Google Scholar 

  82. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab. Invest. 79: 213–223, 1999.

    PubMed  CAS  Google Scholar 

  83. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468–471, 1998.

    Article  PubMed  CAS  Google Scholar 

  84. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83: 233–240, 1998.

    Article  PubMed  CAS  Google Scholar 

  85. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60, 1997.

    Article  PubMed  CAS  Google Scholar 

  86. Puri MC, Partanen J, Rossant J, Bernstein A. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126: 4569–4580, 1999.

    PubMed  CAS  Google Scholar 

  87. Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266: 816–819, 1994.

    Article  PubMed  CAS  Google Scholar 

  88. Gerety SS, Anderson DJ. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129: 1397–1410, 2002.

    PubMed  CAS  Google Scholar 

  89. Kruger O, Plum A, Kim J-S, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K. Defective vascular development in connexin 45-deficient mice. Development 127: 4179–4193, 2000.

    PubMed  CAS  Google Scholar 

  90. Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11: S37–S43, 2001.

    PubMed  CAS  Google Scholar 

  91. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107: 789–800, 2001.

    Article  PubMed  CAS  Google Scholar 

  92. Franco del Amo F, Smith DE, Swiatek PJ, Gendron-Maguire M, Greenspan RJ, McMahon AP, Gridley T. Expression of Motch, a mouse homologue of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115: 737–745, 1992.

    CAS  Google Scholar 

  93. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski, J, Callahan R, Smith GH, Stark KL, Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14: 1343–1352, 2000.

    PubMed  CAS  Google Scholar 

  94. Eliceiri B. Integrin and growth factor receptor crosstalk. Circ. Res. 89: 1104–1110, 2001.

    Article  PubMed  CAS  Google Scholar 

  95. Oettgen P. Transcriptional regulation of vascular development. Circ Res 89: 380–388, 2001.

    Article  PubMed  CAS  Google Scholar 

  96. Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA. Induction of the angiogenic phenotype by Hox D3. J. Cell Biol. 139: 257–264, 1997.

    Article  PubMed  CAS  Google Scholar 

  97. Peng J, Thang L, Drysdale L, Fong G-H. The transcription factor EPAS-1lhypoxiainducible factor 2a plays an important role in vascular remodeling. Proc. Nat. Acad. Sci. 97: 8386–8391, 2000.

    Article  PubMed  CAS  Google Scholar 

  98. Yamada Y, Pannell R, Forster A, Rabbitts TH. The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasaculogenesis in mice. Proc. Nat. Acad. Sci. 97: 320–324, 2000.

    Article  PubMed  CAS  Google Scholar 

  99. Algire GH, Chalkley HW, Legallais FJ, Park HD. Vascular reaction of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neo-plastic transplants. J. Natl. Cancer Inst. 6: 73–85, 1945.

    Google Scholar 

  100. Greenblatt M, Shubik P. Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. 41: 111–124, 1968.

    PubMed  CAS  Google Scholar 

  101. Folkman J, Long DM, Becker FF. Growth and metastasis of tumor organ culture. Cancer 16: 453–467, 1963.

    Article  PubMed  CAS  Google Scholar 

  102. Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285: 11821186, 1971.

    Google Scholar 

  103. Folkman J, Watson K, Ingber DE, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61, 1989.

    Article  PubMed  CAS  Google Scholar 

  104. Good D, Polverini P, Rastinejad F, Beau M, Lemons R, Frazier W, Bouck N. A tumor suppressor-dependent inhibitor of angiogenesis immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87: 6624–6628, 1990.

    Google Scholar 

  105. Dipietro LA. Thrombospondin as a regulator of angiogenesis. In: Rosen E, Goldberg ID (eds). Regulation of angiogenesis. Springer Verlag, Berlin, New York, 295–314, 1997.

    Chapter  Google Scholar 

  106. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994.

    Article  PubMed  Google Scholar 

  107. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell: 88: 277–285, 1997.

    Article  PubMed  Google Scholar 

  108. Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruja Feldstein J, Wirth P, Gupta G, Tosato G. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188: 2349–2356, 1998.

    Article  PubMed  CAS  Google Scholar 

  109. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295: 140–143, 2002.

    Article  PubMed  CAS  Google Scholar 

  110. Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56: 345–355, 1989.

    Article  PubMed  CAS  Google Scholar 

  111. Bouck NP. Tumor angiogenesis: The role of oncogenes and tumor suppressor genes. Cancer Cells. 2: 179–185, 1990.

    PubMed  CAS  Google Scholar 

  112. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1:27–31, 1995a.

    Article  CAS  Google Scholar 

  113. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996.

    Article  PubMed  CAS  Google Scholar 

  114. Jain RK. Determinants of tumor blood flow: A review. Cancer Res. 48: 2641–2658, 1988.

    PubMed  CAS  Google Scholar 

  115. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315:1650–1659, 1986.

    Article  PubMed  CAS  Google Scholar 

  116. Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM, Dvorak HF. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 55: 376–85, 1995.

    PubMed  CAS  Google Scholar 

  117. Warren BAShubik P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch chamber. Lab. Invest. 15: 464–478, 1966.

    PubMed  CAS  Google Scholar 

  118. Hammersen F, Osterkamp-Baust U, Endrich B. Ein Beitrag zum Feinbau terminaler Strombahnen and ihrer Entstehung in bösartigen Tumoren. Mikrozirk. Forsch. Klin. 2: 15–51, Karger, Basel, 1983.

    Google Scholar 

  119. Hammersen F, Endrich B, Messmer K. The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int. J. Microcirc. Clin. Exp. 4:31–43, 1985.

    PubMed  CAS  Google Scholar 

  120. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–966, 1997.

    Article  PubMed  CAS  Google Scholar 

  121. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner MJ. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85: 221–228,1999.

    Article  PubMed  CAS  Google Scholar 

  122. Luttun A, Carmeliet G, Carmeliet P. Vascular progenitors: From biology to treatment. Trends Cardiovasc. Med. 12: 88–96, 2002.

    Article  PubMed  CAS  Google Scholar 

  123. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MAS, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7: 1194–1201, 2001.

    Article  PubMed  CAS  Google Scholar 

  124. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985, 1983.

    Article  PubMed  CAS  Google Scholar 

  125. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845, 1992.

    Article  PubMed  CAS  Google Scholar 

  126. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein T, Stern DM. Hypoxia mediated induction of acidic/basic fibroblast growth factor and platelet derived growth factor in mononuclear phagocytes stimulates growth ofhypoxic endothelial cells. Proc. Natl. Acad. Sci. USA 92: 46064610, 1995.

    Google Scholar 

  127. Folkman J. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333: 1757–1763,1995.

    Article  PubMed  CAS  Google Scholar 

  128. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Intern. 56: 794–814, 1999.

    Article  CAS  Google Scholar 

  129. Dvorak HF, Nagy JA, Feng D, Brown FL, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237: 97–132, 1999.

    Article  PubMed  CAS  Google Scholar 

  130. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844, 1993.

    Article  PubMed  CAS  Google Scholar 

  131. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative FLK-1 mutant. Nature 367: 576–579, 1994.

    Article  PubMed  CAS  Google Scholar 

  132. Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM. Dominant-negative inhibition of FLK-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56: 1615–1620, 1996.

    PubMed  CAS  Google Scholar 

  133. Kong HL, Hecht D, Song W, Kovesdi I, Hackett NR, Yayon A, Crystal, RG. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular matrix domain of flt-1 vascular endothelial growth factor receptor. Hum. Gene Ther. 9: 823–833, 1998.

    Article  PubMed  CAS  Google Scholar 

  134. Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis and mortality rate. Proc. Natl. Acad. Sci. USA 95: 8795–8800, 1998.

    Article  PubMed  CAS  Google Scholar 

  135. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc. Natl. Acad. Sci. USA 95: 8829–8834, 1998.

    Article  PubMed  CAS  Google Scholar 

  136. Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marmè D, Martiny-Baron G. Two independent mechanisms essential for tumor angiogenesis: Inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res. 59: 3185–3191, 1999.

    PubMed  CAS  Google Scholar 

  137. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science: 284: 1994–1998, 1999.

    Article  PubMed  CAS  Google Scholar 

  138. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, Tonn JC, Menger MD, Breier G. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest. 109: 777–785, 2002.

    PubMed  CAS  Google Scholar 

  139. Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528, 2002.

    Article  PubMed  CAS  Google Scholar 

  140. McCarthy MJ, Crowther M, Bell PRF, Brindle, NPJ. The endothelial receptor tyrosine kinase tie-I is upregulated by hypoxia and vascular endothelial growth factor. FEBS Letters 423: 334–338, 1998.

    Article  PubMed  CAS  Google Scholar 

  141. Korhonen J, Partanen J, Armstrong E, Vaahtokari A, Elenius K, Jaekanen M, Alitalo K. Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood 80: 2548–2555, 1992.

    PubMed  CAS  Google Scholar 

  142. Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. 90: 8915–8919, 1993.

    Article  PubMed  CAS  Google Scholar 

  143. Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF. Stable expression of angiopoietin-1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest. 82: 387–401, 2002.

    Article  PubMed  CAS  Google Scholar 

  144. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. Up-regulation of vascular endothelial growth factor expression induced by myocardial ischemia: implications for coronary angiogenesis. Cardiovasc. Res. 28: 1176–1179, 1994.

    Article  PubMed  CAS  Google Scholar 

  145. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101: 40–50, 1998.

    Article  PubMed  CAS  Google Scholar 

  146. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270: H1803–H1811, 1996.

    PubMed  CAS  Google Scholar 

  147. Shyu KG, Manor O, Magner M, Yancopoulos GD, Isner JM. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation 10: 2081–2087, 1998.

    Article  Google Scholar 

  148. Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97: 645–650, 1998.

    Article  PubMed  CAS  Google Scholar 

  149. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97: 1114–1123, 1998.

    Article  PubMed  CAS  Google Scholar 

  150. Laham RJ, Simons M, Selke F. Gene transfer for angiognensis in coronary artery disease. Annu. Rev. Med. 52: 485–502, 2001.

    Article  CAS  Google Scholar 

  151. Boehm T, Folkman F, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404–407, 1997.

    Article  PubMed  CAS  Google Scholar 

  152. O’Reilly MS, Pirie Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285: 1926–1928, 1999.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Patan, S. (2004). Vasculogenesis and Angiogenesis. In: Kirsch, M., Black, P.M. (eds) Angiogenesis in Brain Tumors. Cancer Treatment and Research, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8871-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8871-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4699-9

  • Online ISBN: 978-1-4419-8871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics