Skip to main content
  • 183 Accesses

Abstract

Polymeric supports with complexing groups are widely investigated and applied for the metal recovery from dilute solutions such as industrial fluids and waste waters.1-10 Liquid-liquid extraction, sorption, precipitation, and other methods based on two-phase distributions are used in most cases for the separation of inorganic species contained in dissolved matrices, industrial fluids, or natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. D. Pomogailo and G. I. Dzhardimalieva, Problems of a unit variability in metal-containinig polymers, Russ. Chem. Bull. 47, 2319–2337 (1998).

    Article  CAS  Google Scholar 

  2. A. W. Trochimczuk and M. Streat, Novel chelating resins with aminophosphonate ligands, Reactive Polymers 40, 205–213 (1999).

    Article  CAS  Google Scholar 

  3. E. Tsuchida and H. Nishide, Polymer-metal complexes and their catalytic activity, Adv. Polym. Sci. 24, 1–87 (1977).

    Article  CAS  Google Scholar 

  4. R. Bogoczek and J. Surowiec, Synthesis of phosphorous-containing of at itcation exchangers and their affinity toward selected cations, J. Appl.Polym. Sci. 26, 4161–4173 (1981).

    Article  CAS  Google Scholar 

  5. J. M. Frechet, Synthesis and applications of organic polymers as supports and protecting groups, Tetrahedron 37, 663–683 (1981).

    Article  CAS  Google Scholar 

  6. G. F. Vesley and V. I. Stemberg, The catalytic degradation for rapid ester synthesis, J.Org. Chem. 36, 2548–2550 (1971).

    Article  Google Scholar 

  7. S. D. Alexandratos and L. A. Hussain, Synthesis of α,-γ,-and γ-ketophosphonate polymer-supported reagents: the role of intra-ligand cooperation in the complexation of metal ions, Macromolecules 31, 3235–3238 (1998).

    Article  CAS  Google Scholar 

  8. T. Soldi, M. Pesavento, and G. Alberti, Separation of vanadium(V) and (IV) by sorption of an iminodiacetic chelating resin, Anal. Chim. Acta., 323, 27–37 (1996).

    Article  CAS  Google Scholar 

  9. H. Matsuda, Polymers based on divalent metal salts of p-aminobenzoic acid: a review, Polym. Adv. Technol. 8, 616–622 (1997).

    Article  CAS  Google Scholar 

  10. B. L. Rivas and K E. Geckeler, Synthesis and metal complexation of poly(ethyleneimine) and derivatives, Adv. Polym. Sci. 102, 171–187 (1992).

    Article  CAS  Google Scholar 

  11. Z. Matejka and Z. Zitkova, The sorption of heavy-metal cations from EDTA complexes on acrylamide resins having oligo(ethyleneimine) moieties, Reactive Polymers, 35, 81–88 (1997).

    Article  CAS  Google Scholar 

  12. W. H. Chan, S. Y. Lam-Leung, W. S. Fong and F. W. Kwan, synthesis and characterization of iminodiacetic cellulosic sorbent and its application in metal ion extraction, J. Appl. Polym. Sci. 46, 921–930 (1992).

    Article  CAS  Google Scholar 

  13. J. Lento, K. Vaaramaa, E. Vesterinen, and H. Tenhu, Uptake of zinc, nickel, and chromium by N-isopropyl acrylamide polymer gels, J. Appl. Polym. Sci. 68, 355–366 (1998).

    Article  Google Scholar 

  14. L. Jose and V. N. R. Pillai, Transition metal complexes of polymeric amino ligands derived from tri ethyleneglycol dimethacrylate crosslinked polyacrylamides, J. Appl. Polym. Sci. 60, 1855–1865 (1996).

    Article  CAS  Google Scholar 

  15. L. G.A. van de Water, F ten Hoonte, W. L. Driessen, J. Reedjik, and DC. Sherrington, Selective extraction of metal ions by azathia crown ether modified polar polymers, Inorg. Chim.Acta., 303, 77–85 (2000).

    Article  Google Scholar 

  16. B. L. Rivas, H. A. Maturana, and S. Villegas, Synthesis, characterization, and properties of an efficient and selective adsorbent to mercury(II), Polym. Bull. 39, 445–452 (1997).

    Article  CAS  Google Scholar 

  17. B. L. Rivas, in Polymeric Materials Encyclopedia, J. C. Salamone (Ed.), Volume 6, 4137–4143 (1996), CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  18. B. L. Rivas, H. A. Maturana, and S. Villegas, Adsorption behavior of metal ions by an amidoxime chelating resin, J. Appl. Polym. Sci. 77, 1994–1999 (2000).

    Article  CAS  Google Scholar 

  19. K. Geckeler, G. Lange, H. Eberhardt, and E. Bayer, Preparation and application of water-soluble polymer-metal complexes, Pure Appl.Chem. 52, 1883–1905 (1980).

    Article  CAS  Google Scholar 

  20. B. Ya. Spivakov, K. Geckeler, and E. Bayer, Liquid-phase polymer based retention-The separation of metals by ultrafiltration on polychelatogens, Nature 315, 313–315 (1980).

    Article  Google Scholar 

  21. B. Ya. Spivakov, V. M. Shkinev, and K. E. Geckeler, Separation and preconcentration of trace elements and their physicochemical forms in aqueous media using inert solid membranes, Pure Appl. Chem. 66, 632–640 (1994).

    Article  Google Scholar 

  22. G. Asman and O. Sanli, Ultrafiltration of Fe(III) solution in the presence of poly(vinyl alcohol) using modified poly(methylmethacrylate-co-methacrylic acid) membranes, J. Appl. Polym. Sci. 164, 1115–1121 (1997).

    Article  Google Scholar 

  23. F. Higashi, C. S. Cho, and H. Kakinoki, A new organic semiconducting polymer from Cu2+ chelate poly(vinyl alcohol) and iodine, J. Polym. Sci., Polym. Chem. Ed. 17, 313–318 (1979).

    Article  CAS  Google Scholar 

  24. N. Hojo, H. Shirai, and S. Hayashi, complex formation between poly(vinyl alcohol) and metallic ions in aqueous solution, J.Polym. Sci. Polym.Symp. 47, 299–307 (1979).

    Article  Google Scholar 

  25. C. Travers and J. A. Marinsky, The complexing of Ca(II), Co(II), and Zn(II) by polymethacrylic acid and polyacrylic acid, J. Polym. Sci., Polym. Symp. 47, 285–297 (1974).

    Article  CAS  Google Scholar 

  26. K. Geckeler, K. Weingartner, and E. Bayer, in Polymeric Amines and Ammonium Salts, E. Goethals (Ed.), Pergamon Press, Oxford, p. 227, 1980.

    Google Scholar 

  27. E. Bayer, K. Geckeler, and K. Weingartner, Darstellung und derivatisierung von linearem polyvinylamin zur selektiven complex bindung in homogener phase, Makromol. Chem. 181, 585–593 (1980).

    Article  CAS  Google Scholar 

  28. E. Bayer, H. Eberhardt, and K. Geckeler, Polychelatogene zur anreicherung und abtrenung von metal ionen in homogener phase mit hilfe der membran-filtration, Angew. Makromol. Chem. 97, 217–230 (1981).

    Article  CAS  Google Scholar 

  29. E. Bayer, B. Ya. Spivakov, and K. Geckeler, Poly(ethyleneimine) as complexing agent for separation of metal ions using membrane filtration, Polym. Bull. 13, 307–311 (1985).

    CAS  Google Scholar 

  30. E. Bayer, H. Eberhardt, P. Grathwohl, and K. Geckeler, Soluble polychelatogen for separation of actinide ions by membrane filtration, Israel J. Chem. 26, 40–47 (1985).

    CAS  Google Scholar 

  31. K. E. Geckeler, E. Bayer, B. Ya. Spivakov, V.M. Shkinev, and G. A. Voroveba, Liquid-phse polymer-based retention, a new method for separation and preconcentration of elements, Anal.Chim. Acta., 189, 285–292 (1986).

    Article  CAS  Google Scholar 

  32. V. M. Shkinev, G. A. Voroveba, B. Ya. Spivakov, K. E. Geckeler, and E. Bayer, Enrichment of arsenic and its separation from other elements by liquid-phase polymer-based retention, Sep. Sci. Technol. 22, 2165–2173 (1987).

    Article  CAS  Google Scholar 

  33. V. M. Shkinev, B. Ya. Spivakov, K. E. Geckeler, and E. Bayer, Determination of trace heavy metals in waters by atomic-absorption spectrometry after preconcentration by liquid-phase polymer based retention, Talanta 36, 861–863 (1989).

    Article  CAS  Google Scholar 

  34. S. Ahamadi, B. Batchelor, and S. S. Koseoglu, The diafiltration method for the study of the binding of macromolecules to heavy metals, J. Membrane Sci. 89, 257–265 (1994).

    Article  Google Scholar 

  35. T. Tomida, T. Inoue, K. Tsuchiya, and S. Masuda, Concentration and/or removal of metal ions using a water-soluble chelating polymer and microporous hollow fiber membrane, Ind. Eng. Chem. Res. 33, 904–906 (1994).

    Article  CAS  Google Scholar 

  36. M. N. Sarbolouk, Properties of asymmetric polyimide ultrafiltration membranes. Pore size and morphology characterization, J. Appl. Polym. Sci. 29, 743–753 (1984).

    Article  Google Scholar 

  37. A. Bdair, L. Aras, and O. Sanh, Transport of sodium chloride, urea, and creatinine through membranes derived from methylmethacrylate-co-methacrylic acid and its ionomers, J. Appl. Polym. Sci. 47, 1497–1502 (1993).

    Article  CAS  Google Scholar 

  38. K. E. Geckeler, B. L. Rivas, and R. Zhou, Poly [1-(2-hydroxyethyl)aziridine] as polychelatogen for liquid phase polymer retention (LPR), Angew. Makromol. Chem. 193, 195–203 (1991).

    Article  CAS  Google Scholar 

  39. K. E. Geckeler, R. Zhou, and B.L. Rivas, Metal complexation of poly1-(2-hydroxyethyl)aziridine-co-2-methyl-2-oxazoline in aqueous solution, Angew. Makromol. Chem. 197, 107–115 (1992).

    Article  CAS  Google Scholar 

  40. K. E. Geckeler, R. Zhou, A. Fink, and B.L. Rivas, Synthesis and properties of hydrophylic polymers.III. ligand effect of the side-chains of poly(aziridines) on metal complexation in aqueous solution, J. Appl. Polym. Sci. 60, 2191–2198 (1996).

    Article  CAS  Google Scholar 

  41. K. E. Geckeler, V. M. Shkinev, and B. Ya. Spivakov, Interactions of polymer backbones and complexation of polychelatogens with methylthiourea ligand in aqueous solution, Angew. Makromol. Chem. 155, 151–161 (1993).

    Article  Google Scholar 

  42. K. E. Geckeler, R. Zhou, A. Novikov, and B. F. Myasoedov, Polymer-supported enrichment for the determination of plutonium applied to natural waters from the Chernobyl area, Naturwissenschaften, 80, 556–558 (1993).

    Article  CAS  Google Scholar 

  43. V. Palmer, R. Zhou, and K. E. Geckeler, Cetylpyridinium chloride-modified poly(ethylenimine) for the removal and separation of inorganic ions in aqueous solution, Angew. Makromol. Chem. 215, 175–188 (1994).

    Article  CAS  Google Scholar 

  44. G. del C. Pizarro, B. L. Rivas and K. E. Geckeler, Metal complexing properties of water-soluble poly(N-maleyl glycine) studied by liquid phase polymer-based retention (LPR) technique, Polym. Bull. 37, 525–530 (1996).

    Article  CAS  Google Scholar 

  45. B. L. Rivas, S. A. Pooley, and M. Soto, Copolímeros de 4-vinilpiridina con acrilamida y N,N′-dimetilacrilamida. Síntesis y caracterización, Bol. Soc. Chil. Quím. 41, 409–414 (1996).

    CAS  Google Scholar 

  46. G. del C. Pizarro, B. L. Rivas, and K. E. Geckeler, Preparation and characterization of water soluble copolymers of maleyl glycine with acrylic monomers, J. Macromol. Sci. Pure Appl. Chem. A34, 854–864 (1997).

    Google Scholar 

  47. B. L. Rivas, S. A. Pooley, M. Soto, and K. E. Geckeler, Synthesis, characterization and polychelatogenic properties of poly(acrylic acid-co-acrylamide), J. Polym. Sci. Part A. Polymer Chem. 35, 2461–2467 (1997).

    Article  CAS  Google Scholar 

  48. G. del C. Pizarro, O. Marambio, B. L. Rivas, and K. E. Geckeler, Interactions of the water-soluble poly(N-maleylglycine-co-acrylic acid) as polychelatogen with metal ions in aqueous solution, J. Macromol. Sci.-Pure Appl. Chem. A34, 1483–1491 (1997).

    Google Scholar 

  49. B. L. Rivas and I. Moreno-Villoslada, Analysis of the retention profiles of poly(acrylic acid) with Co(II) and Ni(II), Polym. Bull. 34, 656–660 (1997).

    Article  Google Scholar 

  50. B. L. Rivas, S. A. Pooley, M. Soto, H. A. Maturana and K. E. Geckeler, Poly(N,N′dimethylacrylamide-co-acrylic acid): synthesis, characterization and application for the removal and separation of inorganic ions in aqueous solution, J. Appl. Polym. Sci. 67, 93–100 (1998).

    Article  CAS  Google Scholar 

  51. B. L.Rivas and I. Moreno-Villoslada, Poly(sodium 4-styrene sulfonate) metal-ion interactions, J. Appl. Polym. Sci. 70, 219–225 (1998).

    Article  CAS  Google Scholar 

  52. B. L. Rivas and I. Moreno-Villoslada, poly[acrylamide-co-1-(2-hydroxyethyl)aziridine], an efficient water-soluble polymer for selective separation of metal ions, J. Appl. Polym. Sci. 69, 817–824 (1998).

    Article  CAS  Google Scholar 

  53. B. L. Rivas and I. Moreno-Villoslada, Chelation properties of polymer complexes of poly(acrylic acid) with poly(acrylamide), and poly(acrylic acid) with poly(N,N-dimethylacrylamide), Macromol. Chem. Phys. 199, 1153–1160 (1998).

    Article  CAS  Google Scholar 

  54. G. del C. Pizarro, O. G. Marambio, B. L. Rivas and K. E. Geckeler, Application of a synthetic water-soluble poly(N-maleylglycine-co-acrylamide) as polychelatogens for inorganic ions in aqueous solutions, Polym. Bull. 41, 687–694 (1998).

    Article  CAS  Google Scholar 

  55. B. L. Rivas and I. Moreno-Villoslada, Binding of Cd++ and Na+ ions by poly(sodium 4-styrene sulfonate) analyzed by ultrafiltration and its relation with the counterion condensation theory, J. Phys. Chem. B. 102, 6994–6999 (1998).

    Article  CAS  Google Scholar 

  56. B. L. Rivas and I. Moreno-Villoslada, Evaluation of the counterion condensation theory from the metal ion distributions obtained by ultrafiltration of a system poly(sodium 4-styrene sulfonate)/Cd2+/Na+, J. Phys. Chem. B 102, 11024–11028 (1998).

    Article  CAS  Google Scholar 

  57. B. L. Rivas, S. A. Pooley, M. Soto, and K. E. Geckeler, Water-soluble copolymers of 1-vinyl-2-pyrrolidone and acrylamide derivatives. Synthesis, characterization, and metal binding capability studied by liquid-phase polymer based retention (LPR) technique, J. Appl. Polym. Sci. 72, 741–750 (1999).

    Article  CAS  Google Scholar 

  58. B. L. Rivas and I. Moreno-Villoslada, Synthesis and behavior of two copolymers of poly[(acrylamide-co-N(1-hydroxymethylacrylamide)) in ultrafiltration experiments, Polym. Bull. 44, 159–165 (2000).

    Article  CAS  Google Scholar 

  59. B. L. Rivas and E. Pereira, Obtention of poly(allylamine)-metal complexes through liquid-phase polymer based retention LPR) technique. Bol. Soc. Chil. Quím. 45, 165–171 (2000).

    CAS  Google Scholar 

  60. B. L. Rivas and I. Moreno-Villoslada, Effect of the polymer concentration on the interactions of water-soluble polymers with metal ions, Chem. Letters, 166–167 (2000).

    Google Scholar 

  61. B. L. Rivas, E. Pereira, E. Martínez and I. Moreno-Villoslada, Metal ion interactions with poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-methacrylic acid), Bol. Soc. Chil. Quím. 45, 199–205 (2000).

    CAS  Google Scholar 

  62. B. L. Rivas and E. D. Pereira, Viscosity properties of aqueous solution of poly(allylamine)-metal complexes, Polym. Bull. 47, 69–76 (2000).

    Article  Google Scholar 

  63. B. L. Rivas and I. Moreno-Villoslada, Prediction of the retention values associated to the ultrafiltration of mixtures ions and high molecular weight water-soluble polymers as a function of the initial strength, J. Membrane Sci. 178, 165–170 (2000).

    Article  CAS  Google Scholar 

  64. B. L. Rivas, S. A. Pooley, and M. Luna, Chelating properties of poly(N-acryloyl piperazine) by liquid-phase polymer-based retention (LPR) technique, Macromol. Rapid Commun. 13, 905–908 (2000).

    Article  Google Scholar 

  65. B. L. Rivas, E. Martínez, E. Pereira, and K. E. Geckeler, Synthesis, characterization, and polychelatogenic properties of poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-methacrylic acid), Polymer International 50, 456–462 (2001).

    Article  CAS  Google Scholar 

  66. B. L. Rivas, S. A. Poley, and M. Luna, Poly(N-acetyl-α-acrylic acid). Synthesis, characterization, and chelation properties through liquid-phase polymer-based retention (LPR) technique. Macromol. Rapid Commun. 22, 418–421 (2001).

    Article  CAS  Google Scholar 

  67. B. L. Rivas, S. A. Pooley, E. D. Pereira, and P. Gallegos, Liquid-phase polymer-based retention (LPR) technique to determine the maximum retention capacity of a strong polyelectrolyte for di-and trivalent cations. Polym. Bull. (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Rivas, B.L. (2003). Water-Soluble Polymers for Metal Interaction. In: Geckeler, K.E. (eds) Advanced Macromolecular and Supramolecular Materials and Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8495-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8495-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4630-2

  • Online ISBN: 978-1-4419-8495-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics