Skip to main content

Monoclonal Antibodies in Paediatric Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:

Abstract

Development of monoclonal antibodies (moAbs) for treatment of haematological malignancies is a rapidly growing field. Whereas unconjugated humanized antibodies are well tolerated and may be easily combined with chemotherapy, immunoconjugates delivering toxic compounds right into the target cells exhibit more severe side effects. Highly and selectively expressed antigens are ideal targets for antibody treatment and suitable for broad development in phase I/II and III trials in paediatric ALL. Those antigens stably expressed at the cell surface (CD19, CD52) are suitable for unconjugated antibodies exploiting the antibody-dependent cellular (ADCC) and the complement-dependent cytotoxicity (CDC), or for bispecific T-cell-engaging antibodies (BiTEs). Rapidly internalizing antigens (CD22, CD5 and CD7) are suitable targets for immunoconjugates directly delivering toxic agents into the target cell upon specific binding. For a variety of antigens expressed in subgroups of ALL clones only (CD20, CD33, CD2, CD3 and CD4), effective compounds are available that may be used in individual patients with refractory disease. MoAbs exhibit a completely different mechanism of anti-leukemic action compared to conventional chemotherapy and certainly will change substantially the design of treatment strategies for childhood ALL in future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497.

    PubMed  CAS  Google Scholar 

  2. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332:323–327.

    PubMed  CAS  Google Scholar 

  3. Lazar GA, Desjarlais JR, Jacinto J, Karki S, Hammond PW. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol. 2007;44:1986–1998.

    PubMed  CAS  Google Scholar 

  4. Labrijn AF, Aalberse RC, Schuurman J. When binding is enough: nonactivating antibody formats. Curr Opin Immunol. 2008;20:479–485.

    PubMed  CAS  Google Scholar 

  5. Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the ­treatment of hematologic malignancies. BioDrugs. 2009;23:1–13.

    PubMed  CAS  Google Scholar 

  6. Du X, Beers R, Fitzgerald DJ, Pastan I. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity. Cancer Res. 2008;68:6300–6305.

    PubMed  CAS  Google Scholar 

  7. Sapra P, Allen TM. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 2002;62:7190–7194.

    PubMed  CAS  Google Scholar 

  8. Gudowius S, Recker K, Laws HJ, Dirksen U, Troger A, Wieczorek U, Furlan S, Gobel U, Hanenberg H. Identification of candidate target antigens for antibody-based immunotherapy in childhood B-cell precursor ALL. Klin Padiatr. 2006;218:327–333.

    PubMed  CAS  Google Scholar 

  9. Bene MC. Immunophenotyping of acute leukemias. Immunol Lett. 2005;98:9–21.

    PubMed  CAS  Google Scholar 

  10. Preijers FW, Tax WJ, De Witte T, Janssen A, vd Heijden H, Vidal H, Wessels JM, Capel PJ. Relationship between internalization and cytotoxicity of ricin A-chain immunotoxins. Br J Haematol. 1988;70:289–294.

    PubMed  CAS  Google Scholar 

  11. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective. Drug Discov Today. 2007;12:898–910.

    PubMed  CAS  Google Scholar 

  12. van Mirre E, Breunis WB, Geissler J, Hack CE, de Boer M, Roos D, Kuijpers TW. Neutrophil responsiveness to IgG, as determined by fixed ratios of mRNA levels for activating and inhibitory FcgammaRII (CD32), is stable over time and unaffected by cytokines. Blood. 2006;108:584–590.

    PubMed  Google Scholar 

  13. Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautes-Fridman C, Salmon JE. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531–537.

    PubMed  CAS  Google Scholar 

  14. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11–22.

    PubMed  CAS  Google Scholar 

  15. Kashii Y, Giorda R, Herberman RB, Whiteside TL, Vujanovic NL. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol. 1999;163:5358–5366.

    PubMed  CAS  Google Scholar 

  16. Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Invest. 2005;115:2914–2923.

    PubMed  CAS  Google Scholar 

  17. Michon JM, Gey A, Moutel S, Tartour E, Meresse V, Fridman W, Teillaud JL. In vivo induction of functional Fc gammaRI (CD64) on neutrophils and modulation of blood cytokine mRNA levels in cancer patients treated with G-CSF (rMetHuG-CSF). Br J Haematol. 1998;100:550–556.

    PubMed  CAS  Google Scholar 

  18. Rech J, Repp R, Rech D, Stockmeyer B, Dechant M, Niedobitek G, Gramatzki M, Valerius T. A humanized HLA-DR antibody (hu1D10, apolizumab) in combination with granulocyte colony-stimulating factor (filgrastim) for the treatment of non-Hodgkin’s lymphoma: a pilot study. Leuk Lymphoma. 2006;47:2147–2154.

    PubMed  CAS  Google Scholar 

  19. Dechant M, Bruenke J, Valerius T. HLA class II antibodies in the treatment of hematologic malignancies. Semin Oncol. 2003;30:465–475.

    PubMed  CAS  Google Scholar 

  20. Selenko N, Majdic O, Jager U, Sillaber C, Stockl J, Knapp W. Cross-priming of cytotoxic T cells promoted by apoptosis-inducing tumor cell reactive antibodies? J Clin Immunol. 2002;22:124–130.

    PubMed  CAS  Google Scholar 

  21. Selenko N, Maidic O, Draxier S, Berer A, Jager U, Knapp W, Stockl J. CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia. 2001;15:1619-1626.

    PubMed  CAS  Google Scholar 

  22. Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, Mulkerrin MG. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166:2571–2575.

    PubMed  CAS  Google Scholar 

  23. Dall’Acqua WF, Cook KE, Damschroder MM, Woods RM, Wu H. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol. 2006;177:1129–1138.

    PubMed  Google Scholar 

  24. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science. 2005;310:1510–1512.

    PubMed  CAS  Google Scholar 

  25. Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR. Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther. 2008;7:2517–2527.

    PubMed  CAS  Google Scholar 

  26. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A. 2006;103:4005–4010.

    PubMed  CAS  Google Scholar 

  27. Bowles JA, Wang SY, Link BK, Allan B, Beuerlein G, Campbell MA, Marquis D, Ondek B, Wooldridge JE, Smith BJ, Breitmeyer JB, Weiner GJ. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood. 2006;108:2648–2654.

    PubMed  CAS  Google Scholar 

  28. Press OW, Howell-Clark J, Anderson S, Bernstein I. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood. 1994;83:1390–1397.

    PubMed  CAS  Google Scholar 

  29. Press OW, Hansen JA, Farr A, Martin PJ. Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res. 1988;48: 2249–2257.

    PubMed  CAS  Google Scholar 

  30. Zwaan CM, Reinhardt D, Jurgens H, Huismans DR, Hahlen K, Smith OP, Biondi A, van Wering ER, Feingold J, Kaspers GJ. Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: first clinical experiences and relation with cellular sensitivity to single agent calicheamicin. Leukemia. 2003;17:468–470.

    PubMed  CAS  Google Scholar 

  31. Linenberger ML, Hong T, Flowers D, Sievers EL, Gooley TA, Bennett JM, Berger MS, Leopold LH, Appelbaum FR, Bernstein ID. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood. 2001;98:988–994.

    PubMed  CAS  Google Scholar 

  32. Arditti FD, Rabinkov A, Miron T, Reisner Y, Berrebi A, Wilchek M, Mirelman D. Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate. Mol Cancer Ther. 2005;4:325–331.

    PubMed  CAS  Google Scholar 

  33. Press OW, Shan D, Howell-Clark J, Eary J, Appelbaum FR, Matthews D, King DJ, Haines AM, Hamann P, Hinman L, Shochat D, Bernstein ID. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res. 1996;56:2123–2129.

    PubMed  CAS  Google Scholar 

  34. Sharkey RM, Goldenberg DM. Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin. 2006;56:226–243.

    PubMed  Google Scholar 

  35. Meredith RF, Buchsbaum DJ. Pretargeted radioimmunotherapy. Int J Radiat Oncol Biol Phys. 2006;66:S57–59.

    PubMed  CAS  Google Scholar 

  36. Kufer P, Lutterbuse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol. 2004;22:238–244.

    PubMed  CAS  Google Scholar 

  37. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–771.

    PubMed  CAS  Google Scholar 

  38. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, Einsele H, Brandl C, Wolf A, Kirchinger P, Klappers P, Schmidt M, Riethmuller G, Reinhardt C, Baeuerle PA, Kufer P. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321:974–977.

    PubMed  CAS  Google Scholar 

  39. Loffler A, Kufer P, Lutterbuse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmuller G, Dorken B, Bargou RC. A recombinant bispecific single-chain antibody, CD19 X CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95:2098–2103.

    PubMed  CAS  Google Scholar 

  40. Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res. 2005;11:3879–3888.

    PubMed  CAS  Google Scholar 

  41. WHO Expert Committee on Specifications for Pharmaceutical Preparations. World Health Organ Tech Rep Ser. 2008:1–138.

    Google Scholar 

  42. Rodig SJ, Abramson JS, Pinkus GS, Treon SP, Dorfman DM, Dong HY, Shipp MA, Kutok JL. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res. 2006;12:7174–7179.

    PubMed  CAS  Google Scholar 

  43. Golay J, Cortiana C, Manganini M, Cazzaniga G, Salvi A, Spinelli O, Bassan R, Barbui T, Biondi A, Rambaldi A, Introna M. The sensitivity of acute lymphoblastic leukemia cells carrying the t(12;21) translocation to campath-1H-mediated cell lysis. Haematologica. 2006;91:322–330.

    PubMed  CAS  Google Scholar 

  44. Nuckel H, Frey UH, Roth A, Duhrsen U, Siffert W. Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity. Eur J Pharmacol. 2005;514:217–224.

    PubMed  Google Scholar 

  45. Mone AP, Cheney C, Banks AL, Tridandapani S, Mehter N, Guster S, Lin T, Eisenbeis CF, Young DC, Byrd JC. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia. 2006;20:272–279.

    PubMed  CAS  Google Scholar 

  46. Gribben JG, Hallek M. Rediscovering alemtuzumab: current and emerging therapeutic roles. Br J Haematol. 2009;144:818–831.

    PubMed  CAS  Google Scholar 

  47. Keating M, Coutre S, Rai K, Osterborg A, Faderl S, Kennedy B, Kipps T, Bodey G, Byrd JC, Rosen S, Dearden C, Dyer MJ, Hillmen P. Management guidelines for use of alemtuzumab in B-cell chronic lymphocytic leukemia. Clin Lymphoma. 2004;4:220–227.

    PubMed  CAS  Google Scholar 

  48. Kennedy-Nasser AA, Bollard CM, Myers GD, Leung KS, Gottschalk S, Zhang Y, Liu H, Heslop HE, Brenner MK, Krance RA. Comparable outcome of alternative donor and matched sibling donor hematopoietic stem cell transplant for children with acute lymphoblastic leukemia in first or second remission using alemtuzumab in a myeloablative conditioning regimen. Biol Blood Marrow Transplant. 2008;14:1245–1252.

    PubMed  CAS  Google Scholar 

  49. Myers GD, Krance RA, Weiss H, Kuehnle I, Demmler G, Heslop HE, Bollard CM. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant. 2005;36:1001–1008.

    PubMed  CAS  Google Scholar 

  50. Shah AJ, Kapoor N, Crooks GM, Weinberg KI, Azim HA, Killen R, Kuo L, Rushing T, Kohn DB, Parkman R. The effects of Campath 1H upon graft-versus-host disease, infection, relapse, and immune reconstitution in recipients of pediatric unrelated transplants. Biol Blood Marrow Transplant. 2007;13:584–593.

    PubMed  CAS  Google Scholar 

  51. Curtis RE, Travis LB, Rowlings PA, Socie G, Kingma DW, Banks PM, Jaffe ES, Sale GE, Horowitz MM, Witherspoon RP, Shriner DA, Weisdorf DJ, Kolb HJ, Sullivan KM, Sobocinski KA, Gale RP, Hoover RN, Fraumeni JF, Jr., Deeg HJ. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94:2208–2216.

    PubMed  CAS  Google Scholar 

  52. De Decker M, Bacher K, Thierens H, Slegers G, Dierckx RA, De Vos F. In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol. 2008;35:599–604.

    PubMed  Google Scholar 

  53. Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003;31:311–314.

    PubMed  CAS  Google Scholar 

  54. Kostelny SA, Link BK, Tso JY, Vasquez M, Jorgensen BH, Wang H, Hall WC, Weiner GJ. Humanization and characterization of the anti-HLA-DR antibody 1D10. Int J Cancer. 2001;93:556–565.

    PubMed  CAS  Google Scholar 

  55. Stockmeyer B, Schiller M, Repp R, Lorenz HM, Kalden JR, Gramatzki M, Valerius T. Enhanced killing of B lymphoma cells by granulocyte colony-stimulating factor-primed effector cells and Hu1D10 – a humanized human leucocyte antigen DR antibody. Br J Haematol. 2002;118:959–967.

    PubMed  CAS  Google Scholar 

  56. Tawara T, Hasegawa K, Sugiura Y, Tahara T, Ishida I, Kataoka S. Fully human antibody exhibits pan-human leukocyte antigen-DR recognition and high in vitro/vivo efficacy against human leukocyte antigen-DR-positive lymphomas. Cancer Sci. 2007;98:921–928.

    PubMed  CAS  Google Scholar 

  57. Pagel JM, Orgun N, Hamlin DK, Wilbur DS, Gooley TA, Gopal AK, Park SI, Green DJ, Lin Y, Press OW. A comparative analysis of conventional and pretargeted radioimmunotherapy of B-cell lymphomas by targeting CD20, CD22, and HLA-DR singly and in combinations. Blood. 2009;113:4903–4913.

    PubMed  CAS  Google Scholar 

  58. Uckun FM, Kersey JH, Haake R, Weisdorf D, Ramsay NK. Autologous bone marrow transplantation in high-risk remission B-lineage acute lymphoblastic leukemia using a cocktail of three monoclonal antibodies (BA-1/CD24, BA-2/CD9, and BA-3/CD10) plus complement and 4-hydroperoxycyclophosphamide for ex vivo bone marrow purging. Blood. 1992;79:1094–1104.

    PubMed  CAS  Google Scholar 

  59. Hasegawa M, Fujimoto M, Poe JC, Steeber DA, Tedder TF. CD19 can regulate B lymphocyte signal transduction independent of complement activation. J Immunol. 2001;167:3190–3200.

    PubMed  CAS  Google Scholar 

  60. Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R, Desjarlais JR, Zhukovsky EA. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res. 2008;68:8049–8057.

    PubMed  CAS  Google Scholar 

  61. Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63:1424–1433.

    PubMed  CAS  Google Scholar 

  62. Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska K, Song CW, Wick MR, Myers DE, Waddick K, Ledbetter JA. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood. 1988;71:13–29.

    PubMed  CAS  Google Scholar 

  63. Tedder TF, Inaoki M, Sato S. The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997;6:107–118.

    PubMed  CAS  Google Scholar 

  64. Yazawa N, Hamaguchi Y, Poe JC, Tedder TF. Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci U S A. 2005;102:15178–15183.

    PubMed  CAS  Google Scholar 

  65. Vlasveld LT, Hekman A, Vyth-Dreese FA, Melief CJ, Sein JJ, Voordouw AC, Dellemijn TA, Rankin EM. Treatment of low-grade non-Hodgkin’s lymphoma with continuous infusion of low-dose recombinant interleukin-2 in combination with the B-cell-specific monoclonal antibody CLB-CD19. Cancer Immunol Immunother. 1995;40:37–47.

    PubMed  CAS  Google Scholar 

  66. Hekman A, Honselaar A, Vuist WM, Sein JJ, Rodenhuis S, ten Bokkel Huinink WW, Somers R, Rumke P, Melief CJ. Initial experience with treatment of human B cell lymphoma with anti-CD19 monoclonal antibody. Cancer Immunol Immunother. 1991;32:364–372.

    PubMed  CAS  Google Scholar 

  67. Grossbard ML, Lambert JM, Goldmacher VS, Spector NL, Kinsella J, Eliseo L, Coral F, Taylor JA, Blattler WA, Epstein CL, et al. Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol. 1993;11:726–737.

    PubMed  CAS  Google Scholar 

  68. Multani PS, O’Day S, Nadler LM, Grossbard ML. Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res. 1998;4:2599–2604.

    PubMed  CAS  Google Scholar 

  69. Rowland AJ, Pietersz GA, McKenzie IF. Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother. 1993;37:195–202.

    PubMed  CAS  Google Scholar 

  70. Sapra P, Allen TM. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res. 2004;10:2530–2537.

    PubMed  CAS  Google Scholar 

  71. Schwemmlein M, Stieglmaier J, Kellner C, Peipp M, Saul D, Oduncu F, Emmerich B, Stockmeyer B, Lang P, Beck JD, Fey GH. A CD19-specific single-chain immunotoxin mediates potent apoptosis of B-lineage leukemic cells. Leukemia. 2007;21:1405–1412.

    PubMed  CAS  Google Scholar 

  72. Ingle GS, Chan P, Elliott JM, Chang WS, Koeppen H, Stephan JP, Scales SJ. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008;140:46–58.

    PubMed  CAS  Google Scholar 

  73. Gerber HP, Kung-Sutherland M, Stone I, Morris-Tilden C, Miyamoto J, McCormick R, Alley SC, Okeley N, Hayes B, Hernandez-Ilizaliturri FJ, McDonagh CF, Carter PJ, Benjamin D, Grewal IS. Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood. 2009;113:4352–4361.

    PubMed  CAS  Google Scholar 

  74. Stieglmaier J, Bremer E, Kellner C, Liebig TM, ten Cate B, Peipp M, Schulze-Koops H, Pfeiffer M, Buhring HJ, Greil J, Oduncu F, Emmerich B, Fey GH, Helfrich W. Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother. 2008;57:233–246.

    PubMed  Google Scholar 

  75. Molhoj M, Crommer S, Brischwein K, Rau D, Sriskandarajah M, Hoffmann P, Kufer P, Hofmeister R, Baeuerle PA. CD19-/CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis. Mol Immunol. 2007;44:1935–1943.

    PubMed  CAS  Google Scholar 

  76. Brandl C, Haas C, d’Argouges S, Fisch T, Kufer P, Brischwein K, Prang N, Bargou R, Suzich J, Baeuerle PA, Hofmeister R. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother. 2007;56:1551–1563.

    PubMed  CAS  Google Scholar 

  77. d’Argouges S, Wissing S, Brandl C, Prang N, Lutterbuese R, Kozhich A, Suzich J, Locher M, Kiener P, Kufer P, Hofmeister R, Baeuerle PA, Bargou RC. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res. 2008;33:465–473.

    Google Scholar 

  78. Topp M, Goekbuget N, Kufer P, Zugmaier G, Degenhard E, Neumann S, Horst HA, Viardot A, Schmid M, Ottmann OG, Schmidt M, Reinhardt C, Baeuerle PA, Nagorsen D, Hoelzer D, Bargou RC. Treatment with Anti-CD19 BiTE Antibody Blinatumomab (MT103 / MEDI-538) Is Able to Eliminate Minimal Residual Disease (MRD) in Patients with B-Precursor Acute Lymphoblastic Leukemia (ALL): First Results of An Ongoing Phase II Study. ASH Annual Meeting Abstracts. 2008;112:1926.

    Google Scholar 

  79. Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H, Mentz K, Peipp M, Lang P, Oduncu F, Stockmeyer B, Fey GH. A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother. 2008;31:871–884.

    PubMed  CAS  Google Scholar 

  80. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–174.

    PubMed  CAS  Google Scholar 

  81. Walshe CA, Beers SA, French RR, Chan CH, Johnson PW, Packham GK, Glennie MJ, Cragg MS. Induction of cytosolic calcium flux by CD20 is dependent upon B Cell antigen receptor signaling. J Biol Chem. 2008;283:16971–16984.

    PubMed  CAS  Google Scholar 

  82. Tedder TF, Forsgren A, Boyd AW, Nadler LM, Schlossman SF. Antibodies reactive with the B1 molecule inhibit cell cycle progression but not activation of human B lymphocytes. Eur J Immunol. 1986;16:881–887.

    PubMed  CAS  Google Scholar 

  83. Janas E, Priest R, Wilde JI, White JH, Malhotra R. Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol. 2005;139:439–446.

    PubMed  CAS  Google Scholar 

  84. Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, Ahuja A, Shlomchik MJ, Cragg MS, Glennie MJ. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood. 2008;112:4170–4177.

    PubMed  CAS  Google Scholar 

  85. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–242.

    PubMed  CAS  Google Scholar 

  86. Rhein P, Scheid S, Ratei R, Hagemeier C, Seeger K, Kirschner-Schwabe R, Moericke A, Schrappe M, Spang R, Ludwig WD, Karawajew L. Gene expression shift towards normal B cells, decreased proliferative capacity and distinct surface receptors characterize leukemic blasts persisting during induction therapy in childhood acute lymphoblastic leukemia. Leukemia. 2007;21:897–905.

    PubMed  CAS  Google Scholar 

  87. Dworzak MN, Schumich A, Printz D, Potschger U, Husak Z, Attarbaschi A, Basso G, Gaipa G, Ratei R, Mann G, Gadner H. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112:3982–3988.

    PubMed  CAS  Google Scholar 

  88. Corbacioglu S, Eber S, Gungor T, Hummerjohann J, Niggli F. Induction of long-term ­remission of a relapsed childhood B-acute lymphoblastic leukemia with rituximab chimeric anti-CD20 monoclonal antibody and autologous stem cell transplantation. J Pediatr Hematol Oncol. 2003;25:327–329.

    PubMed  Google Scholar 

  89. Claviez A, Eckert C, Seeger K, Schrauder A, Schrappe M, Henze G, von Stackelberg A. Rituximab plus chemotherapy in children with relapsed or refractory CD20-positive B-cell precursor acute lymphoblastic leukemia. Haematologica. 2006;91:272–273.

    PubMed  Google Scholar 

  90. Morris ES, Vora A. Remission induction with single agent Rituximab in a child with multiply relapsed precursor-B ALL. Br J Haematol. 2007;139:344–345.

    PubMed  Google Scholar 

  91. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–2833.

    PubMed  CAS  Google Scholar 

  92. Attias D, Weitzman S. The efficacy of rituximab in high-grade pediatric B-cell lymphoma/leukemia: a review of available evidence. Curr Opin Pediatr. 2008;20:17–22.

    PubMed  Google Scholar 

  93. Gokbuget N, Hoelzer D. Novel antibody-based therapy for acute lymphoblastic leukemia. Best Pract Res Clin Haematol. 2006;19:701–713.

    PubMed  Google Scholar 

  94. Kiss F, Buslig J, Szegedi I, Scholtz B, Kappelmayer J, Kiss C. Early relapse after rituximab chemoimmunotherapy. Pediatr Blood Cancer. 2008;50:372–375.

    PubMed  Google Scholar 

  95. Kraal K, Schalij-Delfos N, van Buchem M, Egeler M, Ball L. Optic nerve relapse in a child with common acute lymphoblastic leukemia, treated with systemic anti-CD-20 (rituximab). Haematologica. 2005;90 Suppl:ECR24.

    Google Scholar 

  96. Seifert G, Reindl T, Lobitz S, Seeger K, Henze G. Fatal course after administration of rituximab in a boy with relapsed all: a case report and review of literature. Haematologica. 2006;91:ECR23.

    Google Scholar 

  97. Goldenberg DM, Rossi EA, Stein R, Cardillo TM, Czuczman MS, Hernandez-Ilizaliturri FJ, Hansen HJ, Chang CH. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood. 2009;113:1062–1070.

    PubMed  CAS  Google Scholar 

  98. Morschhauser F, Leonard JP, Fayad L, Coiffier B, Petillon MO, Coleman M, Schuster SJ, Dyer MJ, Horne H, Teoh N, Wegener WA, Goldenberg DM. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin’s lymphoma: phase I/II results. J Clin Oncol. 2009;27:3346–3353.

    PubMed  CAS  Google Scholar 

  99. Nishida M, Usuda S, Okabe M, Miyakoda H, Komatsu M, Hanaoka H, Teshigawara K, Niwa O. Characterization of novel murine anti-CD20 monoclonal antibodies and their comparison to 2B8 and c2B8 (rituximab). Int J Oncol. 2007;31:29–40.

    PubMed  CAS  Google Scholar 

  100. Nishida M, Teshigawara K, Niwa O, Usuda S, Nakamura T, Ralph P, Newman R, Padlan EA. Novel humanized anti-CD20 monoclonal antibodies with unique germline VH and VL gene recruitment and potent effector functions. Int J Oncol. 2008;32:1263–1274.

    PubMed  CAS  Google Scholar 

  101. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, Chan C, Parren PW, Hack CE, Dechant M, Valerius T, van de Winkel JG, Glennie MJ. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104:1793–1800.

    PubMed  CAS  Google Scholar 

  102. Hagenbeek A, Gadeberg O, Johnson P, Pedersen LM, Walewski J, Hellmann A, Link BK, Robak T, Wojtukiewicz M, Pfreundschuh M, Kneba M, Engert A, Sonneveld P, Flensburg M, Petersen J, Losic N, Radford J. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood. 2008;111:5486–5495.

    PubMed  CAS  Google Scholar 

  103. Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang CH. Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood. 2008;111:2211–2219.

    PubMed  CAS  Google Scholar 

  104. Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang CH. Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood. 2009;113:6161–6171.

    PubMed  CAS  Google Scholar 

  105. Gall JM, Davol PA, Grabert RC, Deaver M, Lum LG. T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20+ malignant B cells and bypass complement-mediated rituximab resistance in vitro. Exp Hematol. 2005;33:452–459.

    PubMed  CAS  Google Scholar 

  106. Xiong D, Xu Y, Liu H, Peng H, Shao X, Lai Z, Fan D, Yang M, Han J, Xie Y, Yang C, Zhu Z. Efficient inhibition of human B-cell lymphoma xenografts with an anti-CD20 x anti-CD3 bispecific diabody. Cancer Lett. 2002;177:29–39.

    PubMed  CAS  Google Scholar 

  107. Stanglmaier M, Faltin M, Ruf P, Bodenhausen A, Schroder P, Lindhofer H. Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti-CD20 X anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int J Cancer. 2008;123:1181–1189.

    PubMed  CAS  Google Scholar 

  108. Buhmann R, Simoes B, Stanglmaier M, Yang T, Faltin M, Bund D, Lindhofer H, Kolb HJ. Immunotherapy of recurrent B-cell malignancies after allo-SCT with Bi20 (FBTA05), a trifunctional anti-CD3 ´ anti-CD20 antibody and donor lymphocyte infusion. Bone Marrow Transplant. 2009;43:383–397.

    PubMed  CAS  Google Scholar 

  109. Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang CH. CD20-targeted tetrameric interferon-{alpha}, a novel and potent immunocytokine for the therapy of B-cell lymphomas. Blood. 2009;114(18):3864–3871.

    PubMed  CAS  Google Scholar 

  110. Wahl RL. Tositumomab and (131)I therapy in non-Hodgkin’s lymphoma. J Nucl Med. 2005;46 Suppl 1:128S–140S.

    PubMed  CAS  Google Scholar 

  111. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, Pohlman BL, Bartlett NL, Wiseman GA, Padre N, Grillo-Lopez AJ, Multani P, White CA. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–2463.

    PubMed  CAS  Google Scholar 

  112. Krishnan A, Nademanee A, Fung HC, Raubitschek AA, Molina A, Yamauchi D, Rodriguez R, Spielberger RT, Falk P, Palmer JM, Forman SJ. Phase II trial of a transplantation regimen of yttrium-90 ibritumomab tiuxetan and high-dose chemotherapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:90–95.

    PubMed  CAS  Google Scholar 

  113. Jacene HA, Filice R, Kasecamp W, Wahl RL. Comparison of 90Y-ibritumomab tiuxetan and 131I-tositumomab in clinical practice. J Nucl Med. 2007;48:1767–1776.

    PubMed  CAS  Google Scholar 

  114. Cooney-Qualter E, Krailo M, Angiolillo A, Fawwaz RA, Wiseman G, Harrison L, Kohl V, Adamson PC, Ayello J, vande Ven C, Perkins SL, Cairo MS. A phase I study of 90yttrium-ibritumomab-tiuxetan in children and adolescents with relapsed/refractory CD20-positive non-Hodgkin’s lymphoma: a Children’s Oncology Group study. Clin Cancer Res. 2007;13: 5652s–5660s.

    Google Scholar 

  115. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230:128–143.

    PubMed  CAS  Google Scholar 

  116. Tedder TF, Poe JC, Haas KM. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol. 2005;88:1–50.

    PubMed  CAS  Google Scholar 

  117. Alderson RF, Kreitman RJ, Chen T, Yeung P, Herbst R, Fox JA, Pastan I. CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res. 2009;15:832–839.

    PubMed  CAS  Google Scholar 

  118. Engel P, Nojima Y, Rothstein D, Zhou LJ, Wilson GL, Kehrl JH, Tedder TF. The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes. J Immunol. 1993;150:4719–4732.

    PubMed  CAS  Google Scholar 

  119. Carnahan J, Stein R, Qu Z, Hess K, Cesano A, Hansen HJ, Goldenberg DM. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol. 2007;44:1331–1341.

    PubMed  CAS  Google Scholar 

  120. Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, Feldman EJ, Ashe M, Schuster SJ, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Fields SZ, Cesano A, Goldenberg DM. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10:5327–5334.

    PubMed  CAS  Google Scholar 

  121. Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Cesano A, Goldenberg DM. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:3051–3059.

    PubMed  CAS  Google Scholar 

  122. Leonard JP, Schuster SJ, Emmanouilides C, Couture F, Teoh N, Wegener WA, Coleman M, Goldenberg DM. Durable complete responses from therapy with combined epratuzumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer. 2008;113:2714–2723.

    PubMed  CAS  Google Scholar 

  123. Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, Reid JM, Goldenberg DM, Wegener WA, Carroll WL, Adamson PC. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol. 2008;26:3756–3762.

    PubMed  CAS  Google Scholar 

  124. Shen GL, Li JL, Vitetta ES. Bispecific anti-CD22/anti-CD3-ricin A chain immunotoxin is cytotoxic to Daudi lymphoma cells but not T cells in vitro and shows both A-chain-mediated and LAK-T-mediated killing. J Immunol. 1994;152:2368–2376.

    PubMed  CAS  Google Scholar 

  125. Bohlen H, Manzke O, Patel B, Moldenhauer G, Dorken B, von Fliedner V, Diehl V, Tesch H. Cytolysis of leukemic B-cells by T-cells activated via two bispecific antibodies. Cancer Res. 1993;53:4310–4314.

    PubMed  CAS  Google Scholar 

  126. Bonardi MA, French RR, Amlot P, Gromo G, Modena D, Glennie MJ. Delivery of saporin to human B-cell lymphoma using bispecific antibody: targeting via CD22 but not CD19, CD37, or immunoglobulin results in efficient killing. Cancer Res. 1993;53:3015–3021.

    PubMed  CAS  Google Scholar 

  127. French RR, Hamblin TJ, Bell AJ, Tutt AL, Glennie MJ. Treatment of B-cell lymphomas with combination of bispecific antibodies and saporin. Lancet. 1995;346:223–224.

    PubMed  CAS  Google Scholar 

  128. Decker T, Oelsner M, Kreitman RJ, Salvatore G, Wang QC, Pastan I, Peschel C, Licht T. Induction of caspase-dependent programmed cell death in B-cell chronic lymphocytic leukemia by anti-CD22 immunotoxins. Blood. 2004;103:2718–2726.

    PubMed  CAS  Google Scholar 

  129. Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, FitzGerald DJ, Pastan I. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med. 2001;345:241–247.

    PubMed  CAS  Google Scholar 

  130. Kreitman RJ, Squires DR, Stetler-Stevenson M, Noel P, FitzGerald DJ, Wilson WH, Pastan I. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol. 2005;23:6719–6729.

    PubMed  CAS  Google Scholar 

  131. Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, Fitzgerald DJ, Pastan I. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res. 2010;16:1894–1903.

    Google Scholar 

  132. Dijoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia. 2007;21:2240–2245.

    PubMed  CAS  Google Scholar 

  133. DiJoseph JF, Dougher MM, Kalyandrug LB, Armellino DC, Boghaert ER, Hamann PR, Moran JK, Damle NK. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res. 2006;12:242–249.

    PubMed  CAS  Google Scholar 

  134. Vose JM, Colcher D, Gobar L, Bierman PJ, Augustine S, Tempero M, Leichner P, Lynch JC, Goldenberg D, Armitage JO. Phase I/II trial of multiple dose 131Iodine-MAb LL2 (CD22) in patients with recurrent non-Hodgkin’s lymphoma. Leuk Lymphoma. 2000;38:91–101.

    PubMed  CAS  Google Scholar 

  135. Linden O, Tennvall J, Cavallin-Stahl E, Darte L, Garkavij M, Lindner KJ, Ljungberg M, Ohlsson T, Sjogreen K, Wingardh K, Strand SE. Radioimmunotherapy using 131I-labeled anti-CD22 monoclonal antibody (LL2) in patients with previously treated B-cell lymphomas. Clin Cancer Res. 1999;5:3287s–3291s.

    PubMed  CAS  Google Scholar 

  136. Linden O, Hindorf C, Cavallin-Stahl E, Wegener WA, Goldenberg DM, Horne H, Ohlsson T, Stenberg L, Strand SE, Tennvall J. Dose-fractionated radioimmunotherapy in non-Hodgkin’s lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res. 2005;11:5215–5222.

    PubMed  CAS  Google Scholar 

  137. Mattes MJ, Sharkey RM, Karacay H, Czuczman MS, Goldenberg DM. Therapy of advanced B-lymphoma xenografts with a combination of 90Y-anti-CD22 IgG (epratuzumab) and unlabeled anti-CD20 IgG (veltuzumab). Clin Cancer Res. 2008;14:6154–6160.

    PubMed  CAS  Google Scholar 

  138. Li Y, Chen F, Putt M, Koo YK, Madaio M, Cambier JC, Cohen PL, Eisenberg RA. B cell depletion with anti-CD79 mAbs ameliorates autoimmune disease in MRL/lpr mice. J Immunol. 2008;181:2961–2972.

    PubMed  CAS  Google Scholar 

  139. Polson AG, Yu SF, Elkins K, Zheng B, Clark S, Ingle GS, Slaga DS, Giere L, Du C, Tan C, Hongo JA, Gogineni A, Cole MJ, Vandlen R, Stephan JP, Young J, Chang W, Scales SJ, Ross S, Eaton D, Ebens A. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007;110:616–623.

    PubMed  CAS  Google Scholar 

  140. Morris JC, Waldmann TA, Janik JE. Receptor-directed therapy of T-cell leukemias and lymphomas. J Immunotoxicol. 2008;5:235–248.

    PubMed  CAS  Google Scholar 

  141. Matthay KK, Abai AM, Cobb S, Hong K, Papahadjopoulos D, Straubinger RM. Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Res. 1989;49:4879–4886.

    PubMed  CAS  Google Scholar 

  142. Zhang Z, Zhang M, Ravetch JV, Goldman C, Waldmann TA. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood. 2003;102:284–288.

    PubMed  CAS  Google Scholar 

  143. Branco L, Barren P, Mao SY, Pfarr D, Kaplan R, Postema C, Langermann S, Koenig S, Johnson S. Selective deletion of antigen-specific, activated T cells by a humanized MAB to CD2 (MEDI-507) is mediated by NK cells. Transplantation. 1999;68:1588–1596.

    PubMed  CAS  Google Scholar 

  144. Adkins D, Ratanatharathorn V, Yang H, White B. Safety profile and clinical outcomes in a phase I, placebo-controlled study of siplizumab in acute graft-versus-host disease. Transplantation. 2009;88:198–202.

    PubMed  CAS  Google Scholar 

  145. Brochstein JA, Grupp S, Yang H, Pillemer SR, Geba GP. Phase-1 study of siplizumab in the treatment of pediatric patients with at least grade II newly diagnosed acute graft-versus-host disease. Pediatr Transplant. 2010;14(2):233–241.

    PubMed  CAS  Google Scholar 

  146. O’Mahony D, Morris JC, Stetler-Stevenson M, Matthews H, Brown MR, Fleisher T, Pittaluga S, Raffeld M, Albert PS, Reitsma D, Kaucic K, Hammershaimb L, Waldmann TA, Janik JE. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15:2514–2522.

    PubMed  Google Scholar 

  147. Wilson WH, National Cancer Institute, US. Siplizumab, combination chemotherapy, and rituximab in treating patients with T-cell or natural killer-cell non-hodgkin lymphoma. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). NLM identifier: NCT00832936 [cited 2009 Oct 16]; 2008.

    Google Scholar 

  148. Ledbetter JA, Schieven GL, Kuebelbeck VM, Uckun FM. Accessory receptors regulate coupling of the T-cell receptor complex to tyrosine kinase activation and mobilization of cytoplasmic calcium in T-lineage acute lymphoblastic leukemia. Blood. 1991;77:1271–1282.

    PubMed  CAS  Google Scholar 

  149. Press OW, Vitetta ES, Farr AG, Hansen JA, Martin PJ. Evaluation of ricin A-chain immunotoxins directed against human T cells. Cell Immunol. 1986;102:10–20.

    PubMed  CAS  Google Scholar 

  150. Chatenoud L, Bach JF. Resetting the functional capacity of regulatory T cells: a novel immunotherapeutic strategy to promote immune tolerance. Expert Opin Biol Ther. 2005;5 Suppl 1:S73–81.

    PubMed  CAS  Google Scholar 

  151. Gramatzki M, Burger R, Strobel G, Trautmann U, Bartram CR, Helm G, Horneff G, Alsalameh S, Jonker M, Gebhart E, et al. Therapy with OKT3 monoclonal antibody in refractory T cell acute lymphoblastic leukemia induces interleukin-2 responsiveness. Leukemia. 1995;9:382–390.

    PubMed  CAS  Google Scholar 

  152. Popma SH, Griswold DE, Li L. Anti-CD3 antibodies OKT3 and hOKT3gamma1(Ala-Ala) induce proliferation of T cells but impair expansion of alloreactive T cells; aspecifc T cell proliferation induced by anti-CD3 antibodies correlates with impaired expansion of alloreactive T cells. Int Immunopharmacol. 2005;5:155–162.

    PubMed  CAS  Google Scholar 

  153. Kaufman A, Herold KC. Anti-CD3 mAbs for treatment of type 1 diabetes. Diabetes Metab Res Rev. 2009;25:302–306.

    PubMed  CAS  Google Scholar 

  154. Leahy DJ. A structural view of CD4 and CD8. Faseb J. 1995;9:17–25.

    PubMed  CAS  Google Scholar 

  155. Knox S, Hoppe RT, Maloney D, Gibbs I, Fowler S, Marquez C, Cornbleet PJ, Levy R. Treatment of cutaneous T-cell lymphoma with chimeric anti-CD4 monoclonal antibody. Blood. 1996;87:893–899.

    PubMed  CAS  Google Scholar 

  156. Kim YH, Duvic M, Obitz E, Gniadecki R, Iversen L, Osterborg A, Whittaker S, Illidge TM, Schwarz T, Kaufmann R, Cooper K, Knudsen KM, Lisby S, Baadsgaard O, Knox SJ. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007;109:4655–4662.

    PubMed  CAS  Google Scholar 

  157. Lozano F, Simarro M, Calvo J, Vila JM, Padilla O, Bowen MA, Campbell KS. CD5 signal transduction: positive or negative modulation of antigen receptor signaling. Crit Rev Immunol. 2000;20:347–358.

    PubMed  CAS  Google Scholar 

  158. Sieber T, Schoeler D, Ringel F, Pascu M, Schriever F. Selective internalization of monoclonal antibodies by B-cell chronic lymphocytic leukemia cells. Br J Haematol. 2003;121:458–461.

    PubMed  CAS  Google Scholar 

  159. Dillman RO, Beauregard J, Shawler DL, Halpern SE, Markman M, Ryan KP, Baird SM, Clutter M. Continuous infusion of T101 monoclonal antibody in chronic lymphocytic leukemia and cutaneous T-cell lymphoma. J Biol Response Mod. 1986;5:394–410.

    PubMed  CAS  Google Scholar 

  160. Foss FM, Raubitscheck A, Mulshine JL, Fleisher TA, Reynolds JC, Paik CH, Neumann RD, Boland C, Perentesis P, Brown MR, Frincke JM, Lollo CP, Larson SM, Carrasquillo JA. Phase I study of the pharmacokinetics of a radioimmunoconjugate, 90Y-T101, in patients with CD5-expressing leukemia and lymphoma. Clin Cancer Res. 1998;4:2691–2700.

    PubMed  CAS  Google Scholar 

  161. Olsen NJ, Brooks RH, Cush JJ, Lipsky PE, St Clair EW, Matteson EL, Gold KN, Cannon GW, Jackson CG, McCune WJ, Fox DA, Nelson B, Lorenz T, Strand V. A double-blind, placebo-controlled study of anti-CD5 immunoconjugate in patients with rheumatoid arthritis. The Xoma RA Investigator Group. Arthritis Rheum. 1996;39:1102–1108.

    PubMed  CAS  Google Scholar 

  162. Przepiorka D, LeMaistre CF, Huh YO, Luna M, Saria EA, Brown CT, Champlin RE. Evaluation of anti-CD5 ricin A chain immunoconjugate for prevention of acute graft-vs.-host disease after HLA-identical marrow transplantation. Ther Immunol. 1994;1:77–82.

    PubMed  CAS  Google Scholar 

  163. Pauza ME, Doumbia SO, Pennell CA. Construction and characterization of human CD7-specific single-chain Fv immunotoxins. J Immunol. 1997;158:3259–3269.

    PubMed  CAS  Google Scholar 

  164. Flavell DJ, Warnes S, Noss A, Flavell SU. Host-mediated antibody-dependent cellular cytotoxicity contributes to the in vivo therapeutic efficacy of an anti-CD7-saporin immunotoxin in a severe combined immunodeficient mouse model of human T-cell acute lymphoblastic leukemia. Cancer Res. 1998;58:5787–5794.

    PubMed  CAS  Google Scholar 

  165. Flavell DJ, Boehm DA, Noss A, Warnes SL, Flavell SU. Therapy of human T-cell acute lymphoblastic leukemia with a combination of anti-CD7 and anti-CD38-SAPORIN immunotoxins is significantly better than therapy with each individual immunotoxin. Br J Cancer. 2001;84:571–578.

    PubMed  CAS  Google Scholar 

  166. van Oosterhout YV, van Emst L, Schattenberg AV, Tax WJ, Ruiter DJ, Spits H, Nagengast FM, Masereeuw R, Evers S, de Witte T, Preijers FW. A combination of anti-CD3 and anti-CD7 ricin A-immunotoxins for the in vivo treatment of acute graft versus host disease. Blood. 2000;95:3693–3701.

    PubMed  Google Scholar 

  167. Frankel AE, Laver JH, Willingham MC, Burns LJ, Kersey JH, Vallera DA. Therapy of patients with T-cell lymphomas and leukemias using an anti-CD7 monoclonal antibody-ricin A chain immunotoxin. Leuk Lymphoma. 1997;26:287–298.

    PubMed  CAS  Google Scholar 

  168. Karawajew L, Ruppert V, Wuchter C, Kosser A, Schrappe M, Dorken B, Ludwig WD. Inhibition of in vitro spontaneous apoptosis by IL-7 correlates with bcl-2 up-regulation, cortical/mature immunophenotype, and better early cytoreduction of childhood T-cell acute lymphoblastic leukemia. Blood. 2000;96:297–306.

    PubMed  CAS  Google Scholar 

  169. Nashan B, Light S, Hardie IR, Lin A, Johnson JR. Reduction of acute renal allograft rejection by daclizumab. Daclizumab Double Therapy Study Group. Transplantation. 1999;67:110–115.

    CAS  Google Scholar 

  170. Kreitman RJ, Bailon P, Chaudhary VK, FitzGerald DJ, Pastan I. Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-expressing human carcinoma. Blood. 1994;83:426–434.

    PubMed  CAS  Google Scholar 

  171. Foss FM. DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma. 2000;1:110-116; discussion 117.

    Google Scholar 

  172. Tanimoto M, Scheinberg DA, Cordon-Cardo C, Huie D, Clarkson BD, Old LJ. Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia. 1989;3:339–348.

    PubMed  CAS  Google Scholar 

  173. Crocker PR. Siglecs in innate immunity. Curr Opin Pharmacol. 2005;5:431–437.

    PubMed  CAS  Google Scholar 

  174. O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009;30:240–248.

    PubMed  Google Scholar 

  175. Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, Feirt N, Finn RD, Clarkson BD, Gee TS, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol. 1991;9:478–490.

    PubMed  CAS  Google Scholar 

  176. Caron PC, Dumont L, Scheinberg DA. Supersaturating infusional humanized anti-CD33 monoclonal antibody HuM195 in myelogenous leukemia. Clin Cancer Res. 1998;4: 1421–1428.

    PubMed  CAS  Google Scholar 

  177. Feldman E, Kalaycio M, Weiner G, Frankel S, Schulman P, Schwartzberg L, Jurcic J, Velez-Garcia E, Seiter K, Scheinberg D, Levitt D, Wedel N. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia. 2003;17:314–318.

    PubMed  CAS  Google Scholar 

  178. Raza A, Jurcic JG, Roboz GJ, Maris M, Stephenson JJ, Wood BL, Feldman EJ, Galili N, Grove LE, Drachman JG, Sievers EL. Complete remissions observed in acute myeloid leukemia following prolonged exposure to lintuzumab: a phase 1 trial. Leuk Lymphoma. 2009;50:1–9.

    Google Scholar 

  179. Jurcic JG, DeBlasio T, Dumont L, Yao TJ, Scheinberg DA. Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res. 2000;6:372–380.

    PubMed  CAS  Google Scholar 

  180. Feldman EJ, Brandwein J, Stone R, Kalaycio M, Moore J, O’Connor J, Wedel N, Roboz GJ, Miller C, Chopra R, Jurcic JC, Brown R, Ehmann WC, Schulman P, Frankel SR, De Angelo D, Scheinberg D. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23:4110–4116.

    PubMed  CAS  Google Scholar 

  181. Balaian L, Ball ED. Inhibition of acute myeloid leukemia cell growth by mono-specific and bi-specific anti-CD33 x anti-CD64 antibodies. Leuk Res. 2004;28:821–829.

    PubMed  CAS  Google Scholar 

  182. Larson RA, Sievers EL, Stadtmauer EA, Lowenberg B, Estey EH, Dombret H, Theobald M, Voliotis D, Bennett JM, Richie M, Leopold LH, Berger MS, Sherman ML, Loken MR, van Dongen JJ, Bernstein ID, Appelbaum FR. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–1452.

    PubMed  CAS  Google Scholar 

  183. Chevallier P, Delaunay J, Turlure P, Pigneux A, Hunault M, Garand R, Guillaume T, Avet-Loiseau H, Dmytruk N, Girault S, Milpied N, Ifrah N, Mohty M, Harousseau JL. Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. J Clin Oncol. 2008;26:5192–5197.

    PubMed  CAS  Google Scholar 

  184. Kobayashi Y, Tobinai K, Takeshita A, Naito K, Asai O, Dobashi N, Furusawa S, Saito K, Mitani K, Morishima Y, Ogura M, Yoshiba F, Hotta T, Bessho M, Matsuda S, Takeuchi J, Miyawaki S, Naoe T, Usui N, Ohno R. Phase I/II study of humanized anti-CD33 antibody conjugated with calicheamicin, gemtuzumab ozogamicin, in relapsed or refractory acute myeloid leukemia: final results of Japanese multicenter cooperative study. Int J Hematol. 2009;89:460–469.

    PubMed  CAS  Google Scholar 

  185. Candoni A, Martinelli G, Toffoletti E, Chiarvesio A, Tiribelli M, Malagola M, Piccaluga PP, Michelutti A, Simeone E, Damiani D, Russo D, Fanin R. Gemtuzumab-ozogamicin in combination with fludarabine, cytarabine, idarubicin (FLAI-GO) as induction therapy in CD33-positive AML patients younger than 65 years. Leuk Res. 2008;32:1800–1808.

    PubMed  CAS  Google Scholar 

  186. Chevallier P, Mahe B, Garand R, Talmant P, Harousseau JL, Delaunay J. Combination of chemotherapy and gemtuzumab ozogamicin in adult Philadelphia positive acute lymphoblastic leukemia patient harboring CD33 expression. Int J Hematol. 2008;88:209–211.

    PubMed  Google Scholar 

  187. Chevallier P, Prebet T, Turlure P, Hunault M, Vigouroux S, Harousseau JL, Blaise D, Ifrah N, Milpied N, Mohty M. Prior treatment with Gemtuzumab Ozogamicin and the risk of veno-occlusive disease after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45:165–170.

    PubMed  CAS  Google Scholar 

  188. Pagliaro LC, Liu B, Munker R, Andreeff M, Freireich EJ, Scheinberg DA, Rosenblum MG. Humanized M195 monoclonal antibody conjugated to recombinant gelonin: an anti-CD33 immunotoxin with antileukemic activity. Clin Cancer Res. 1998;4:1971–1976.

    PubMed  CAS  Google Scholar 

  189. Burke JM, Jurcic JG, Scheinberg DA. Radioimmunotherapy for acute leukemia. Cancer Control. 2002;9:106–113.

    PubMed  Google Scholar 

  190. Burke JM, Caron PC, Papadopoulos EB, Divgi CR, Sgouros G, Panageas KS, Finn RD, Larson SM, O’Reilly RJ, Scheinberg DA, Jurcic JG. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 2003;32:549–556.

    PubMed  CAS  Google Scholar 

  191. Chen P, Wang J, Hope K, Jin L, Dick J, Cameron R, Brandwein J, Minden M, Reilly RM. Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med. 2006;47:827–836.

    PubMed  CAS  Google Scholar 

  192. Kersemans V, Cornelissen B, Minden MD, Brandwein J, Reilly RM. Drug-resistant AML cells and primary AML specimens are killed by 111In-anti-CD33 monoclonal antibodies modified with nuclear localizing peptide sequences. J Nucl Med. 2008;49:1546–1554.

    PubMed  CAS  Google Scholar 

  193. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ, Jones CG, Rowbottom AW, Hunt LP, Green AF, Clarke E, Lankester AW, Cornish JM, Pamphilon DH, Steward CG, Oakhill A. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood. 1998;92:4072–4079.

    PubMed  CAS  Google Scholar 

  194. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A, Rosemann A, Irving J, Stam RW, Shultz LD, Harbott J, Jurgens H, Schrappe M, Pieters R, Vormoor J. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.

    PubMed  Google Scholar 

  195. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A. Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood. 2009;113:3287–3296.

    PubMed  CAS  Google Scholar 

  196. Ghielmini M. Patient benefits of maintenance immunotherapy. Leuk Res. 2006;30 Suppl 1:S22–26.

    PubMed  Google Scholar 

  197. Vidal L, Gafter-Gvili A, Leibovici L, Dreyling M, Ghielmini M, Hsu Schmitz SF, Cohen A, Shpilberg O. Rituximab maintenance for the treatment of patients with follicular lymphoma: systematic review and meta-analysis of randomized trials. J Natl Cancer Inst. 2009;101:248–255.

    CAS  Google Scholar 

  198. Moccia A, Ghielmini M. Monoclonal antibodies for the treatment of hematologic malignancies: schedule and maintenance therapy. Semin Hematol. 2008;45:75–84.

    PubMed  CAS  Google Scholar 

  199. Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G, Bugarin C, Veltroni M, Michelotto B, Ratei R, Coliva T, Valsecchi MG, Biondi A, Dworzak MN. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia. 2005;19:49–56.

    PubMed  CAS  Google Scholar 

  200. Koon HB, Severy P, Hagg DS, Butler K, Hill T, Jones AG, Waldmann TA, Junghans RP. Antileukemic effect of daclizumab in CD25 high-expressing leukemias and impact of tumor burden on antibody dosing. Leuk Res. 2006;30:190–203.

    PubMed  CAS  Google Scholar 

  201. Consolini R, Legitimo A, Rondelli R, Guguelmi C, Barisone E, Lippi A, Cantu–Rajnoldi A, Arico M, Conter V, Cocito MG, Putti MC, Pession A, Masera G, Biondi A, Basso G. Clinical relevance of CD10 expression in childhood ALL. The Italian Association for Pediatric Hematology and Oncology (AIEOP). Haematologica. 1998;83:967–973.

    PubMed  CAS  Google Scholar 

  202. Sharkey RM, Brenner A, Burton J, Hajjar G, Toder SP, Alavi A, Matthies A, Tsai DE, Schuster SJ, Stadtmauer EA, Czuczman MS, Lamonica D, Kraeber-Bodere F, Mahe B, Chatal JF, Rogatko A, Mardirrosian G, Goldenberg DM. Radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-Epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med. 2003;44:2000–2018.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arend von Stackelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this chapter

Cite this chapter

von Stackelberg, A. (2011). Monoclonal Antibodies in Paediatric Acute Lymphoblastic Leukemia. In: Saha, V., Kearns, P. (eds) New Agents for the Treatment of Acute Lymphoblastic Leukemia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8459-3_12

Download citation

Publish with us

Policies and ethics