Skip to main content

Investigation of Protein–Protein Interactions in Cancer Targeted Therapy Using Nanorobots

  • Chapter
  • First Online:

Abstract

This chapter describes the applications of nanorobots in investigating the mechanisms of rituximab’s different efficacies in the targeted therapy of B-cell lymphomas at the individual cellular/molecular level. The chapter begins with an introduction to the new challenges in the field of cancer targeted therapy, taking rituximab targeted therapy in B-cell lymphoma for example. The following section presents a detailed description of the principles and methods of single-molecule techniques based on nanorobots. Next, it presents the microfabricated pillar-based cell immobilization method and discusses how to obtain the topography of individual living mammalian suspension cells based on this immobilization method. Next, it presents how to use nanorobot indentation experiments to measure the mechanical properties of individual cells. Next, the processes of using nanorobots to measure the individual molecular binding forces and three-dimensionally visualize the distribution of CD20 proteins on the lymphoma cell surface with the probe functionalization technology are detailed. The remainder of the chapter presents the specific binding force measurements on different lymphoma patients’ cells and discusses its relation to rituximab’s variable efficacies. The intent of this chapter is to provide the practical knowledge to begin the investigations on individual cells and molecules with nanorobots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  Google Scholar 

  2. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  Google Scholar 

  3. Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297

    Article  Google Scholar 

  4. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157

    Article  Google Scholar 

  5. Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Eng J Med 359:613–626

    Article  Google Scholar 

  6. Cartron G, Watier H, Golay J, Solal-Celigny P (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104:2635–2642

    Article  Google Scholar 

  7. Lim SH, Beers SA, French RR, Johnson PWM, Glennie MJ, Cragg MS (2010) Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 95:135–143

    Article  Google Scholar 

  8. Nimmerjahn F, Ravetch JV (2007) Antibodies, Fc receptors and cancer. Curr Opin Immunol 19:239–245

    Article  Google Scholar 

  9. Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316

    Google Scholar 

  10. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  Google Scholar 

  11. Varmus H (2006) The new era in cancer research. Science 312:1162–1165

    Article  Google Scholar 

  12. Beers SA et al (2010) Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 115:5191–5201

    Article  Google Scholar 

  13. Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552

    Article  Google Scholar 

  14. Srinivas PR, Kramer BS, Srivastava S (2001) Trends in biomarker research for cancer detection. Lancet Oncol 2:698–704

    Article  Google Scholar 

  15. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3:1–10

    Article  Google Scholar 

  16. Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single-molecule study of RNA catalysis and folding. Science 288:2048–2051

    Article  Google Scholar 

  17. Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    Article  Google Scholar 

  18. Xie XS, Yu J, Yang WY (2006) Living cells as test tubes. Science 312:228–230

    Article  Google Scholar 

  19. Dufrene YF (2009) Atomic force microscopy: a powerful molecular toolkit in nanoproteomics. Proteomics 9:5400–5405

    Article  Google Scholar 

  20. Dupres V, Alsteens D, Andre G, Verbelen C, Dufrene YF (2009) Fishing single molecules on live cells. Nano Today 4:262–268

    Article  Google Scholar 

  21. Muller DJ, Dufrene YF (2011) Force nanoscopy of living cells. Curr Biol 21:R212–R216

    Article  Google Scholar 

  22. Dufrene YF, Evans E, Engel A, Helenius J, Gaub HE, Muller DJ (2011) Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods 8:123–127

    Article  Google Scholar 

  23. Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ (2007) Label-free, single-molecule detection with optical microcavities. Science 317:783–787

    Article  Google Scholar 

  24. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  Google Scholar 

  25. Yu X, Xu D, Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6:5493–5503

    Article  Google Scholar 

  26. Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398:2505–2533

    Article  Google Scholar 

  27. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  Google Scholar 

  28. Walter NG, Huang CY, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5:475–489

    Article  Google Scholar 

  29. Muller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3:261–269

    Article  Google Scholar 

  30. Sitti M (2004) Micro-and nano-scale robotics. In: Proceedings of American Control Conference, pp 1–8

    Google Scholar 

  31. Xi N, Fung CKM, Yang R, Seiffert-Sinha K, Lai KWC, Sinha AA (2010) Nanomanipulation using atomic force microscopy. IEEE Nanotechnol Mag 4(1):9–12

    Article  Google Scholar 

  32. Dong L, Nelson BJ (2007) Robotics in the small part II: nanorobotics. IEEE Robot Autom Mag 14:111–121

    Article  MATH  Google Scholar 

  33. Patel GM, Patel GC, Patel RB, Patel JK, Patel M (2006) Nanorobot: a versatile tool in nanomedicine. J Drug Target 14:63–67

    Article  Google Scholar 

  34. Freitas RA (2005) What is nanomedicine? Nanomedicine NBM 1:2–9

    Article  Google Scholar 

  35. Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine NBM 4:127–138

    Google Scholar 

  36. Hill C, Amodeo A, Joseph JV, Patel HRH (2008) Nano-and microrobotics: how far is the reality. Expert Rev Anticancer Ther 8(12):1891–1897

    Article  Google Scholar 

  37. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  38. Li G, Xi N, Yu M, Fung WK (2004) Development of augmented reality system for AFM-based nanomanipulation. IEEE-ASME Trans Mechatron 9:358–365

    Article  Google Scholar 

  39. Sitti M (2001) Survey of nanomanipulation systems. In: Proceedings of IEEE International Conference on Nanotechnology, pp 75–80

    Google Scholar 

  40. Sitti M (2003) Teleoperated and automatic nanomanipulation systems using atomic force microscope probes. Proc IEEE Conf Decis, Control, pp 2118–2123

    Google Scholar 

  41. Touhami A, Nysten B, Dufrene YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543

    Article  Google Scholar 

  42. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  Google Scholar 

  43. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 1994:415–417

    Article  Google Scholar 

  44. Fritz J, Katopodis AG, Kolbinger F, Anselmetti D (1998) Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA 95:12283–12288

    Article  Google Scholar 

  45. Dupres V et al (2005) Nanoscale mapping and functional analysis of individual adhesions on living bacteria. Nat Methods 2:515–520

    Article  Google Scholar 

  46. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93:3477–3481

    Article  Google Scholar 

  47. Stroh C, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P (2004) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci USA 101:12503–12507

    Article  Google Scholar 

  48. Ebner A et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chem 18:1176–1184

    Article  Google Scholar 

  49. Muller DJ, Helenius J, Alsteens D, Dufrene YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390

    Article  Google Scholar 

  50. Li G, Xi N, Wang DH (2005) Investigation of angiotensin II type 1 receptor by atomic force microscopy with functionalized tip. Nanomedicine NBM 1:306–312

    Google Scholar 

  51. Butt HJ, Wolff EK, Gould SAC, Northern BD, Peterson CM, Hansma PK (1990) Imaging cells with the atomic force microscope. J Struct Biol 105:54–61

    Article  Google Scholar 

  52. Deng Z, Lulevich V, Liu F, Liu G (2010) Applications of atomic force microscopy in biophysical chemistry of cells. J Phys Chem B 114:5971–5982

    Article  Google Scholar 

  53. Matzke R, Jacobson K, Radmacher M (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3:607–610

    Article  Google Scholar 

  54. Puntheeranurak T, Wildling L, Gruber HJ, Kinne RKH, Hinterdorfer P (2006) Ligands on the string:single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci 119:2960–2967

    Article  Google Scholar 

  55. Fantner GE, Barbero RJ, Gray DS, Belcher AM (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5:280–285

    Article  Google Scholar 

  56. Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68:1678–1680

    Article  Google Scholar 

  57. Dufrene YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3:1132–1138

    Article  Google Scholar 

  58. Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90:2994–3003

    Article  Google Scholar 

  59. Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky A (2007) Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J Biomech 40:1011–1023

    Article  Google Scholar 

  60. Jena BP, Cho SJ (2002) The atomic force microscope in the study of membrane fusion and exocytosis. Method Cell Biol 68:33–50

    Article  Google Scholar 

  61. Li M, Liu L, Xi N, Wang Y, Dong Z, Li G, Xiao X, Zhang W (2010) Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy. Sci China Life Sci 53:1189–1195

    Article  Google Scholar 

  62. Li M, Liu L, Xi N, Wang Y, Dong Z, Tabata O, Xiao X, Zhang W (2011) Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun 404:689–694

    Article  Google Scholar 

  63. Lee GYH, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25:111–118

    Article  Google Scholar 

  64. Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725

    Article  Google Scholar 

  65. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  Google Scholar 

  66. Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613

    Article  Google Scholar 

  67. Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA 96:921–926

    Article  Google Scholar 

  68. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535

    Article  Google Scholar 

  69. Lam WA, Rosenbluth MJ, Fletcher DA (2007) Chemotherapy exposure increases leukemia cell stiffness. Blood 109:3505–3508

    Article  Google Scholar 

  70. Martens JC, Radmacher M (2008) Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch Eur J Physiol 456:95–100

    Article  Google Scholar 

  71. Hu M, Wang J, Zhao H, Dong S, Cai J (2009) Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 42:1513–1519

    Article  Google Scholar 

  72. Cai X, Yang X, Cai J, Wu S, Chen Q (2010) Atomic force microscope-related study membrane-associated cytotoxicity in human pterygium fibroblasts induced by mitomycin C. J Phys Chem B 114:3833–3839

    Article  Google Scholar 

  73. Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90

    Article  Google Scholar 

  74. Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I (2000) Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20 expressing lymphoma cell lines. Cell Immunol 204:55–63

    Article  Google Scholar 

  75. Deans JP, Li H, Polyak MJ (2002) CD20 mediated apoptosis: signaling through lipid rafts. Immunology 107:176–182

    Article  Google Scholar 

  76. Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652

    Google Scholar 

  77. Oflazoglu E, Audoly LP (2010) Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. mAbs 2:14–19

    Google Scholar 

  78. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Google Scholar 

  79. Bezombes C et al (2004) Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104:1166–1173

    Article  Google Scholar 

  80. Unruh TL et al. (2005) Cholesterol depletion inhibits src family kinase-dependent calcium mobilization and apoptosis induced by rituximab crosslinking. Immunology 116:223–232

    Google Scholar 

  81. Janas E, Priest R, Wilde JI, White JH, Malhotra R (2005) Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol 139:439–446

    Article  Google Scholar 

  82. Kheirallah S et al (2010) Rituximab inhibits B-cell receptor signaling. Blood 115:985–994

    Article  Google Scholar 

  83. Walshe CA et al (2008) Induction of cytosolic calcium flux by CD20 is dependent upon B cell antigen receptor signaling. J Biol Chem 283:16971–16984

    Article  Google Scholar 

  84. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  Google Scholar 

  85. Shi X, Xu L, Yu J, Fang X (2009) Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB receptors HER3/HER2 by single-molecule force spectroscopy. Exp Cell Res 315:2847–2855

    Article  Google Scholar 

  86. Li M, Xiao X, Liu L, Xi N, Wang Y, Dong Z, Zhang W. Imaging and measuring the molecular force of lymphoma pathological cells using atomic force microscopy. Scanning (in press) DOI:10.1002/sca.21033

  87. Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83:3619–3625

    Article  Google Scholar 

  88. Kada G, Kienberger F, Hinterdorfer P (2008) Atomic force microscopy in bionanotechnology. Nano Today 3:12–19

    Article  Google Scholar 

  89. Muller DJ, Engel A, Amrein M (1997) Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens Bioelectron 12:867–877

    Google Scholar 

  90. Henderson RM, Schneider S, Li Q, Hornby D, White SY, Oberleithner H (1996) Imaging ROMK1 inwardly rectifying ATP-sensitive K+-channel protein using atomic force microscopy. Proc Natl Acad Sci USA 93:8756–8760

    Article  Google Scholar 

  91. Kirat KE, Burton I, Dupres V, Dufrene YF (2005) Sample preparation procedures for biological atomic force microscopy. J Microsc 218:199–207

    Article  MathSciNet  Google Scholar 

  92. Kada G et al (2001) Recognition force microscopy/spectroscopy of ion channels: applications to the skeletal muscle Ca2+ release channel (RYR1). Ultramicroscopy 86:129–137

    Article  Google Scholar 

  93. Wang H, Kutner LO, Lin M, Huang Y, Grace MJ, Lindsay SM (2008) Imaging glycosylation. J Am Chem Soc 130:8154–8155

    Article  Google Scholar 

  94. Li M, Liu L, Xi N, Wang Y, Dong Z, Li G, Xiao X, Zhang W (2011) Detecting the CD20 rituximab interaction forces using AFM single-molecule force spectroscopy. Chinese Sci Bull 56:3829–3835

    Article  Google Scholar 

  95. Glennie MJ, French RR, Cragg MS, Taylor RP (2007) Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44:3823–3837

    Article  Google Scholar 

  96. Beers SA, Chan CHT, French RR, Cragg MS, Glennie MJ (2010) CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 47:107–114

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No.60904095, 61175103), and the CAS FEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianqing Liu or Ning Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, M. et al. (2013). Investigation of Protein–Protein Interactions in Cancer Targeted Therapy Using Nanorobots. In: Guo, Y. (eds) Selected Topics in Micro/Nano-robotics for Biomedical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8411-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8411-1_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8410-4

  • Online ISBN: 978-1-4419-8411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics