Skip to main content

Sensing Single Protein Molecules with Solid-State Nanopores

  • Chapter
  • First Online:
Nanopores

Abstract

This chapter is focused on the development of experiments and theory of using solid-state nanopores for sensing single protein molecules in their native and unfolded states. Proteins serve diverse roles such as transport carriers, catalysts, molecular motors, cellular structural support, and others that make life possible. Because of these widely differing roles, proteins have an enormously diverse set of shapes, sizes, and charge structures as compared to polynucleic acids. Solid-state nanopores are particularly suitable for characterizing single protein molecules because they can be fabricated with adjustable dimensions and are stable under conditions that denature proteins. This chapter describes the nanopore experimental setup, signal recording, data analysis, and basic principles related to the experiments and the theory connecting the electrical signal with the properties of proteins. Examples of experimental results illustrate the ability of solid-state nanopores to differentiate proteins in their folded and unfolded states. Native-state protein nanopore translocation follows biased one-dimensional diffusion of charged particles that is sensitive to size and electrical charge. Due to the heterogeneous charge sequence of polypeptides, unfolded proteins obey a coupled electrophoretic and thermally activated process that is sequence specific. The chapter concludes with a discussion of future directions and open challenges for single protein characterization using solid-state nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rapoport, T.A., Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature, 2007. 450(29): p. 663–669.

    Article  Google Scholar 

  2. Wickner, W. and R. Schekman, Protein Translocation Across Biological Membranes. Science, 2005. 310(5753): p. 1452–1456.

    Article  Google Scholar 

  3. Simon, S.M. and G. Blobel, A protein-conducting channel in the endoplasmic reticulum. 1991. 65(3): p. 371–380.

    Google Scholar 

  4. Sutherland, T.C., Y.-T. Long, R.-l. Stefureac, I. Bediako-Amoa, H.-B. Kraatz and J.S. Lee, Structure of Peptides Investigated by Nanopore Analysis. Nano Lett, 2004. 4(7): p. 1273–1277.

    Article  Google Scholar 

  5. Stefureac, R., L. Waldner, P. Howard and J.S. Lee, Nanopore Analysis of a Small 86-Residue Protein. Small, 2008. 4(1): p. 59–63

    Article  Google Scholar 

  6. Oukhaled, G., J. Mathe, A.L. Biance, L. Bacri, J.M. Betton, D. Lairez, J. Pelta and L. Auvray, Unfolding of Proteins and Long Transient Conformations Detected by Single Nanopore Recording. Physical Review Letters, 2007. 98(15): p. 158101–4

    Article  Google Scholar 

  7. Pastoriza-Gallego, G.G. M., B. Thiebot, J.-M. Betton and J. Pelta, Polyelectrolyte and unfolded protein pore entrance depends on the pore geometry. Biochimica et Biophysica Acta - Biomembranes 2009. 1788: p. 1377–1386.

    Article  Google Scholar 

  8. Mohammad, S. Prakash, A. Matouschek and L. Movileanu, Controlling a Single Protein in a Nanopore through Electrostatic Traps. Journal of the American Chemical Society, 2008. 130(12): p. 4081–4088.

    Article  Google Scholar 

  9. Movileanu, L., S. Howorka, O. Braha and H. Bayley, Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotech, 2000. 18(10): p. 1091–1095.

    Article  Google Scholar 

  10. Han, A., G. Schurman, G. Mondin, R.A. Bitterli, N.G. Hegelbach, N.F. de Rooij and U. Staufer, Sensing protein molecules using nanofabricated pores. APPLIED PHYSICS LETTER, 2006. 88: p. 093901–3.

    Article  Google Scholar 

  11. Han, A., M. Creus, G. Schurmann, V. Linder, T.R. Ward, N.F. de Rooij and U. Staufer, Label-Free Detection of Single Protein Molecules and Protein−Protein Interactions Using Synthetic Nanopores. Analytical Chemistry, 2008. 80(12): p. 4651–4658%U http://dx.doi.org/10.1021/ac7025207.

  12. Fologea, D., B. Ledden, D.S. McNabb and J. Li, Electrical Characterization of Protein Molecules by a Solid-State Nanopore. APPLIED PHYSICS LETTERS, 2007. 91.

    Google Scholar 

  13. Talaga, D.S. and J. Li, Single-Molecule Protein Unfolding in Solid State Nanopores. Journal of American Chemical Society, 2009. 131(26): p. 9287–9297.

    Article  Google Scholar 

  14. Firnkes, M., D. Pedone, J. Knezevic, M. Döblinger and U. Rant, Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis. Nano Letters, 2010. 10(6): p. 2162–2167.

    Google Scholar 

  15. Niedzwiecki, D.J., J. Grazul and L. Movileanu, Single-Molecule Observation of Protein Adsorption onto an Inorganic Surface. Journal of the American Chemical Society, 2010. 132(31): p. 10816–10822.

    Article  Google Scholar 

  16. Li, J., M. Gershow, D. Stein, E. Brandin and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nat. Mater., 2003. 2: p. 611–615.

    Article  Google Scholar 

  17. Bezrukov, S.M., Ion Channels as Molecular Coulter Counters to Probe Metabolite Transport. Journal of Membrane Biology, 2000. 174(1): p. 1–13.

    Article  MathSciNet  Google Scholar 

  18. DeBlois, R.W. and C.P. Bean, Counting and Sizing of Submicron Particles by the Resistive Pulse Technique. Review of Scientific Instruments, 1970. 41(7): p. 909.

    Article  Google Scholar 

  19. Gregg, E.C. and k.D. Steidley, Electrical Counting and Sizing of Mammalian Cells in Suspension. Biophysical Journal, 1965. 5(4): p. 393–405.

    Google Scholar 

  20. Henriquez, R.R., T. Ito, L. Sun and R.M. Crooks, The resurgence of Coulter counting for analyzing nanoscale objects. The Analyst, 2004. 2004(129): p. 478–482.

    Article  Google Scholar 

  21. Smeets, R.M., U.F. Keyser, D. Krapf, M.-Y. Wu, D. Nynke H and C. Dekker, Salt Dependence of Ion Transport and DNA Translocation through Solid-state nanopores. Nano Lett., 2006. 6(1): p. 89–95.

    Article  Google Scholar 

  22. King, G.M. and J.A. Golovchenko, Probing Nanotube-Nanopore Interactions. Physical Review Letters, 2005. 95(21): p. 216103.

    Article  Google Scholar 

  23. Levadny, V., V.M. Aguilella and M. Belaya, Access resistance of a single conducting membrane channel. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1998. 1368(2): p. 338–342.

    Google Scholar 

  24. Vodyanoy, I. and S.M. Bezrukov, Sizing of an ion pore by access resistance measurements. Biophysical Journal, 1992. 62(1): p. 10–11.

    Article  Google Scholar 

  25. Dekker, C., Solid-state nanopores. Nature Nanotechnology, 2007. 2: p. 209–215.

    Google Scholar 

  26. Healy, K., B. Schiedt and A.P. Morrison, Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2007. 2(6): p. 875–897.

    Article  Google Scholar 

  27. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166–169.

    Google Scholar 

  28. Gierhart, B.C., D.G. Howitt, S.J. Chen, Z. Zhu, D.E. Kotecki, R.L. Smith and S.D. Collins, Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA, in The 14th International Conference on Solid-State Sensors, Actuators and Microsystems. 2007, Transducers & Eurosensors: Lyon, France.

    Google Scholar 

  29. Stein, D., J. Li and J.A. Golovchenko, Ion-Beam Sculpting Time Scales. Physical Review Letters, 2002. 89(27).

    Google Scholar 

  30. Storm, A.J., J.H. Chen, X.S. Ling, H.W. Zandbergen and C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2003. 2: p. 537–540.

    Article  Google Scholar 

  31. Venkatesan, B.M., B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov and R. Bashir, Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Adv. Mater., 2009. 21: p. 1–6.

    Google Scholar 

  32. Venkatesan, B.M., A.B. Shah, J.-M. Zuo and R. Bashir, DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Adv. Funct. Mater., 2010. 20: p. 1266–1275.

    Article  Google Scholar 

  33. Stein, D.M., C.J. McMullan, J. Li and J.A. Golovchenko, Feedback-controlled ion beam sculpting apparatus. Review of Scientific Instruments, 2004. 75(4): p. 900–905.

    Article  Google Scholar 

  34. Cai, Ledden, Krueger, Golovchenko and Li, Nanopore sculpting with noble gas ions. Journal of Applied Physics, 2006. 100.

    Google Scholar 

  35. Talaga, D. and J. Li, Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc., 2009. 131: p. 9287–9297.

    Article  Google Scholar 

  36. Fologea, D., B. Ledden, D.S. McNabb and J. Li, Electrical Characterization of Protein Molecules in a Solid-State Nanopore. Appl. Phys. Lett., 2007. 91.

    Google Scholar 

  37. Peters, T., Jr., Serum Albumin. Adv. Protein Chem., 1985. 37: p. 161–245.

    Google Scholar 

  38. Collins, B.E., K.-P.S. Dancil, G. Abbi and M.J. Sailor, Determining Protein Size Using an Electrochemically Machined Pore Gradient in Silicon. Advanced Functional Material, 2002. 12 (3): p. 187–191.

    Article  Google Scholar 

  39. Bloomfield, V., The Structure of Bovine Serum Albumin at Low pH. Biochemistry, 1966. 5(2): p. 684–689.

    Article  Google Scholar 

  40. Kramers, H.A., Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht), 1940. 7: p. 284–304.

    Google Scholar 

  41. Cotton, F.A., J. Edward E. Hazen and M.J. Legg, Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme—thymidine 3′,5′-bisphosphate—calcium ion complex at 1.5-Å resolution Proc. Nati. Acad. Sci. USA, 1979. 76(6): p. 2551–2555.

    Google Scholar 

  42. Tucker, P.W., E.E. Hazen and F.A. Cotton, Staphylococcal nuclease reviewed: A prototypic study in contemporary enzymology Molecular and Cellular Biochemistry, 1979. 23(3).

    Google Scholar 

Download references

Acknowledgments

We thank Professor J. Golovchenko and Harvard nanopore group for nanopore fabrication, Ryan Rollings, Edward W. Graef Jr., Denis F. Tita, and Errol Porter for nanopore fabrication and characterization. We acknowledge the funding support provided by NHGRI/NIH R21HG003290, NHGRI/NIH R21HG00477, NSF/MRSEC 080054, ABI-111/710, and NIH R01GM071684 to DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiali Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ledden, B., Fologea, D., Talaga, D.S., Li, J. (2011). Sensing Single Protein Molecules with Solid-State Nanopores. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics