Skip to main content

Measuring Cognitive Load

  • Chapter
  • First Online:
Cognitive Load Theory

Abstract

Because of the centrality of working memory load to cognitive load theory, measuring this load has been a high priority for researchers. While it is possible to demonstrate support for the validity of the theory by predicting experimental outcomes, it is useful to additionally provide independent measures of cognitive load. In this chapter we describe the various methods used to measure cognitive load and how they have developed over the last 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonenko, P. D., & Niederhauser, D. S. (2010). The influence of leads on cognitive load and learning in a hypertext environment. Computers in Human Behavior, 26, 140–150.

    Article  Google Scholar 

  • Antonenko, P., Paas, F., Grabner, R., & van Gog, T. (in press). Using electronencephalography to measure cognitive load. Educational Psychology Review.

    Google Scholar 

  • Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary Educational Psychology, 26, 227–248.

    Article  Google Scholar 

  • Ayres, P. (2006a). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied Cognitive Psychology, 20, 287–298.

    Article  Google Scholar 

  • Ayres, P., & Sweller, J. (1990). Locus of difficulty in multistage mathematics problems. The American Journal of Psychology, 103, 167–193.

    Article  Google Scholar 

  • Ayres, P., & Youssef, A. (2008). Investigating the influence of transitory information and motivation during instructional animations. In P. A. Kirschner, F. Prins, V. Jonker, & G. Kanselaar (Eds.), Published Proceedings of the Eighth International Conference for the Learning Sciences (Vol. 1, pp. 68–75). Utrecht, The Netherlands.

    Google Scholar 

  • Baddeley, A. (1986). Working memory. New York: Oxford University Press.

    Google Scholar 

  • Bratfisch, O., Borg, G., & Dornic, S. (1972). Perceived item-difficulty in three tests of intellectual performance capacity (Tech. Rep. No. 29). Stockholm: Institute of Applied Psychology.

    Google Scholar 

  • Britton, B. K., & Tesser, A. (1982). Effects of prior knowledge on use of cognitive capacity in three complex cognitive tasks. Journal of Verbal Learning and Verbal Behavior, 21, 421–436.

    Article  Google Scholar 

  • Brünken, R., Plass, J. L., & Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: Auditory load and modality effects. Instructional Science, 32, 115–132.

    Article  Google Scholar 

  • Brünken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology, 49, 109–119.

    Google Scholar 

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.

    Article  Google Scholar 

  • Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. The British Journal of Educational Psychology, 62, 233–246.

    Google Scholar 

  • Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10, 151–170.

    Article  Google Scholar 

  • Cuevas, H. M., Fiore, S. M., & Oser, R. L. (2002). Scaffolding cognitive and metacognitive processes in low verbal ability learners: Use of diagrams in computer-based training environments. Instructional Science, 30, 433–464.

    Article  Google Scholar 

  • DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100, 223–234.

    Article  Google Scholar 

  • Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33–58.

    Article  Google Scholar 

  • Gerjets, P., Scheiter, K., & Catrambone, R. (2006). Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? Learning and Instruction, 16, 104–121.

    Article  Google Scholar 

  • Gerjets, P., Scheiter, K., Opfermann, M., Hesse, F. W., & Eysink, T. H. S. (2009). Learning with hypermedia: The influence of representational formats and different levels of learner control on performance and learning behavior. Computers in Human Behavior, 25, 360–370.

    Article  Google Scholar 

  • Halford, G. S., Maybery, M. T., & Bain, J. D. (1986). Capacity limitations in children’s reasoning: A dual-task approach. Child Development, 57, 616–627.

    Google Scholar 

  • Hart, S. G. (2006). NASA-Task Load Index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting (pp. 904–908). Santa Monica: Human Factors and Ergonomics Society.

    Google Scholar 

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (Advances in psychology, Vol. 52, pp. 139–183). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Hoffman, B., & Schraw, G. (2010). Conceptions of efficiency: Applications in learning and problem solving. Educational Psychologist, 45, 1–14.

    Article  Google Scholar 

  • Homer, B. D., Plass, J. L., & Blake, L. (2008). The effects of video on cognitive load and social presence in multimedia-learning. Computers in Human Behavior, 24, 786–797.

    Article  Google Scholar 

  • Hummel, H. G. K., Paas, F., & Koper, E. J. R. (2004). Cueing for transfer in multimedia programmes: Process worksheets vs. worked-out examples. Journal of Computer Assisted Learning, 20, 387–397.

    Article  Google Scholar 

  • Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.

    Article  Google Scholar 

  • Kalyuga, S. (2008a). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24, 852–861.

    Article  Google Scholar 

  • Kalyuga, S., & Sweller, J. (2005). Rapid dynamic assessment of expertise to improve the efficiency of adaptive e-learning. Educational Technology Research and Development, 53, 83–93.

    Article  Google Scholar 

  • Kerr, B. (1973). Processing demands during mental operations. Memory and Cognition, 1, 401–412.

    Article  Google Scholar 

  • Kester, L., Kirschner, P. A., & van Merriënboer, J. J. G. (2005). The management of cognitive load during complex cognitive skill acquisition by means of computer-simulated problem solving. The British Journal of Educational Psychology, 75, 71–85.

    Article  Google Scholar 

  • Kirschner, F., Paas, F., & Kirschner, P. (in press-b). Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect. Applied Cognitive Psychology.

    Google Scholar 

  • Langley, P., & Neches, R. (1981). PRISM user’s manual. Technical report.

    Google Scholar 

  • Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of Educational Psychology, 88, 49–63.

    Article  Google Scholar 

  • Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.

    Article  Google Scholar 

  • Owen, E., & Sweller, J. (1985). What do students learn while solving mathematics problems? Journal of Educational Psychology, 77, 272–284.

    Article  Google Scholar 

  • Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429–434.

    Article  Google Scholar 

  • Paas, F., Ayres, P., & Pachman, M. (2008). Assessment of cognitive load in multimedia learning: Theory, methods and applications. In D. H. Robinson & G. Schraw (Eds.), Recent innovations in educational technology that facilitate student learning (pp. 11–35). Charlotte: Information Age Publishing.

    Google Scholar 

  • Paas, F., Tuovinen, J. E., Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71.

    Article  Google Scholar 

  • Paas, F. G. W. C., & van Merriënboer, J. J. G. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35, 737–743.

    Google Scholar 

  • Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.

    Article  Google Scholar 

  • Paas, F. G. W. C., van Merriënboer, J. J. G., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and Motor Skills, 79, 419–430.

    Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

    Article  Google Scholar 

  • Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9–31.

    Article  Google Scholar 

  • Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233.

    Article  Google Scholar 

  • Sweller, J., Chandler, P., Tierney, P., & Cooper, M. (1990). Cognitive load as a factor in the structuring of technical material. Journal of Experimental Psychology: General, 119, 176–192.

    Article  Google Scholar 

  • Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 1, 59–89.

    Article  Google Scholar 

  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Underwood, G., Jebbett, L., & Roberts, K. (2004). Inspecting pictures for information to verify a sentence: Eye movements in general encoding and in focused search. The Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 57A, 165–182.

    Google Scholar 

  • Van Gerven, P. W. M., Paas, F., van Merriënboer, J. J. G., Hendriks, M., & Schmidt, H. G. (2003). The efficiency of multimedia learning into old age. The British Journal of Educational Psychology, 73, 489–505.

    Article  Google Scholar 

  • Van Gerven, P. W. M., Paas, F., van Merriënboer, J. J. G., & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41, 167–174.

    Article  Google Scholar 

  • Van Gerven, P. W. M., Paas, F., van Merriënboer, J. J. G., & Schmidt, H. G. (2006). Modality and variability as factors in training the elderly. Applied Cognitive Psychology, 20, 311–320.

    Article  Google Scholar 

  • Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43, 16–26.

    Google Scholar 

  • Van Gog, T., Rikers, R. M. J. P., & Ayres, P. (2008). Data collection and analysis: Assessment of complex performance. In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3 revth ed., pp. 783–789). London/England: Routledge.

    Google Scholar 

  • Van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20, 95–99.

    Article  Google Scholar 

  • Van Merriënboer, J. J. G., Schuurman, J. G., de Croock, M. B. M., & Paas, F. G. W. C. (2002). Redirecting learners’ attention during training: Effects on cognitive load, transfer test performance and training efficiency. Learning and Instruction, 12, 11–37.

    Article  Google Scholar 

  • Whelan, R. R. (2007). Neuroimaging of cognitive load in instructional multimedia. Educational Research Review, 2(1), 1–12.

    Article  Google Scholar 

  • Xie, B., & Salvendy, G. (2000). Prediction of mental workload in single and multiple tasks environments. International Journal of Cognitive Ergonomics, 4, 213–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sweller .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sweller, J., Ayres, P., Kalyuga, S. (2011). Measuring Cognitive Load. In: Cognitive Load Theory. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8126-4_6

Download citation

Publish with us

Policies and ethics