Skip to main content

Rotating and Linear Motion Electric Machines

  • Chapter
  • 3677 Accesses

Abstract

The objective of this chapter is to analyze/present the different types and flux patterns of electric machines. These flux distributions are based on numerical solutions [1–5]. Moreover, to discuss the techniques and approximations involved in reducing the physical machine to a simple mathematical model and to give some simple concepts relating to the basic machine types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fuchs, E. F.; McNaughton, G. A.: “Comparison of first-order finite difference and finite element algorithms for the analysis of magnetic fields, Part I: Theoretical analysis,” IEEE Transactions on Power Apparatus and Systems, May 1982, Vol. PAS-101, No. 5, pp. 1170–1180.

    Google Scholar 

  2. McNaughton, G. A.; Fuchs, E. F.: “Comparison of first-order finite difference and finite element algorithms for the analysis of magnetic fields, Part II: Numerical results,” IEEE Transactions on Power Apparatus and Systems, May 1982, Vol. PAS-101, No. 5, pp. 1181–1201.

    Google Scholar 

  3. Fuchs, E. F.; McNaughton, G. A.: “Properties of orthogonal and triangular grids for the analysis of magnetic fields based on the finite difference and finite element methods, Part I: Theoretical analysis,” Acta Technica, March/April 1982, No. 2, pp. 168–205.

    Google Scholar 

  4. McNaughton, G. A.; Fuchs, E. F.; Siegl, M.: “Properties of orthogonal and triangular grids for the analysis of magnetic fields based on the finite difference and finite element methods, Part II: Numerical results based on Gaussian elimination,” Acta Technica, March/April 1982, No. 2, pp. 206–238.

    Google Scholar 

  5. Fuchs, E. F.; Siegl, M.: “Properties of orthogonal and triangular grids for the analysis of magnetic fields based on the finite difference and finite element methods, Part III: Comparison of iterative solutions,” Acta Technica, May/June 1982, No. 3, pp. 261–290.

    Google Scholar 

  6. Fuchs, E. F.; Chang, L. H.; Appelbaum, J.; Moghadamnia, S.: “Sensitivity of transformer and induction motor operation to power system’s harmonics,” Topical Report, Prepared for the US Department of Energy DOE-RA-50150-18, April 1983.

    Google Scholar 

  7. Say, M. G.: Alternating Current Machines, John Wiley and Sons, New York, 1983.

    Google Scholar 

  8. Weh, H.; Jiang, J.: “Berechnungsgrundlagen für Transversalflußmaschinen,” Archiv für Elektrotechnik, Vol. 71, pp.187–198, Springer Verlag, 1988.

    Google Scholar 

  9. Teltsch, M.: Adjustable-Speed Drive for an Electric Car with Large Rated Torque at Low Rated Speed, M.S. Thesis, University of Colorado at Boulder, Boulder, CO, 1997.

    Google Scholar 

  10. Fuchs, E. F.; Pohl, G.: “Computer generated polycentric grid design and novel dynamic acceleration of convergence for the iterative solution of magnetic fields based on the finite difference method,” IEEE Transactions on Power Apparatus and Systems, August 1981, Vol. PAS-100, No. 8, pp. 3911–3920.

    Google Scholar 

  11. Younglove, B. L.; Johnson, S. D.: User’s Manual for Program Fields, Vol. 1, Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309, January 6, 1983.

    Google Scholar 

  12. Williams, R. W.: Numerical Determination of the Flux Distribution in Salient-Pole Aircraft Alternators, M.S. Thesis, University of Colorado, Boulder, CO 80309, 1974.

    Google Scholar 

  13. Fuchs, E. F.; Senske, K.: “Comparison of iterative solutions of the finite difference method with measurements as applied to Poisson’s and the diffusion equations,” IEEE Transactions on Power Apparatus and Systems, August 1981, Vol. PAS-100, No. 8, pp. 3983–3992.

    Google Scholar 

  14. Fuchs, E. F.: Numerical Determination of Synchronous, Transient, and Subtransient Reactances of a Synchronous Machine, Ph.D. Thesis, University of Colorado, Boulder, Colorado, 1970.

    Google Scholar 

  15. Fuchs, E. F.; Erdelyi, E. A.: “Nonlinear theory of turbogenerators, Part I: Magnetic fields at no-load and balanced loads,” IEEE Transactions on Power Apparatus and Systems, March/April 1973, Vol. PAS-92, No. 2, pp. 583–591.

    Google Scholar 

  16. Fuchs, E. F.; Erdelyi, E. A.: “Nonlinear theory of turbogenerators, Part II: Load-dependent synchronous reactances,” IEEE Transactions on Power Apparatus and Systems, March/April 1973, Vol. PAS-92, No. 2, pp. 592–599.

    Google Scholar 

  17. Fuchs, E. F.; Rosenberg, L. T.: “Analysis of an alternator with two displaced stator windings.” IEEE Transactions on Power Apparatus and Systems, November/December 1974, Vol. PAS-93, No. 6, pp. 1776–1786.

    Google Scholar 

  18. Fardoun, A. A.; Fuchs, E. F.; Huang, H.: “Modeling and simulation of an electronically commutated permanent-magnet machine drive system using PSpice,” IEEE Transactions on Industry Applications, July/August 1994, Vol. 30, No. 4, pp. 927–937.

    Google Scholar 

  19. Yildirim, D.: Commissioning of 30 kVA Variable-Speed, Direct-Drive Wind Power Plant, Ph. D. Thesis, University of Colorado at Boulder, May 1999.

    Google Scholar 

  20. Yildirim, D.; Fuchs, E. F.; Batan, T.: “Test results of a 20 kW direct-drive, variable-speed wind power plant,” Proceedings of the International Conference on Electrical Machines, Istanbul, Turkey, Sept. 2–4, 1998.

    Google Scholar 

  21. Erdelyi, E. A.; Fuchs, E. F.; Binkley, D. H.: “Nonlinear magnetic field analysis of DC machines, Parts I, II and III,” IEEE Transactions on Power Apparatus and Systems, Sept./Oct. 1970, Vol. PAS–89, No. 7 pp. 1546–1554.

    Google Scholar 

  22. Batan, T.: Real-Time Monitoring and Calculation of the Derating of Single-Phase Transformers under (Non)Sinusoidal Operations, Ph. D. Thesis, University of Colorado at Boulder, May 1999.

    Google Scholar 

  23. Fuchs, E. F., Masoum, M. A. S.: Power Quality in Power Systems and Electrical Machines. Elsevier, Academic Press, New York, 2008, 638 p. ISBN: 978-0-12-369536-9

    Google Scholar 

  24. Fuchs, E. F.; Schraud, J.; Fuchs, F. S.: “Analysis of critical-speed increase of induction machines via winding reconfiguration with solid-state switches,” IEEE Trans. on Energy Conversion, Vol. 23, No. 3, Sept. 2008, pp. 774–780

    Google Scholar 

  25. Schraud, J.; Fuchs, E. F.; Fuchs, H. A.: "Experimental verification of critical-speed increase of induction machines via winding reconfiguration with solid-state switches," IEEE Trans. on Energy Conversion, Vol. 23, No. 2, June 2008, pp. 460–465

    Google Scholar 

  26. Fitzgerald, A. E.; Kingsley, Ch. Jr.; Umans, S. D.: Electric Machinery, 5th Edition, McGraw-Hill Publishing Company, New York, N.Y., 1990

    Google Scholar 

  27. Tesla, N.: “A new system of alternate current motors and transformers,” American Institute of Electrical Engineers, May 1888.

    Google Scholar 

  28. Neidhöfer, G.: “Early three-phase power,” IEEE Power and Energy Magazine, Sept./Oct. 2007, pp. 88–100.

    Google Scholar 

  29. Fuchs, E. F.; Masoum, M. A. S.: “Torques in induction machines due to low-frequency voltage/current harmonics,” International Journal of Power and Energy Systems, Vol. 28, Issue 2, 2008, pp. 212–221.

    Google Scholar 

  30. Fuchs, E. F.: “Alternating current machine with increased torque above and below rated speed for hybrid/electric propulsion systems,” U.S. Patent Number 8, 183, 814, May 22, 2012.

    Google Scholar 

  31. Fuchs, E.F.; Myat, M H.: “Speed and torque range increases of electric drives through compensation of flux weakening,” Proceedings of the 20th International Symposium on Power Electronics, Electrical Drives, Automation, and Motion, Pisa, Italy, June 14–16, 2010.

    Google Scholar 

  32. White, D. C.; Woodson, H. H.: Electromechanical Energy Conversion, John Wiley & Sons, Inc., New York, N.Y., 1959.

    Google Scholar 

  33. Concordia, C. D.: Synchronous Machines, Theory and Performance, Schenectady, N.Y., General Electric Company, 1951.

    Google Scholar 

  34. Frank, U.V.: The Feasibility of Ultra-High Speed Motors at 40,000 min −1 and 75 kW with Significantly Reduced Rotor Losses, M.S. Thesis, University of Colorado at Boulder, 1981.

    Google Scholar 

  35. Fuchs, E. F.; Frank, U. V.: “High-speed motors with reduced windage and eddy current losses, Part I: Mechanical design,” etzArchiv 5 (1983) No. 1, pp. 17–23, and “Part II: Magnetic design,” etzArchiv 5 (1983) No. 2, pp. 55–62.

    Google Scholar 

  36. Dubey, G. K.: (1989) Power Semiconductor Controlled Drives, Prentice Hall, Englewood Cliffs, N.J. 07632, 1989.

    Google Scholar 

  37. Fuchs, E. F.; Hanna, W. J.: “Measured efficiency improvements of induction motors with thyristor/triac controllers”, IEEE Transactions on Energy Conversion, Vol. 17, No. 4, Dec. 2002, pp. 437–444; Vol. 19, No. 3, Sept. 2004, pp. 647–648.

    Google Scholar 

  38. Appelbaum, J.; Fuchs, E. F.; White, J. C.: “Optimization of three-phase induction motor design, Part I: Formulation of the optimization technique,” IEEE Transaction on Energy Conversion, Sept. 1987, Vol. EC- 2, No. 3, pp. 407–414.

    Google Scholar 

  39. Appelbaum, J.; Khan, I. A.; Fuchs, E. F.; White, J. C.: “Optimization of three-phase induction motor design, Part II: The efficiency and cost of an optimal design,” IEEE Transaction on Energy Conversion, Sept. 1987, Vol. EC- 2, No. 3, pp. 415–422.

    Google Scholar 

  40. Fei, R.; Fuchs, E. F.; Huang, H.: “Comparison of two optimization techniques as applied to three-phase induction motor design,” IEEE Transaction on Energy Conversion, Dec. 1989, Vol. EC- 4, pp. 651–660.

    Google Scholar 

  41. Fuchs, E. F.; Chang, L. H.; Appelbaum, J.: “Magnetizing current, iron losses and forces of three-phase induction machines at sinusoidal and nonsinusoidal terminal voltages, Part I: Analysis,” IEEE Transaction on Power Apparatus and Systems, Nov. 1984, Vol. PAS-103, No. 11, pp. 3303–3312.

    Google Scholar 

  42. Fuchs, E. F.; Roesler, D. J.; Chang, L. H.: “Magnetizing current, iron losses and forces of three-phase induction machines at sinusoidal and nonsinusoidal terminal voltages, Part II: Results,” IEEE Transaction on Power Apparatus and Systems, Nov. 1984, Vol. PAS-103, No. 11, pp. 3313–3326.

    Google Scholar 

  43. Fuchs, E. F.; Appelbaum, J.; Khan, I. A.; Höll, J.; Frank, U. V.: “Optimization of induction motor efficiency, Volume 1: Three-phase induction motors,” Publication of the Electric Power Research Institute, Palo Alto, California, EPRI EL-4152-CCM, July 1985, 336 pages.

    Google Scholar 

  44. Fuchs, E. F.; Poloujadoff, M.; Neal, G. W.: “Starting performance of saturable three-phase induction motors,” IEEE Transactions on Energy Conversion, September 1988, Vol. EC-3, No. 3, pp. 624–635.

    Google Scholar 

  45. Courtesy of Siemens Corporation.

    Google Scholar 

  46. Li, S.; Haskew, T. A.; Challoo, R.: “Steady-state characteristic study for integration of DFIG wind turbines into transmission grid,” International Journal of Emerging Electric Power Systems, Vol. 10, issue 1, 2009 Article 7, pp. 1–29.

    Google Scholar 

  47. Kling, W. L.; Slootweg, J. G.: “Wind turbines as Power Plants,” Proceedings of the IEEE/Cigré Workshop on Wind Power and the Impacts on Power Systems, 17–18 June 2002, Oslo, Norway.

    Google Scholar 

  48. Muller, S.; Deicke, M.; De Doncker, R. W.: “Doubly Fed Induction Generator Systems for Wind Turbines,” IEEE Industry Applications Magazine, Vol. 8, No. 3, 26–33, May/June 2002.

    Google Scholar 

  49. Slootweg, J. G.; de Haan, S. W. H.; Polinder H.; Kling, W. L.: “General model for representing variable speed wind turbines in power system dynamics simulations,” IEEE Transactions on Power Systems, Vol. 18, No. 1, February 2003.

    Google Scholar 

  50. Freris, L. L.: Wind Energy Conversion System, Upper Saddle River, NJ: Prentice Hall, 1990.

    Google Scholar 

  51. Miller, N. W.; Price W. W.; Sanchez-Gasca, J. J.: “Dynamic modeling of GE 1.5 and 3.6 wind turbine-generators,” GE Power Systems, October 27, 2003.

    Google Scholar 

  52. Pena, R.; Clare, J. C.; Asher, G. M.: “Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind energy generation,” IEE Proc.-Electr. Power Appl., Vol. 143, No 3, May 1996.

    Google Scholar 

  53. Leonhard, W.: Control of Electrical Drives, Berlin, Germany: Springer-Verlag, 1996.

    Book  Google Scholar 

  54. Mohan, N.: Advanced Electric Drives – Analysis, Modeling and Control Using Simulink, MN: Minnesota Power Electronics Research & Education, ISBN 0-9715292-0-5, 2001.

    Google Scholar 

  55. Erlich, I.; Brakelmann, H.: “Integration of wind power into the German high voltage transmission grid,” Proceedings of 2007 IEEE PES General Meeting, 24–28 June 2007, Tampa, FL, USA.

    Google Scholar 

  56. Youssef, R. D.: “Integration of offshore wind farms into the local distribution network,” available from http://www.berr.gov.uk/publications/index.html.

  57. Li, S.; Sinha, S.: “A simulation analysis of double-fed induction generator for wind energy conversion using PSpice,” Proceedings of 2006 IEEE PES General Meeting, 18–22 June 2006, Montréal, Québec Canada.

    Google Scholar 

  58. Simões, M. G.; Farret, F. A.: Alternative Energy Systems: Design and Analysis with Induction Generators, 2nd Edition, CRC, Boca Raton, 2008

    Google Scholar 

  59. http://www.vennemann-online.de/papers/Vennemann2010.pdf

  60. Mohan, N.: Electrical Drives, An Integrative Approach, Monpere Publication, 2003.

    Google Scholar 

  61. IEEE Standard Dictionary of Electrical and Electronics Terms, IEEE Std 100–1977.

    Google Scholar 

  62. Huang, H.; Fuchs, E. F.; Zak, Z.: “Optimization of single-phase induction motor design, Part I: Formulation of the optimization technique,” IEEE Transaction on Energy Conversion, June 1988, Vol. EC-3, No. 2, pp. 349–356.

    Google Scholar 

  63. Huang, H.; Fuchs, E. F.; White, J. C.: “Optimization of single-phase induction motor design, Part II: The maximum efficiency and minimum cost of an optimal design,” IEEE Transaction on Energy Conversion, June 1988, Vol. EC-3, No. 2, pp. 357–366.

    Google Scholar 

  64. Huang, H.; Fuchs, E. F.; White, J. C.: “Optimal placement of the run capacitor in single-phase induction motor designs,” IEEE Transaction on Energy Conversion, Sept. 1988, Vol. EC-3, No. 3, pp. 647–652.

    Google Scholar 

  65. Fuchs, E. F.; Vandenput, A. J.; Höll, J.; White, J. C.: “Design analysis of capacitor-start, capacitor-run single-phase induction motors,” IEEE Transaction on Energy Conversion, June 1990, Vol. EC- 6, pp. 327–336.

    Google Scholar 

  66. Fuchs, E. F.; Huang, H.; Vandenput, A. J.; Höll, J.; Zak, Z.; Appelbaum, J.; Erlicki, M.: “Optimization of induction motor efficiency, Volume 2: Single-phase induction motors,” Publication of the Electric Power Research Institute, Palo Alto, California, EPRI EL-4152-CCM, May 1987, 450 p.

    Google Scholar 

  67. Fuller, J. F.; Fuchs, E. F.; Roesler, D. J.: “Influence of harmonics on power system distribution protection,” IEEE Transaction on Power Delivery, April 1988, Vol. 3, No. 2, pp. 546–554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald F. Fuchs .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuchs, E.F., Masoum, M.A.S. (2011). Rotating and Linear Motion Electric Machines. In: Power Conversion of Renewable Energy Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7979-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7979-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7978-0

  • Online ISBN: 978-1-4419-7979-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics