Skip to main content

Cell-Centred Modeling of Tissue Behaviour

  • Chapter
  • First Online:
Book cover Understanding the Dynamics of Biological Systems

Abstract

Normal structure and function in epithelial tissues is an emergent property of the interaction of the cells which comprise the tissue, so a cell-centred approach to the modelling of tissue behaviour is a logical approach. Epithelial tissues have the advantage, as a starting point, that they are relatively simple, but also have significant clinical problems - wound healing and the development of malignancy in particular - but also many other problems because of their barrier function. Exemplar biological systems are skin and urothelium. An individual-based modelling approach is adopted, with a 1:1 correspondence between living cells in biological (in vitro) models and the software agents used to represent the cells. The software agents are a formal entity (a communicating stream X-machine); the models are described using a mark-up language; and a formal framework and associated tools have been developed for model execution. ODE and PDE models of any complexity (e.g., biochemical models of signalling pathways) can be called as functions within the individual agents, and the physical environment of the cells can be modelled either globally or as a physical model of interaction with neighbouring cells that is embedded within each agent. The realisation is inherently parallel, and is also being used to model cell signalling, the behaviour of social insects, and macro-economic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An interactive computer program for Continuum Mechanics, Image analysis, Signal processing and System identification (CMISS), http://www.cmiss.org.

  2. 2.

    http://www.cellml.org.

  3. 3.

    http://sbml.org.

  4. 4.

    http://stke.sciencemag.org/.

  5. 5.

    http://www.copasi.org.

  6. 6.

    http://j-sim.org.

  7. 7.

    http://www.flame.ac.uk.

References

  1. S. Adra, T. Sun, S. MacNeil, M. Holcombe, and R. Smallwood. Development of a three dimensional multiscale computational model of the human epidermis. PLoS ONE, 5(1):e8511, 2010.

    Google Scholar 

  2. D. Boal. Mechanics of the Cell. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  3. K. Burrage, T. Tian, and P. Burrage. A multi-scaled approach for simulating chemical reaction systems. Progress in Biophysics and Molecular Biology, 85: 217–234, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. S. Eilenberg. Automata, Languages and Machines, Vol. A. Academic, London, 1974.

    Google Scholar 

  5. D. J. W. Evans, P. V. Lawford, J. Gunn, D. C. Walker, D. R. Hose, R. H. Smallwood, B. Chopard, M. Krafczyk, J. Bernsdorf, and A. Hoekstra. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philosophical Transactions of the Royal Society A, 366: 3343–3360, 2008.

    Article  CAS  Google Scholar 

  6. E. Feytmans, D. Noble, and M. Peitsch. Genome size and numbers of biological functions. Transactions on Computational Systems Biology, 1: 44–49, 2005.

    Article  Google Scholar 

  7. V. Grimm. A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198: 115–126, 2006.

    Article  Google Scholar 

  8. V. Grimm. Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future? Ecological Modelling, 115: 129–148, 1999.

    Article  Google Scholar 

  9. A. Hoekstra, E. Lorenz, J. Falcone, and B. Chopard. Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map. In ICCS 2007, Part I, Lecture Notes in Computer Science, Springer, volume 4487, pages 922–930, 2007.

    Google Scholar 

  10. P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-machines: from theory to practice. In Advances in Informatics, Lecture Notes in Computer Science (ed. Y. Manolopoulos, S. Evripidou, and A. Kakas.), Springer, volume 2563, pages 316–335, 2003.

    Google Scholar 

  11. P. Kohl and D. Noble. 97 (2008) 159-162 editorial life and mechanosensitivity. Progress in Biophysics and Molecular Biology, 97: 159–162, 2008.

    Google Scholar 

  12. S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner. A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254: 178–196, 2008.

    Article  PubMed  Google Scholar 

  13. D. E. Nelson, A. E. C. Ihekwaba, M. Elliott, J. R. Johnson, C. A. Gibney, B. E. Foreman, G. Nelson, V. See, C. A. Horton, D. G. Spiller, S. W. Edwards, H. P. McDowell, J. F. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D. B. Kell, and M. R. H. White. Oscillations in NF-kB Signaling Control the Dynamics of Gene Expression. Science, 306: 704–708, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. M. Pogson, R. Smallwood, E. Qwarnstrom, and M. Holcombe. Formal agent-based modelling of intracellular chemical interactions. Biosystems, 85: 37–45, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. M. Pogson, M. Holcombe, R. H. Smallwood, and E. Qwarnstrom. Introducing spatial information into predictive nf-kb modelling – an agent-based approach. PLoS ONE 3(6): e2367. doi:10.1371/journal.pone.0002367, 3 (6), 2008.

    Google Scholar 

  16. R. H. Smallwood. Computational modelling of epithelial tissues. Wiley Interdisciplinary Reviews Systems Biology, URL http://www3.interscience.wiley.com/journal/122305009/abstract, 2009.

  17. D. Sornette, A. B. Davis, K. Ide, K. R. Vixle, V. Pisarenko, and J. R. Kamm. Algorithm for model validation: Theory and applications. PNAS, 104: 6562–6567, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. M. Stannett. Theory of x-machines. http://x-machines.com/, 2005. URL http://x-machines.com/.

  19. T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. H. Smallwood, and S. MacNeil. An integrated systems biology approach to understanding the rules of keratinocyte colony formation. Journal of the Royal Society Interface, 4: 1077–1092, 2007.

    Article  Google Scholar 

  20. T. Sun, P. McMinn, M. Holcombe, R. Smallwood, and S. Macneil. Agent-based modeling helps in understanding the rules by which fibroblasts support keratinocyte colony formation. PLoS ONE, 3, 2008. doi: e2129doi:10.1371/journal.pone.0002129.

    Google Scholar 

  21. T. Sun, S. Adra, R. Smallwood, M. Holcombe, and S. Macneil. Exploring the hypotheses of the actions of TGF-β1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis. PLoS ONE, 4(12):e8515, 2010.

    Google Scholar 

  22. D. C. Walker, J. S. Southgate, G. Hill, M. Holcombe, D. R. Hose, S. M. Wood, S. MacNeil, and R. H. Smallwood. The Epitheliome: modelling the social behavior of cells. BioSystems, 76: 89–100, 2004a.

    Article  PubMed  CAS  Google Scholar 

  23. D. C. Walker, G. Hill, S. M. Wood, R. H. Smallwood, and J. S. Southgate. Agent-based modelling of wounded epithelial cell monolayers. IEEE Transactions on Nanobioscience, 3: 153–163, 2004b.

    Article  PubMed  CAS  Google Scholar 

  24. D. C. Walker, S. Wood, J. S. Southgate, M. Holcombe, and R. H. Smallwood. An integrated agent-mathematical model of the effect of intercellular signaling via the epidermal growth factor receptor on cell proliferation. Journal of Theoretical Biology, 242: 774–789, 2006a.

    Article  PubMed  CAS  Google Scholar 

  25. D. C. Walker, T. Sun, S. MacNeil, and R. H. Smallwood. Modeling the effect of exogenous calcium on keratinocyte and HaCat cell proliferation and differentiation using an agent-based computational paradigm. Tissue Engineering, 12: 2301–2309, 2006b.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The opinions expressed are my own, but have benefitted from discussions with and work by Jenny Southgate, Mike Holcombe, Sheila Mac Neil, Dawn Walker, Simon Coakley, Mark Pogson, Sun Tao, Nik Georgopoulos, Phil McMinn, Salem Adra, Des Ryan, Goodarz Kodabakshi, Rod Hose and Pat Lawford, all of whom I wish to acknowledge and thank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod Smallwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Smallwood, R. (2011). Cell-Centred Modeling of Tissue Behaviour. In: Dubitzky, W., Southgate, J., Fuß, H. (eds) Understanding the Dynamics of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7964-3_9

Download citation

Publish with us

Policies and ethics