Skip to main content

Qualitative Analysis of Genetic Regulatory Networks in Bacteria

  • Chapter
  • First Online:
Book cover Understanding the Dynamics of Biological Systems

Abstract

The adaptation of the bacterium Escherichia coli to carbon starvation is controlled by a large network of biochemical reactions involving genes, mRNAs, proteins, and signalling molecules. The dynamics of this network is difficult to analyze, notably due to a lack of quantitative information on parameter values. To overcome these limitations, the application of model reduction approaches based on QSS and PL approximations may result in models that are easier to handle mathematically and computationally. In particular, PL models allow the analysis of the qualitative dynamics of the network using only weak information on the ordering of parameters rather than their exact numerical values.We illustrate the use of these techniques, implemented in the computer tool Genetic Network Analyzer (GNA), in the case of the E. coli network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. Ali Azam, A. Iwata, A. Nishimura, S. Ueda, and A. Ishihama. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol., 181 (20): 6361–6370, 1999.

    PubMed  CAS  Google Scholar 

  • M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking for biochemical processes. Cell Biochem. Biophys., 38 (3): 271–286, 2003.

    Article  PubMed  CAS  Google Scholar 

  • C. A. Ball, R. Osuna, K. C. Ferguson, and R. C. Johnson. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J. Bacteriol., 174 (24): 8043–8056, 1992.

    PubMed  CAS  Google Scholar 

  • G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and D. Schneider. Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics, 21 (Suppl 1): i19–i28, 2005.

    Article  PubMed  CAS  Google Scholar 

  • G. Batt, B. Yordanov, R. Weiss, and C. Belta. Robustness analysis and tuning of synthetic gene networks. Bioinformatics, 23 (18): 2415–2422, 2007.

    Article  PubMed  CAS  Google Scholar 

  • G. Batt, H. de Jong, M. Page, and J. Geiselmann. Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica, 44 (4): 982–989, 2008.

    Article  Google Scholar 

  • C. Belta and L. C. G. J. M. Habets. Controlling a class of nonlinear systems on rectangles. IEEE Trans. Autom. Control, 51 (11): 1749–1759, 2006.

    Google Scholar 

  • G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol., 229 (3): 339–348, 2004.

    Article  PubMed  Google Scholar 

  • K. Bettenbrock, S. Fischer, A. Kremling, K. Jahreis, T. Sauter, and E. D. Gilles. A quantitative approach to catabolite repression in Escherichia coli. J. Biol. Chem., 281 (5): 2578–2584, 2005.

    Article  PubMed  Google Scholar 

  • K. Bettenbrock, S. Fischer, A. Kremling, K. Jahreis, T. Sauter, and E. D. Gilles. A quantitative approach to catabolite repression in Escherichia coli. J. Biol. Chem., 281 (5): 2578–2584, 2006.

    Article  PubMed  CAS  Google Scholar 

  • M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways using the PRISM model checker. In G. Plotkin, editor, Proc. of CMSB, pages 179–190, Edinburgh, Scotland, 2005.

    Google Scholar 

  • R. Casey, H. de Jong, and J.-L. Gouzé. Piecewise-linear models of genetic regulatory networks: Equilibria and their stability. J. Math. Biol., 52 (1): 27–56, 2006.

    Article  PubMed  Google Scholar 

  • N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling and querying biomolecular interaction networks. Theor. Comput. Sci., 325 (1): 25–44, 2004.

    Article  Google Scholar 

  • C. Chassagnole, N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, and M. Reuss. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng., 79 (1): 53–73, 2002.

    Article  PubMed  CAS  Google Scholar 

  • M. Chaves, E. D. Sontag, and R. Albert. Methods of robustness analysis for Boolean models of gene control networks. IET Syst. Biol., 153 (4): 154–167, 2006.

    Article  CAS  Google Scholar 

  • K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak, and J. J. Tyson. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell, 15 (8): 3841–3862, 2004.

    Article  PubMed  CAS  Google Scholar 

  • A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV2: An OpenSource tool for symbolic model checking. In D. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided Verification (CAV 2002), volume 2404 of LNCS, pages 359–364. Springer, Berlin, 2002.

    Chapter  Google Scholar 

  • E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT, Boston, MA, 1999.

    Google Scholar 

  • A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press, London, revised edition, 1995.

    Google Scholar 

  • M. Davidich and S. Bornholdt. The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model. J. Theor. Biol., 255: 269–277, 2008.

    Article  PubMed  Google Scholar 

  • H. de Jong and M. Page. Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. ACM/IEEE Trans. Comput. Biol. Bioinform., 5 (2): 208–222, 2008.

    Article  Google Scholar 

  • H. de Jong and D. Ropers. Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Brief. Bioinform., 7 (4): 354–363, 2006.

    Article  PubMed  Google Scholar 

  • H. de Jong, J. Geiselmann, C. Hernandez, and M. Page. Genetic Network Analyzer: Qualitative simulation of genetic regulatory networks. Bioinformatics, 19: 336–344, 2003.

    Article  PubMed  Google Scholar 

  • H. de Jong, J. Geiselmann, G. Batt, C. Hernandez, and M. Page. Qualitative simulation of the initiation of sporulation in B. subtilis. B. Math. Biol., 66 (2): 261–299, 2004a.

    Google Scholar 

  • H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann. Qualitative simulation of genetic regulatory networks using piecewise-linear models. B. Math. Biol., 66 (2): 301–340, 2004b.

    Article  Google Scholar 

  • R. Edwards. Analysis of continuous-time switching networks. Phys. D, 146 (1–4): 165–199, 2000.

    Article  Google Scholar 

  • J. Fisher, N. Piterman, A. Hajnal, and T. A. Henzinger. Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Comput. Biol., 3 (5): e92, 2007.

    Google Scholar 

  • T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle switch in escherichia coli. Nature, 403 (6767): 339–342, 2000.

    Article  PubMed  CAS  Google Scholar 

  • T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301 (5629): 102–105, 2003.

    Article  PubMed  CAS  Google Scholar 

  • R. Ghosh and C. J. Tomlin. Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. IET Syst. Biol., 1 (1): 170–183, 2004.

    Article  CAS  Google Scholar 

  • L. Glass and S. A. Kauffman. The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol., 39 (1): 103–129, 1973.

    Article  PubMed  CAS  Google Scholar 

  • A. Gonzalez Gonzalez, A. Naldi, L. Sánchez, D. Thieffry, and C. Chaouiya. GINsim: a software suit for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems, 84 (2): 91–100, 2006.

    Article  PubMed  CAS  Google Scholar 

  • J.-L. Gouzé and T. Sari. A class of piecewise linear differential equations arising in biological models. Dyn. Syst., 17 (4): 299–316, 2002.

    Article  Google Scholar 

  • R. M. Gutierrez-Ríos, J. A. Freyre-Gonzalez, O. Resendis, J. Collado-Vides, M. Saier, and G. Gosset. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiol., 7: 53–53, 2007.

    Article  PubMed  Google Scholar 

  • A. Halász, V. Kumar, M. Imielinski, C. Belta, O. Sokolsky, S. Pathak, and H. Rubin. Analysis of lactose metabolism in E. coli using reachability analysis of hybrid systems. IET Syst. Biol., 1 (2): 130–48, 2007.

    Google Scholar 

  • T. Hardiman, K. Lemuth, M. A. Keller, M. Reuss, and M. Siemann-Herzberg. Topology of the global regulatory network of carbon limitation in Escherichia coli. J. Biotechnol., 132: 359–374, 2007.

    Article  PubMed  CAS  Google Scholar 

  • J. J. Heijnen. Approximative kinetic formats used in metabolic network modeling. Biotechnol. Bioeng., 91 (5): 534–545, 2005.

    Article  PubMed  CAS  Google Scholar 

  • R. Heinrich and S. Schuster. The regulation of cellular systems. Chapman & Hall, New York, 1996.

    Book  Google Scholar 

  • G. W. Huisman, M. M. Siegele D. A., Zambrano, and Kolter R. Morphological and physiological changes during stationary phase. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, editors, Escherichia coli and Salmonella: Cellular and Molecular Biology, pages 1672–1682. ASM, Washington D.C., 1996.

    Google Scholar 

  • H. Ishizuka, A. Hanamura, T. Inada, and H. Aiba. Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene. EMBO J., 13 (13): 3077–3082, 1994.

    PubMed  CAS  Google Scholar 

  • S. A. Kauffman. The origins of order: Self-organization and selection in evolution. Oxford University Press, New York, 1993.

    Google Scholar 

  • S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22 (3): 437–467, 1969.

    Article  PubMed  CAS  Google Scholar 

  • E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, and S. Hohmann. Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol., 23 (8): 975–982, 2005.

    Article  PubMed  CAS  Google Scholar 

  • K. W. Kohn. Molecular interaction maps as information organizers and simulation guides. Chaos, 11 (1): 84–97, 2001.

    Article  PubMed  CAS  Google Scholar 

  • A. Kremling, S. Kremling, and K. Bettenbrock. Catabolite repression in Escherichia coli- a comparison of modelling approaches. FEBS J., 276: 594–602, 2009.

    Article  PubMed  CAS  Google Scholar 

  • L. Kuepfer, M. Peter, U. Sauer, and J. Stelling. Ensemble modeling for analysis of cell signaling dynamics. Nat. Biotechnol., 25 (9): 1001–1006, 2007.

    Article  PubMed  CAS  Google Scholar 

  • J.-C. Leloup and A. Goldbeter. Toward a detailed computational model for the mammalian circadian clock. Proc. Nat. Acad. Sci. USA, 100 (12): 7051–7056, 2003.

    Article  PubMed  CAS  Google Scholar 

  • L. Mendoza, D. Thieffry, and E. R. Alvarez-Buylla. Genetic control of flower morphogenesis in Arabidopsisthaliana: A logical analysis. Bioinformatics, 15 (7–8): 593–606, 1999.

    Article  PubMed  CAS  Google Scholar 

  • T. Mestl, E. Plahte, and S. W. Omholt. A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol., 176 (2): 291–300, 1995.

    Article  PubMed  CAS  Google Scholar 

  • T. Millat, E. Bullinger, J. Rohwer, and O. Wolkenhauer. Approximations and their consequences for dynamic modelling of signal transduction pathways. Math. Biosci., 207 (1): 40–57, 2007.

    Article  PubMed  Google Scholar 

  • C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res., 13 (11): 2467–2474, 2003.

    Article  PubMed  CAS  Google Scholar 

  • P. T. Monteiro, D Ropers, R Mateescu, A. T. Freitas, and H. de Jong. Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics, 24: i227–i233, 2008.

    Google Scholar 

  • M. S. Okino and M. L. Mavrovouniotis. Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98 (2): 391–408, 1998.

    Article  PubMed  CAS  Google Scholar 

  • J. A. Papin, J. Stelling, N. D. Price, S. Klamt, S. Schuster, and B. O. Palsson. Comparison of network-based pathway analysis methods. Trends Biotechnol., 22 (8): 400–405, 2004.

    Article  PubMed  CAS  Google Scholar 

  • E. Pecou. Splitting the dynamics of large biochemical interaction networks. J. Theor. Biol., 232 (3): 375–384, 2005.

    Article  PubMed  CAS  Google Scholar 

  • E. Plahte and S. Kjóglum. Analysis and generic properties of gene regulatory networks with graded response functions. Phys. D, 201 (1): 150–176, 2005.

    Article  CAS  Google Scholar 

  • R. Porreca, S. Drulhe, H. de Jong, and G. Ferrari-Trecate. Structural identification of piecewise-linear models of genetic regulatory networks. J. Comput. Biol., 15 (10): 1365–1380, 2008.

    Article  PubMed  CAS  Google Scholar 

  • T. S. Pratt, T. Steiner, L. S. Feldman, K. A. Walker, and R. Osuna. Deletion analysis of the fis promoter region in Escherichia coli: antagonistic effects of integration host factor and Fis. J. Bacteriol., 179 (20): 6367–6377, 1997.

    PubMed  CAS  Google Scholar 

  • M. Quach, N. Brunel, and F. d’Alché Buc. Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinformatics, 23 (23): 3209–3216, 2007.

    Google Scholar 

  • Y. Reyes-Dominguez, G. Contreras-Ferrat, J. Ramirez-Santos, J. Membrillo-Hernandez, and M. C. Gomez-Eichelmann. Plasmid DNA supercoiling and gyrase activity in Escherichia coli wild-type and rpoS stationary-phase cells. J. Bacteriol., 185 (3): 1097–1100, 2003.

    Article  PubMed  CAS  Google Scholar 

  • J. M. Rohwer, N. D. Meadow, S. Roseman, H. V. Westerhoff, and P. W. Postma. Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J. Biol. Chem., 275 (45): 34909–34921, 2000.

    Article  PubMed  CAS  Google Scholar 

  • M. Ronen, R. Rosenberg, B. I. Shraiman, and U. Alon. Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA, 99 (16): 10555–10560, 2002.

    Article  PubMed  CAS  Google Scholar 

  • D. Ropers, H. de Jong, M. Page, D. Schneider, and J. Geiselmann. Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems, 84 (2): 124–152, 2006.

    Article  PubMed  CAS  Google Scholar 

  • D. Ropers, V. Baldazzi, and H. de Jong. Model reduction using piecewise-linear approximations preserves dynamic properties of the carbon starvation response in Escherichia coli. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8 (1): 166–181, 2011.

    Article  PubMed  Google Scholar 

  • M. R. Roussel and S. J. Fraser. Invariant manifold methods for metabolic model reduction. Chaos, 11 (1): 196–206, 2001.

    Article  PubMed  CAS  Google Scholar 

  • L. Sánchez and D. Thieffry. Segmenting the fly embryo: A logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol., 224 (4): 517–537, 2003.

    Article  PubMed  Google Scholar 

  • M. A. Savageau. Design principles for elementary gene circuits: Elements, methods, and examples. Chaos, 11 (1): 142–159, 2001.

    Article  PubMed  CAS  Google Scholar 

  • B. Schoeberl, C. Eichler-Jonsson, E.-D. Gilles, and G. Mller. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol., 20 (4): 370–375, 2002.

    Article  PubMed  Google Scholar 

  • J.-A. Sepulchre, S. Reverchon, and W. Nasser. Modeling the onset of virulence in a pectinolytic bacterium. J. Theor. Biol., 44 (2): 239–257, 2007.

    Article  Google Scholar 

  • M. Sugita. Functional analysis of chemical systems in vivo using a logical circuit equivalent: II. The idea of a molecular automaton. J. Theor. Biol., 4: 179–192, 1963.

    Google Scholar 

  • R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol., 42 (3): 563–585, 1973.

    Article  PubMed  CAS  Google Scholar 

  • R. Thomas and R. d’Ari. Biological feedback. CRC, Boca Raton, FL, 1990.

    Google Scholar 

  • R. Thomas and M. Kaufman. Multistationarity, the basis of cell differentiation and memory: II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11 (1): 180–195, 2001.

    Google Scholar 

  • A. Usseglio Viretta and M. Fussenegger. Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol. Prog., 20 (3): 670–678, 2004.

    Article  Google Scholar 

  • N. A. W. van Riel and E. D. Sontag. Parameter estimation in models combining signal transduction and metabolic pathways: The dependent input approach. IET Syst. Biol., 153 (4): 263–274, 2006.

    Article  Google Scholar 

  • M. Vilela, I. Chou, S. Vinga, A. Vasconcelos, E. Voit, and J. Almeida. Parameter optimization in S-system models. BMC Syst. Biol., 2: 35, 2008.

    Article  PubMed  Google Scholar 

  • R. L. Westra, G. Hollanders, G. J. Bex, M. Gyssens, and K. Tuyls. The identification of dynamic gene-protein networks. In K. Tuyls, R. Westra, Y. Saeys, and A. Nowé, editors, Proc. KDECB 2006, volume 4366 of LNCS, pages 157–170. Springer, Berlin, 2007.

    Google Scholar 

  • C.-H. Yuh, H. Bolouri, and E. H. Davidson. Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science, 279: 1896–1902, 1998.

    Article  PubMed  CAS  Google Scholar 

  • J. W. Zwolak, J. J. Tyson, and L. T. Watson. Parameter estimation for a mathematical model of the cell cycle in frog eggs. J. Comput. Biol., 12 (1): 48–63, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

VB, DR, JG, HdJ were supported by the European commission under project EC-MOAN (FP6-2005-NEST-PATH-COM/043235). PM was partially supported by FCT program (PhD grant SFRH/BD/32965/2006 to PTM) and PDTC program (project PTDC/EIA/71587/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Baldazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baldazzi, V., Monteiro, P.T., Page, M., Ropers, D., Geiselmann, J., de Jong, H. (2011). Qualitative Analysis of Genetic Regulatory Networks in Bacteria. In: Dubitzky, W., Southgate, J., Fuß, H. (eds) Understanding the Dynamics of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7964-3_6

Download citation

Publish with us

Policies and ethics