Skip to main content

Studies on the Very Large G Protein-Coupled Receptor: From Initial Discovery to Determining its Role in Sensorineural Deafness in Higher Animals

  • Chapter
Adhesion-GPCRs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 706))

Abstract

The very large G protein-coupled receptor 1 (VLGR1), also known as MASS1 or GPR98, is most notable among the family of adhesion-GPCR for its size. Encoded by an 18.9 kb open reading frame, the ∼700 kDa primary translation product is by far the largest GPCR and additionally, the largest cell surface protein known to date. The large ectodomain of the protein contains several repeated motifs, including some 35 calcium binding, Calx-β repeats and seven copies of an epitempin repeat thought to be associated with the development of epilepsy. The extreme carboxy-terminus contains a consensus PDZ ligand sequence, suggesting interactions with other cytosolic or cytoskeletal proteins. At least two spontaneous and two targeted mutant mouse lines are currently known. The mutant mice present with sensitivity to audiogenic seizures but also have cochlear defects and significant, progressive hearing impairment. Although its ligand is currently unknown, VLGR1 is one of the few adhesion-GPCR family members in which mutations have been shown to be responsible for a human malady. Mutations in VLGR1 in humans result in one form (2C) of Usher syndrome, the most common genetic cause of combined blindness and deafness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chua SC, Szabo P, Vitek A et al. Cloning of cDNA encoding steroid 11 beta-hydroxylase (P450c11). Proc Natl Acad Sci USA 1987; 84:7193–7197.

    Article  PubMed  CAS  Google Scholar 

  2. Nathans J, Hogness DS. Isolation, sequence analysis and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 1983; 34:807–814.

    Article  PubMed  CAS  Google Scholar 

  3. Dixon RA, Kobilka BK, Strader DJ et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 1986; 321:75–79.

    Article  PubMed  CAS  Google Scholar 

  4. Nikkila H, McMillan DR, Nunez BS et al. Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol 2000; 14:1351–1364.

    Article  PubMed  CAS  Google Scholar 

  5. Skradski SL, Clark AM, Jiang HM et al. A novel gene causing a mendelian audiogenic mouse epilepsy. Neuron 2001; 31:537–544.

    Article  PubMed  CAS  Google Scholar 

  6. Yagi H, Takamura Y, Yoneda T et al. Vlgr1 knockout mice show audiogenic seizure susceptibility. J Neurochem 2005; 92:191–202.

    Article  PubMed  CAS  Google Scholar 

  7. McMillan DR, Kayes-Wandover KM, Richardson JA et al. Very Large G Protein-coupled Receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 2002; 277:785–792.

    Article  PubMed  CAS  Google Scholar 

  8. Weston MD, Luijendijk MW, Humphrey KD et al. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 2004; 74:357–366.

    Article  PubMed  CAS  Google Scholar 

  9. Attwood TK, Findlay JB. Fingerprinting G-protein-coupled receptors. Protein Eng 1994; 7:195–203.

    Article  PubMed  CAS  Google Scholar 

  10. Krasnoperov VG, Bittner MA, Beavis R et al. Alpha-latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 1997; 18:925–937.

    Article  PubMed  CAS  Google Scholar 

  11. Stacey M, Chang GW, Sanos SL et al. EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B-lymphoma cell line A20. J Biol Chem 2002; 277:29283–29293.

    Article  PubMed  CAS  Google Scholar 

  12. Schwarz EM, Benzer S. Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc Natl Acad Sci USA 1997; 94:10249–10254.

    Article  PubMed  CAS  Google Scholar 

  13. Hogervorst F, Kuikman I, von dem B et al. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. EMBO J 1990; 9:765–770.

    PubMed  CAS  Google Scholar 

  14. Fernandez-Busquets X, Burger MM. Themain protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J Biol Chem 1997; 272:27839–27847.

    Article  PubMed  CAS  Google Scholar 

  15. Misevic GN. Molecular self-recognition and adhesion via proteoglycan to proteoglycan interactions as a pathway to multicellularity: atomic force microscopy and color coded bead measurements in sponges. Microsc Res Tech 1999; 44:304–309.

    Article  PubMed  CAS  Google Scholar 

  16. Jumblatt JE, Schlup V, Burger MM. Cell-cell recognition: specific binding of Microcionasponge aggregation factor to homotypic cells and the role of calcium ions. Biochemistry 1980; 19:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  17. Hamann J, Vogel B, van Schijndel GMW et al. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55,DAF). J Exp Med 1996; 184:1185–1189.

    Article  PubMed  CAS  Google Scholar 

  18. Beckmann G, Hanke J, Bork P et al. Merging extracellular domains: fold prediction for laminin G-like and amino-terminal thrombospondin-like modules based on homology to pentraxins. J Mol Biol 1998; 275:725–730.

    Article  PubMed  CAS  Google Scholar 

  19. Emsley J, White HE, O’Hara BP et al. Structure of pentameric human serum amyloid P component. Nature 1994; 367:338–345.

    Article  PubMed  CAS  Google Scholar 

  20. Staub E, Perez-Tur J, Siebert R et al. The novel EPTP repeat defines a superfamily of proteins implicated in epileptic disorders. Trends Biochem Sci 2002; 27:441–444.

    Article  PubMed  CAS  Google Scholar 

  21. Scheel H, Tomiuk S, Hofmann K. A common protein interaction domain links two recently identified epilepsy genes. Hum Mol Genet 2002; 11:1757–1762.

    Article  PubMed  CAS  Google Scholar 

  22. Gu W, Wevers A, Schroder H et al. The LGI1 gene involved in lateral temporal lobe epilepsy belongs to a new subfamily of leucine-rich repeat proteins. FEBS Lett 2002; 519:71–76.

    Article  PubMed  CAS  Google Scholar 

  23. Kalachikov S, Evgrafov O, Ross B et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002; 30:335–341.

    Article  PubMed  Google Scholar 

  24. Kennedy MB. Origin of PDZ (DHR, GLGF) domains. Trends Biochem Sci 1995; 20:350.

    Article  PubMed  CAS  Google Scholar 

  25. Tsunoda S, Sieralta J, Sun Y et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 1997; 388:243–249.

    Article  PubMed  CAS  Google Scholar 

  26. Hamann J, Eichler W, Hamann D et al. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecular of the secretin receptor superfamily with an unusual extracellular domain. J Immunol 1995; 155:1942–1950.

    PubMed  CAS  Google Scholar 

  27. Shiratsuchi T, Futamura M, Oda K et al. Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun 1998; 247:597–604.

    Article  PubMed  CAS  Google Scholar 

  28. Lagerstrom MC, Rabe N, Haitina T et al. The evolutionary history and tissue mapping of GPR123: specific CNS expression pattern predominantly in thalamic nuclei and regions containing large pyramidal cells. J Neurochem 2007; 100:1129–1142.

    Article  PubMed  Google Scholar 

  29. Frings H, Frings M. Development of strains of albino mice with predictable susceptibilities to audiogenic seizures. Science 1953; 117:283–284.

    Article  PubMed  CAS  Google Scholar 

  30. McMillan DR, White PC. Loss of the transmembrane and cytoplasmic domains of the very large G-protein-coupled receptor-1 (VLGR1 or Mass 1) causes audiogenic seizures in mice. Mol Cell Neurosci 2004; 26:322–329.

    Article  PubMed  CAS  Google Scholar 

  31. Yagi H, Tokano H, Maeda M et al. Vlgr1 is required for proper stereocilia maturation of cochlear hair cells. Genes Cells 2007; 12:235–250.

    Article  PubMed  CAS  Google Scholar 

  32. Ross KC, Coleman JR. Developmental and genetic audiogenic seizure models: behavior and biological substrates. Neurosci Biobehav Rev 2000; 24:639–653.

    Article  PubMed  CAS  Google Scholar 

  33. Zheng QY, Johnson KR, Erway LC. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 1999; 130:94–107.

    Article  PubMed  CAS  Google Scholar 

  34. Klein BD, Fu YH, Ptacek LJ et al. Auditory deficits associated with the frings mgr1 (mass1) mutation in mice. Dev Neurosci 2005; 27:321–332.

    Article  PubMed  CAS  Google Scholar 

  35. Skradski SL, White HS, Ptacek LJ. Genetic mapping of a locus (mass1) causing audiogenic seizures in mice. Genomics 1998; 49:188–192.

    Article  PubMed  CAS  Google Scholar 

  36. McGee J, Goodyear RJ, McMillan DR et al. The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 2006; 26:6543–6553.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson KR, Zheng QY, Noben-Trauth K. Strain background effects and genetic modifiers of hearing in mice. Brain Res 2006; 1091:79–88.

    Article  PubMed  CAS  Google Scholar 

  38. Noben-Trauth K, Zheng QY, Johnson KR. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 2003; 35:21–23.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson KR, Zheng QY, Erway LC. A major gene affecting age-related hearing loss is common to at least ten inbred strains of mice. Genomics 2000; 70:171–180.

    Article  PubMed  CAS  Google Scholar 

  40. Johnson KR, Zheng QY, Weston MD et al. The Mass1 frings mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC. Genomics 2005; 85:582–590.

    Article  PubMed  CAS  Google Scholar 

  41. Goodyear R, Richardson G. The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci 1999; 19:3761–3772.

    PubMed  CAS  Google Scholar 

  42. Reiners J, van WE, Marker T et al. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet 2005; 14:3933–3943.

    Article  PubMed  CAS  Google Scholar 

  43. Michalski N, Michel V, Bahloul A et al. Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning. J Neurosci 2007; 27:6478–6488.

    Article  PubMed  CAS  Google Scholar 

  44. Hilge M, Aelen J, Vuister GW. Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol Cell 2006; 22:15–25.

    Article  PubMed  CAS  Google Scholar 

  45. Chen P, Johnson JE, Zoghbi HY et al. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002; 129:2495–2505.

    Article  PubMed  CAS  Google Scholar 

  46. Ehret G. Postnatal development in the acoustic system of the house mouse in the light of developing masked thresholds. J Acoust Soc Am 1977; 62:143–148.

    Article  PubMed  CAS  Google Scholar 

  47. Tsuprun V, Goodyear RJ, Richardson GP. The structure of tip links and kinocilial links in avian sensory hair bundles. Biophys J 2004; 87:4106–4112.

    Article  PubMed  CAS  Google Scholar 

  48. Goodyear RJ, Marcotti W, Kros CJ et al. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 2005; 485:75–85.

    Article  PubMed  Google Scholar 

  49. van Wijk E, van der Zwaag B, Peters T et al. The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1. Hum Mol Genet 2006; 15:751–765.

    Article  PubMed  Google Scholar 

  50. Maerker T, van WE, Overlack N et al. A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet 2008; 17:71–86.

    Article  PubMed  CAS  Google Scholar 

  51. Cohen M, Bitner-Glindzicz M, Luxon L. The changing face of Usher syndrome: clinical implications. Int J Audiol 2007; 46:82–93.

    Article  PubMed  Google Scholar 

  52. Petit C. Usher syndrome: from genetics to pathogenesis. Annu Rev Genomics Hum Genet 2001; 2:271–297.

    Article  PubMed  CAS  Google Scholar 

  53. Hmani-Aifa M, Benzina Z, Zulfiqar F et al. Identification of two new mutations in the GPR98 and the PDE6B genes segregating in a Tunisian family. Eur J Hum Genet 2009; 17:474–482.

    Article  PubMed  CAS  Google Scholar 

  54. Hilgert N, Kahrizi K, Dieltjens N et al. A large deletion in GPR98 causes type IIC Usher syndrome in male and female members of an Iranian family. J Med Genet 2009; 46:272–276.

    Article  PubMed  CAS  Google Scholar 

  55. Ebermann I, Wiesen MH, Zrenner E et al. GPR98 mutations cause Usher syndrome type 2 in males. J Med Genet 2009; 46:277–280.

    Article  PubMed  CAS  Google Scholar 

  56. Adato A, Michel V, Kikkawa Y et al. Interactions in the network of Usher syndrome type 1 proteins. Hum Mol Genet 2005; 14:347–356.

    Article  PubMed  CAS  Google Scholar 

  57. Nakayama J, Fu YH, Clark AM et al. A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures. Ann Neurol 2002; 52:654–657.

    Article  PubMed  CAS  Google Scholar 

  58. Gibert Y, McMillan DR, Kayes-Wandover KM et al. Analysis of the very large G-protein coupled receptor gene (Vlgr1/Mass1/USH2C) in zebrafish. Gene 2005; 353:200–206.

    Article  PubMed  CAS  Google Scholar 

  59. Sodergren E, Weinstock GM, Davidson EH et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006; 314:941–952.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMillan, D.R., White, P.C. (2010). Studies on the Very Large G Protein-Coupled Receptor: From Initial Discovery to Determining its Role in Sensorineural Deafness in Higher Animals. In: Yona, S., Stacey, M. (eds) Adhesion-GPCRs. Advances in Experimental Medicine and Biology, vol 706. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7913-1_6

Download citation

Publish with us

Policies and ethics