Skip to main content

Fundamentals of ISCO Using Permanganate

  • Chapter
  • First Online:
In Situ Chemical Oxidation for Groundwater Remediation

Part of the book series: SERDP/ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 3))

Scope

Use of permanganate for in situ chemical oxidation of contaminants of concern (COCs) in groundwater, including reactions, kinetic expressions, oxidant interactions with subsurface media, and the effectiveness for common COCs.

Key Concepts

  • Permanganate is a selective oxidant and will only oxidize certain types of organic compounds.

  • Sodium permanganate is readily miscible in water, while potassium permanganate has a solubility limit of 6.5 wt.% at 20°C.

  • For all practical purposes permanganate reactions occur only in the aqueous phase.

  • Permanganate chemistry is relatively insensitive to pH over a wide range.

  • Permanganate is highly reactive with compounds having alkene bonds and less reactive towards compounds with carbon-carbon single bonds (e.g., saturated hydrocarbons).

  • Oxidation reactions follow second-order kinetics overall with respect to the concentration of permanganate and the concentration of target organic compounds.

  • Insoluble manganese dioxides and carbon dioxide are the main byproducts of permanganate reactions with organics.

  • Under some conditions, manganese dioxide solids or carbon dioxide gas may reduce formation permeability and interfere with oxidant delivery and treatment efficiency.

  • Permanganate reacts with naturally occurring reduced materials in subsurface porous media. This is termed natural oxidant demand (NOD). Permanganate NOD is a kinetically controlled process, which can significantly interfere with the destruction of the target COC.

  • Permanganate has the potential to affect the mobility of heavy metals through several mechanisms. However, based on field experience, this phenomenon is usually transient, and elevated metals concentrations attenuate with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam ML, Comfort SD. 2005. Evaluating biodegradation as a primary and secondary treatment for removing RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from a perched aquifer. Bioremediation 9:9–19.

    Article  CAS  Google Scholar 

  • Adam ML, Comfort SD, Morley MC, Snow DD. 2004. Remediating RDX-contaminated ground water with permanganate: Laboratory investigations for the Pantex perched aquifer. J Environ Qual 33:2165–2173.

    Article  CAS  Google Scholar 

  • Al TA, Banks V, Loomer D, Parker BL, Mayer KU. 2006. Metal mobility during in situ chemical oxidation of TCE by KMnO4. J Contam Hydrol 88:137–152.

    Article  CAS  Google Scholar 

  • Almendros G, Gonzalez-Vila FJ, Martin F. 1989. Room temperature alkaline permanganate oxidation of representative humic acids. Soil Biol Biochem 21:481–486.

    Article  CAS  Google Scholar 

  • Arndt D. 1981. Manganese Compounds as Oxidizing Agents in Organic Chemistry, Claff C (Translator). Open Court Publishing Company, La Salle, IL, USA. 344 p.

    Google Scholar 

  • ASTM (American Society of Testing and Materials). 2007. ASTM D7262-07 Standard Test Method for Estimating the Permanganate Natural Oxidant Demand of Soil and Aquifer Solids. ASTM International, West Conshohocken, PA, USA. 5 p.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). 2000. Toxicological Profile for Manganese. U.S. Department of Health and Human Services, ATSDR, Atlanta, GA, USA. 461 p.

    Google Scholar 

  • Benjamin MM. 2002. Water Chemistry. McGraw-Hill, New York, NY, USA. 668 p.

    Google Scholar 

  • Bier EL, Singh J, Zhengming L, Comfort SD, Shea PJ. 1999. Remediating hexahydro-1,3,5-trinitro-1,2,5-trazine-contaminated water and soil by Fenton oxidation. Environ Toxicol Chem 18:1078–1084.

    Article  CAS  Google Scholar 

  • Brennan B. 1991. Chemical partitioning and remobilization of heavy metals from sewage sludge dumped into Dublin Bay. Water Res 25:1193–1198.

    Article  CAS  Google Scholar 

  • Brown GS, Barton LL, Thomson BM. 2003. Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons. Waste Manag 23:737–740.

    Article  CAS  Google Scholar 

  • Brown DG, Gupta L, Kim T-H, Moo-Young HK, Coleman AJ. 2006. Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the eastern United States. Chemosphere 65:1562–1569.

    Article  CAS  Google Scholar 

  • Burbano AA, Dionysiou DD, Richardson TL, Suidan MT. 2002. Degradation of MTBE intermediates using Fenton’s reagent. J Environ Eng 128:799–805.

    Article  CAS  Google Scholar 

  • Case TL. 1997. Reactive Permanganate Grout for Horizontal Permeable Barriers and In Situ Treatment of Groundwater. MS Thesis, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Chambers J, Leavitt A, Walti C, Schreier CG, Melby J. 2000a. Treatability study: Fate of chromium during oxidation of chlorinated solvents. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 57–65.

    Google Scholar 

  • Chambers J, Leavitt A, Walti C, Schreier CG, Melby J, Goldstein L. 2000b. In Situ Destruction of Chlorinated Solvents with KMnO4 Oxidizes Chromium. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 49–55.

    Google Scholar 

  • Cho HJ, Fiacco RJ, Brown RA, Sklandany GJ, Lee M. 2002. Evaluation of Technologies for In Situ Remediation of 1,1,1-Trichloroethane. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-20.

    Google Scholar 

  • Chuan MC, Shu GY, Liu JC. 1996. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut 90:543–556.

    Article  CAS  Google Scholar 

  • Clar E. 1972. The Aromatic Sextet. John Wiley and Sons, New York, NY, USA. 146 p.

    Google Scholar 

  • Conrad SH, Glass RJ, Peplinski WJ. 2002. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: Surfactant floods and in situ oxidation using permanganate. J Contam Hydrol 58:13–49.

    Article  CAS  Google Scholar 

  • Crimi ML, Ko S. 2009. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate. Chemosphere 74:847–853.

    Article  CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2003. Geochemical effects on metals following permanganate oxidation of DNAPLs. Ground Water 41:458–469.

    Article  CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2004a. Association of cadmium with MnO2 particles generated during permanganate oxidation. Water Res 38:887–894.

    Article  CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2004b. Experimental Evaluation of In Situ Chemical Oxidation Activities at the Naval Training Center (NTC) Site, Orlando, Florida. Prepared for Naval Facilities Engineering Command, Port Hueneme, CA, USA. 64 p.

    Google Scholar 

  • Crimi ML, Siegrist RL. 2004c. Impact of reaction conditions on MnO2 genesis during permanganate oxidation. J Environ Eng 130:562–572.

    Article  CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2005. Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide. J Environ Eng 131:1724–1732.

    Article  CAS  Google Scholar 

  • Crimi ML, Quickel M, Ko S. 2009. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: Evaluation in 1-D transport systems. J Contam Hydrol 105:69–79.

    Article  CAS  Google Scholar 

  • Cussler EL. 1997. Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge, UK. 580 p.

    Google Scholar 

  • Dai Q, Reitsma S. 2004. Kinetic study of permanganate oxidation of tetrachloroethylene at a high pH under acidic conditions. Remediat J 14:67–79.

    Article  Google Scholar 

  • Damm JH, Hardacre C, Kalin RM, Walsh KP. 2002. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Res 36:3638–3646.

    Article  CAS  Google Scholar 

  • Dietrich AM, Hoehn RC, Dufresne LC, Buffin LW, Rashash MC, Parker BC. 1995. Oxidation of odorous and nonodorous algal metabolites by permanganate, chlorine, and chlorine dioxide. Water Sci Technol 31:223–228.

    CAS  Google Scholar 

  • Drescher E, Gavaskar AR, Sass BM, Cumming LJ, Dresher MJ, Williamson TKJ. 1998. Batch and column testing to evaluation oxidation of DNAPL source zones. In Wickramanayake GB, Hinchee RE, eds, Physical, Chemical and Thermal Technologies: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 425–432.

    Google Scholar 

  • Duggan LA, Wildeman TR, Updegraff DM. 1993. Abatement of Manganese in Coal Mine Drainages Through the Use of Constructed Wetlands. U.S. Bureau of Mines, Mining Research Contract J021002, January.

    Google Scholar 

  • Fatiadi AJ. 1987. The classical permanganate ion: Still a novel oxidant in organic chemistry. Synthesis 2:85–127.

    Article  Google Scholar 

  • Forsey SP. 2004. In Situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation. PhD Dissertation, University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  • Forstner U, Calmano W, Kienz W. 1991. Assessment of long-term metal mobility in heat processing waters. Water Air Soil Pollut 57–58:319–328.

    Article  Google Scholar 

  • Frazer JD, Fiacco RJ, Pac T, Lewis RW, Madera E. 2006. Physical Distribution and Temporal Persistence of Injected Permanganate within Saturated Soils. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper D-57.

    Google Scholar 

  • Gates DD, Siegrist RL, Cline SR. 1995. Chemical oxidation of contaminants in clay or sandy soil. Proceedings, American Society of Civil Engineers (ASCE) National Conference on Environmental Engineering, Pittsburgh, PA, USA.

    Google Scholar 

  • Gates-Anderson DD, Siegrist RL, Cline SR. 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. J Environ Eng 127:337–347.

    Article  CAS  Google Scholar 

  • Gonullu T, Farquhar GJ. 1989. Oxidation to Remove TCE from Soil. Department of Civil Engineering, University of Waterloo, Waterloo, ON, Canada. 13 p. http://www.civil.uwaterloo.ca/nthomson/GonulluandFarquhar1989.pdf. Accessed July 8, 2010.

  • Griffith SM, Schnitzer M. 1975. Oxidative degradation of humic and fulvic acids extracted from tropical volcanic soils. Can J Soil Sci 55:251–267.

    Article  CAS  Google Scholar 

  • Haselow JS, Siegrist RL, Crimi ML, Jarosch T. 2003. Estimating the total oxidant demand for in situ chemical oxidation design. Remediat J 13:5–15.

    Article  Google Scholar 

  • Heiderscheidt JL. 2005. DNAPL Source Zone Depletion during In Situ Chemical Oxidation (ISCO): Experimental and Modeling Studies. PhD Dissertation, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Heiderscheidt JL, Siegrist RL, Illangasekare TH. 2008a. Intermediate-scale 2-D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. J Contam Hydrol 102:3–16.

    Article  CAS  Google Scholar 

  • Heiderscheidt JL, Crimi M, Siegrist RL, Singletary M. 2008b. Optimization of full-scale permanganate ISCO system operation: Laboratory and numerical studies. Ground Water Monit Remediat 28:72–84.

    Article  CAS  Google Scholar 

  • Henderson TH, Mayer KU, Parker BL, Al TA. 2009. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J Contam Hydrol 106:195–211.

    Article  CAS  Google Scholar 

  • Hönning J, Broholm MM, Bjerg PL. 2007. Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials. J Contam Hydrol 90:221–239.

    Article  CAS  Google Scholar 

  • Hood ED. 2000. Permanganate Flushing of DNAPL Source Zones: Experimental and Numerical Investigation. PhD Dissertation, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Hood ED, Thomson NR, Grossi D, Farquhar GJ. 2000. Experimental determination of the kinetic rate law for the oxidation of perchloroethylene by potassium permanganate. Chemosphere 40:1383–1388.

    Article  CAS  Google Scholar 

  • Huang K, Hoag GE, Chheda P, Woody BA, Dobbs, GM. 1999. Kinetic study of oxidation of trichloroethylene by potassium permanganate. Environ Eng Sci 16:265–274.

    Article  CAS  Google Scholar 

  • Huang K-C, Chheda P, Hoag GE, Woody BA, Dobbs GM. 2000. Pilot-scale study of in-situ chemical oxidation of trichloroethene with sodium permanganate. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 145–152.

    Google Scholar 

  • Huang K-C, Hoag GE, Chheda P, Woody BA, Dobbs GM. 2001. Oxidation of chlorinated ethenes by potassium permanganate: A kinetics study. J Hazard Mater 87:155–169.

    Article  CAS  Google Scholar 

  • Huang K-C, Hoag GE, Chheda P, Woody BA, Dobbs GM. 2002. Kinetics and mechanism of oxidation of tetrachloroethylene with permanganate. Chemosphere 46:815–825.

    Article  CAS  Google Scholar 

  • Huling SG, Pivetz BE. 2006. Engineering Issue: In-Situ Chemical Oxidation. EPA/600/R-06/072. USEPA Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH, USA. 58 p.

    Google Scholar 

  • Jackson SF. 2004. Comparative Evaluation of Potassium Permanganate and Catalyzed Hydrogen Peroxide during In Situ Chemical Oxidation of DNAPLs. MS Thesis, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Jazdanian AD, Fieber LL, Tisoncik D, Huang KC, Mao F, Dahmani A. 2004. Chemical Oxidation of Chloroethanes and Chloroethenes in a Rock/Groundwater System. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2F-01.

    Google Scholar 

  • Jones LJ. 2007. The Impact of NOD Reaction Kinetics on Treatment Efficiency. MS Thesis, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Kang N, Hua I, Rao PSC. 2004. Production and characterization of encapsulated potassium permanganate for sustained release as an in situ oxidant. Ind Eng Chem Res 43:5187–5193.

    Article  CAS  Google Scholar 

  • Kile DE, Wershaw RL, Chiou CT. 1999. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds. Environ Sci Technol 33:2053–2056.

    Article  CAS  Google Scholar 

  • Kim K, Gurol MD. 2005. Reaction of nonaqueous phase TCE with permanganate. Environ Sci Technol 39:9303–9308.

    Article  CAS  Google Scholar 

  • Ladbury JW, Cullis CF. 1958. Kinetics and mechanism of oxidation by permanganate. Chem Rev 58:403–438.

    Article  CAS  Google Scholar 

  • Lamarche C. 2002. In Situ Chemical Oxidation of an Emplaced Creosote Source. MASc Thesis, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Lee ES, Seol Y, Fang YC, Schwartz FW. 2003. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environ Sci Technol 37:2540–2546.

    Article  CAS  Google Scholar 

  • Li XD, Schwartz FW. 2000. Efficiency problems related to permanganate oxidation schemes. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 41–48.

    Google Scholar 

  • Li XD, Schwartz FW. 2003. Permanganate oxidation schemes for the remediation of source zone DNAPLs and dissolved contaminant plumes. In Henry SM, Warner SD, eds, Chlorinated Solvent and DNAPL Remediation. American Chemical Society, Washington, DC, USA, pp 73–85.

    Google Scholar 

  • Li XD, Schwartz FW. 2004a. DNAPL mass transfer and permeability reduction during in situ chemical oxidation with permanganate. Geophys Res Lett 31:L06504, doi:10.1029/2003GL019218.

    Article  CAS  Google Scholar 

  • Li XD, Schwartz FW. 2004b. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids. J Contam Hydrol 68:39–53.

    Article  CAS  Google Scholar 

  • Li XD, Schwartz FW. 2004c. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part II. Increasing removal efficiency by dissolving Mn oxide precipitates. J Contam Hydrol 68:269–287.

    Article  CAS  Google Scholar 

  • Lide DR. 2006. CRC Handbook of Chemistry and Physics. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA. 2504 p.

    Google Scholar 

  • MacKinnon LK, Thomson NR. 2002. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate. J Contam Hydrol 56:49–74.

    Article  CAS  Google Scholar 

  • MacKinnon LK, Cox EE, Hood ED, Mumford KG, Thomson NR. 2002. Evaluation of Oxidation and Bioremediation for CVOCs in Fractured Bedrock. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2H-58.

    Google Scholar 

  • Miller CT, Poirier-McNeill MM, Mayer AS. 1990. Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resour Res 26:2783–2796.

    Article  Google Scholar 

  • Moore K. 2008. Geochemical Impacts From Permanganate Oxidation Based on Field Scale Assessments. MS Thesis, East Tennessee State University, Johnson City, TN, USA.

    Google Scholar 

  • Mueller J, Moreno J, Dmitrovic E. 2006. In Situ Biogeochemical Stabilization of Creosote/Pentachlorophenol NAPLs using Catalyzed and Buffered Permanganate: Pilot- and Full Scale-Applications. Proceedings, The International Symposium and Exhibition on the Redevelopment of Manufactured Gas Plant Sites, Reading, United Kingdom, April 4–6, pp 625–629.

    Google Scholar 

  • Mueller J, Moreno J, Dingens M, Vella P. 2007. Stabilizing the NAPL threat: In-situ biogeochemical stabilization and flux reduction using catalyzed permanganate. Pollut Eng March. http://www.pollutionengineering.com/Articles/Cover_Story/BNP_GUID_9-5-2006_A_10000000000000070929. Accessed July 8, 2010.

  • Mumford KG, Thomson NR, Allen-King RM. 2002. Investigating the Kinetic Nature of Natural Oxidant Demand during ISCO. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-37.

    Google Scholar 

  • Mumford KG, Lamarche CS, Thomson NR. 2004. Natural oxidant demand of aquifer materials using the push-pull technique. J Environ Eng 130:1139–1146.

    Article  CAS  Google Scholar 

  • Mumford KG, Thomson NR, Allen-King RM. 2005. Bench-scale investigation of permanganate natural oxidant demand kinetics. Environ Sci Technol 39:2835–2840.

    Article  CAS  Google Scholar 

  • Mumford KG, Smith JE, Dickson SE. 2008. Mass flux from a non-aqueous phase liquid pool considering spontaneous expansion of a discontinuous gas phase. J Contam Hydrol 98:85–96.

    Article  CAS  Google Scholar 

  • Nelson MD. 1999. The Geochemical Reactions and Density Effects Resulting from the Injection of KMnO4 for PCE DNAPL Oxidation in a Sandy Aquifer. MSc Thesis, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Nelson MD, Parker BL, Al TA, Cherry JA, Loomer D. 2001. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer. Environ Sci Technol 35:1266–1275.

    Article  CAS  Google Scholar 

  • Ortiz De Serra MI, Schnitzer M. 1973. The chemistry of humic and fulvic acids extracted from Argentine soils-II. Permanganate oxidation of methylated humic and fulvic acids. Soil Biol Biochem 5:287–296.

    Article  CAS  Google Scholar 

  • Petri BG. 2006. Impacts of Subsurface Permanganate Delivery Parameters on Dense Nonaqueous Phase Liquid Mass Depletion Rates. MS Thesis, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Petri BG, Siegrist RL, Crimi ML. 2008. Effects of groundwater velocity and permanganate concentration of DNAPL mass depletion rates during in situ oxidation. J Environ Eng 134:1–13.

    Article  CAS  Google Scholar 

  • Pisarczyk K. 1995. Manganese Compounds. Encyclopedia of Chemical Technology. John Wiley & Sons, New York, NY, USA, pp 1031–1032.

    Google Scholar 

  • Pizzigallo MDR, Ruggiero P, Crecchio C, Mininni R. 1995. Manganese and iron oxides as reactants for oxidation of chlorophenols. Soil Sci Soc Am J 59:444–452.

    Article  CAS  Google Scholar 

  • Powers SE, Abriola LM, Dunkin JS, Weber WJ Jr. 1994. Phenomenological models for transient NAPL-water mass-transfer processes. J Contam Hydrol 16:1–33.

    Article  CAS  Google Scholar 

  • Ray AB, Selvakumar A, Tafuri AN. 2002. Treatment of MTBE-contaminated waters with Fenton’s reagent. Remediat J 12:81–93.

    Article  Google Scholar 

  • Reitsma S, Dai QL. 2001. Reaction-enhanced mass transfer and transport from non-aqueous phase liquid source zones. J Contam Hydrol 49:49–66.

    Article  CAS  Google Scholar 

  • Reitsma S, Marshall M. 2000. Experimental study of oxidation of pooled NAPL. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 25–32.

    Google Scholar 

  • Ross C, Murdoch LC, Freedman DL, Siegrist RL. 2005. Characteristics of potassium permanganate encapsulated in polymer. J Environ Eng 131:1203–1211.

    Article  CAS  Google Scholar 

  • Saba T, Illangasekare TH. 2000. Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resour Res 36:971–979.

    Article  CAS  Google Scholar 

  • Sahl J. 2005. Coupling In Situ Chemical Oxidation (ISCO) with Bioremediation Processes in the Treatment of Dense Non-Aqueous Phase Liquids (DNAPLs). MS Thesis, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Schincariol RA, Schwartz FW. 1990. An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resour Res 26:2317–2329.

    Article  Google Scholar 

  • Schnarr M, Truax C, Hood E, Gonully T, Stickney B. 1998. Laboratory and controlled field experimentation using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J Contam Hydrol 29:205–224.

    Article  CAS  Google Scholar 

  • Schnitzer M, Desjardins JG. 1970. Alkaline permanganate oxidation of methylated and unmethylated fulvic acid. Soil Sci Soc Am Proc 34:77–79.

    Article  CAS  Google Scholar 

  • Schroth MH, Oostrom M, Wietsma TW, Istok JD. 2001. In-situ oxidation of trichloroethene by permanganate: Effects on porous medium hydraulic properties. J Contam Hydrol 50:78–98.

    Article  Google Scholar 

  • Seitz SJ. 2004. Experimental Evaluation of Mass Transfer and Matrix Interactions during In Situ Chemical Oxidation Relying on Diffusive Transport. MS Thesis, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Seol Y, Schwartz FW. 2000. Phase-transfer catalysis applied to the oxidation of nonaqueous phase trichloroethylene by potassium permanganate. J Contam Hydrol 44:185–201.

    Article  CAS  Google Scholar 

  • Seol Y, Schwartz FW, Lee S. 2001. Oxidation of binary DNAPL mixtures using potassium permanganate with a phase transfer catalyst. Ground Water Monit Remediat 21:124–132.

    CAS  Google Scholar 

  • Siegrist RL, Lowe KS, Murdoch LC, Case TL. 1999. In situ oxidation by fracture emplaced reactive solids. J Environ Eng 125:429–440.

    Article  CAS  Google Scholar 

  • Siegrist RL, Urynowicz MA, Crimi ML, Struse AM. 2000. Particle Genesis and Effects During In Situ Chemical Oxidation of Trichloroethene in Groundwater Using Permanganate. Final Report. Oak Ridge National Laboratory, Department of Energy, Oak Ridge, TN, USA.

    Google Scholar 

  • Siegrist RL, Urynowicz MA, West OR, Crimi ML, Lowe KS. 2001. Principles and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press, Columbus, OH, USA. 336 p.

    Google Scholar 

  • Siegrist RL, Urynowicz MA, Crimi ML, Lowe KS. 2002. Genesis and effects of particles produced during in situ chemical oxidation using permanganate. J Environ Eng 128:1068–1079.

    Article  CAS  Google Scholar 

  • Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare TH, Lowe KS, van Cuyk S, Dugan PJ, Heiderscheidt JL, Jackson SF, Petri BG, Sahl J, Seitz SJ. 2006. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs: Project ER-1290 Final Report. Submitted to DoD Strategic Environmental Research and Development Program (SERDP), Arlington, VA, USA. http://www.docs.serdp-estcp.org/. Accessed July 8, 2010.

  • Siegrist RL, Crimi ML, Petri B, Simpkin T, Palaia T, Krembs FJ, Munakata-Marr J, Illangasekare T, Ng G, Singletary M, Ruiz N. 2010. In Situ Chemical Oxidation for Groundwater Remediation: Site Specific Engineering and Technology Application. ER-0623 Final Report (CD-ROM, Version PRv1.01, October 29, 2010). Prepared for the ESTCP, Arlington, VA, USA. http://www.docs.serdp-estcp.org/.

  • Singh N, Lee DG. 2001. Permanganate: A green and versatile industrial oxidant. Org Process Res Dev 5:599–603.

    Article  CAS  Google Scholar 

  • Sirguey C, de Souza e Silva PT, Schwartz C, Simonnot M. 2008. Impact of chemical oxidation on soil quality. Chemosphere 72:282–289.

    Article  CAS  Google Scholar 

  • Stewart R. 1965. Oxidation by permanganate. In Wiberg KB, ed, Oxidation in Organic Chemistry. Academy Press, New York, NY, USA. 168 p.

    Google Scholar 

  • Stewart CL. 2002. Density-Driven Permanganate Solution Delivery and Chemical Oxidation of a Thin Trichloroethene DNAPL Pool in a Sandy Aquifer. MSc Thesis, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Struse AM, Marvin BK, Harris ST, Clayton WS. 2002a. Push-Pull Tests: Field Evaluation of In Situ Chemical Oxidation of High Explosives at the Pantex Plant. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2G-06.

    Google Scholar 

  • Struse AM, Siegrist RL, Dawson HE, Urynowicz MA. 2002b. Diffusive transport of permanganate during in situ oxidation. J Environ Eng 128:327–334.

    Article  CAS  Google Scholar 

  • Teel AL, Finn DD, Schmidt JT, Cutler LM, Watts RJ. 2007. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide. J Environ Eng 133:853–858.

    Article  CAS  Google Scholar 

  • Thomson NR, Hood ED, Farquhar GJ. 2007. Permanganate treatment of and emplaced DNAPL source. Ground Water Monit Remediat 27(4):74–85.

    Article  CAS  Google Scholar 

  • Thomson NR, Fraser M, Lamarche C, Barker JF, Forsey SP. 2008. Rebound of a creosote plume following partial source zone treatment with permanganate. J Contam Hydrol 102:154–171.

    Article  CAS  Google Scholar 

  • Tollefsrud E, Schreier CG. 2002. Effectiveness of Chemical Oxidation to Remove Organochlorine Pesticides from Soil. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-16.

    Google Scholar 

  • Tunnicliffe BS, Thomson NR. 2004. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate. J Contam Hydrol 75:91–114.

    Article  CAS  Google Scholar 

  • Urynowicz MA. 2000. Dense Nonaqueous Phase Trichloroethene Degradation with Permanganate Ion. PhD Dissertation, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Urynowicz MA. 2008. In situ chemical oxidation with permanganate: Assessing the competative interactions between target and nontarget compounds. Soil Sediment Contam 17:53–62.

    Article  CAS  Google Scholar 

  • Urynowicz MA, Siegrist RL. 2005. Interphase mass transfer during chemical oxidation of TCE DNAPL in an aqueous system. J Contam Hydrol 80:93–106.

    Article  CAS  Google Scholar 

  • Urynowicz MA, Balu B, Udayasankar U. 2008. Kinetics of natural oxidant demand by permanganate in aquifer solids. J Contam Hydrol 96:187–194.

    Article  CAS  Google Scholar 

  • van Genuchten MT, Alves WJ. 1982. Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation. Technical Bulletin Number 1661. U.S. Department of Agriculture, Agricultural Research Service. 151 p.

    Google Scholar 

  • Waldemer RH, Tratnyek PG. 2006. Kinetics of contaminant degradation by permanganate. Environ Sci Technol 40:1055–1061.

    Article  CAS  Google Scholar 

  • Waldemer RH, Powell J, Tratnyek PG. 2009. In Situ Chemical Oxidation: ISCOKIN Database, http://www.cgr.ebs.ogi.edu/isco/. Accessed July 8, 2010.

  • Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL. 1999. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437.

    Article  CAS  Google Scholar 

  • Watts RJ, Sarasa J, Loge FJ, Teel AL. 2005. Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. J Environ Eng 131:158–164.

    Article  CAS  Google Scholar 

  • West OR, Cline SR, Holden WL, Gardner FG, Schlosser BM, Thate JE, Pickering DA, Houk, TC. 1997. A Full-scale Demonstration of In Situ Chemical Oxidation through Recirculation at the X-701B Site. ORNL/TM-13556. Department of Energy Oak Ridge National Laboratory, Oak Ridge, TN, USA. 114 p.

    Book  Google Scholar 

  • Woods LM. 2008. In Situ Remediation Induced Changes in Subsurface Properties and Trichloroethene Partitioning Behavior. MS Thesis, Colorado School of Mines, Golden, Colorado, USA.

    Google Scholar 

  • Xu X. 2006. Interaction of Chemical Oxidants with Aquifer Material. PhD Dissertation, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Xu X, Thomson NR. 2008. Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test. J Environ Eng 134:353–360.

    Article  CAS  Google Scholar 

  • Xu X, Thomson NR. 2009. A long-term bench-scale investigation of permanganate consumption by aquifer materials. J Contam Hydrol 110:73–86.

    Article  CAS  Google Scholar 

  • Xu X, Thomson NR, MacKinnon LK, Hood ED. 2004. Oxidant Stability and Mobility: Controlling Factors and Estimation Methods. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-08.

    Google Scholar 

  • Yan YE, Schwartz FW. 1996. In situ oxidative dechlorination of trichloroethylene by potassium permanganate. Proceedings, Third International Conference on AOTs. October 26–29, Cincinnati, Ohio.

    Google Scholar 

  • Yan YE, Schwartz FW. 1999. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J Contam Hydrol 37:343–365.

    Article  CAS  Google Scholar 

  • Yan YE, Schwartz FW. 2000. Kinetics and mechanisms for TCE oxidation by permanganate. Environ Sci Technol 34:2535–2541.

    Article  CAS  Google Scholar 

  • Zhang H, Schwartz FW. 2000. Simulating the in situ oxidative treatment of chlorinated ethylenes by potassium permanganate. Water Resour Res 36:3031–3042.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Petri, B.G., Thomson, N.R., Urynowicz, M.A. (2011). Fundamentals of ISCO Using Permanganate. In: Siegrist, R., Crimi, M., Simpkin, T. (eds) In Situ Chemical Oxidation for Groundwater Remediation. SERDP/ESTCP Environmental Remediation Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7826-4_3

Download citation

Publish with us

Policies and ethics