Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings.
Journal for Research in Mathematics Education,
29, 41–62.
CrossRefBoaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of Railside school. Teachers College Record, 110(3), 608–645.
Bond, L., Smith, T. W., Baker, W., & Hattie, J. (2000). The certification system of the National Board for Professional Teaching Standards: A construct and consequential validity study. Greensboro, NC: Center for Educational Research and Evaluation.
Borko, H., Stecher, B., & Kuffner, K. (2007).
Using artifacts to characterize reform oriented instruction: The scoop notebook and rating guide (CSE Tech. Rep. No. 707). Los Angeles: Center for the Study of Evaluation, National Center for Research on Evaluation, Standards, and Student Testing (CRESST). Retrieved January 23, 2008, from
http://www.cse.ucla.edu/products/reports/R707.pdf
Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.
Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in Grade III subtraction. Duke University Research Studies in Education, No. 8. Durham, NC: Duke University Press.
Brownell, W. A., & Sims, V. M. (1946). The nature of understanding. In N. B. Henry (Ed.), The measurement of understanding (45th yearbook of the National Society for the Study of Education, Part I) (pp. 27–43). Chicago: University of Chicago Press.
Carpenter, T. P., Fennema, E., & Franke, M. (1996). Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction.
Elementary School Journal,
97(1), 3–20.
CrossRefCarpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using knowledge of children’s mathematical thinking in classroom teaching: An experimental study. American Educational Research Journal, 26, 499–531.
Clare, L., & Aschbacher, P. R. (2001). Exploring the technical quality of using assignments and student work as indicators of classroom practice.
Educational Assessment,
7, 39–59.
CrossRefCohen, D. K. (1990). A revolution in one classroom: The case of Mrs. Oublier. Educational Evaluation and Policy Analysis, 12, 327–345.
Cohen, D. K., McLaughlin, M., & Talbert, J. (Eds.). (1993). Teaching for understanding: Challenges for policy and practice. San Francisco: Jossey-Bass.
Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159–199.
Fawcett, H. P. (1938). The nature of proof: A description and evaluation of certain procedures used in a senior high school to develop an understanding of the nature of proof. New York, NY: Teachers College, Columbia University.
Fennema, E., & Romberg, T. A. (Eds.). (1999). Mathematics classrooms that promote understanding. Mahwah, NJ: Erlbaum.
Ferrini-Mundy, J., & Schram, T. (Eds.). (1997). The recognizing and recording reform in mathematics education project: Insights, issues, and implications (JRME Monograph No. 8). Reston, VA: National Council of Teachers of Mathematics.
Fuson, K. C., & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first- and second-grade place-value and multidigit addition and subtraction.
Journal for Research in Mathematics Education,
21, 180–206.
CrossRefGinsburg, A., Cooke, G., Leinwand, S., Noell, J., & Pollock, E. (2005). Reassessing U.S. international mathematics performance: New findings from the 2003 TIMSS and PISA. Washington, DC: American Institutes for Research.
Good, T. L., Grouws, D. A., & Ebmeier, H. (1983). Active mathematics teaching. New York: Longman.
Hakel, M. D., Koenig, J. A., & Elliott, S. W. (2008). Assessing accomplished teaching: Advanced-level certification programs. Washington: National Academy Press.
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.
Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., et al. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12–21.
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Charlotte, NC: Information Age.
Hiebert, J., Stigler, J., Jacobs, J., Givvin, K., Garnier, H., & Smith, M., et al. (2005). Mathematics teaching in the United States today (and tomorrow): Results from the TIMSS 1999 video study.
Educational Evaluation and Policy Analysis,
27, 111–132.
CrossRefHiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ learning in second-grade arithmetic. American Educational Research Journal, 30, 393–425.
Lemke, M., Sen, A., Pahike, E., Partelow, L., Miller, D., Williams, T., et al. (2004). International outcomes of learning in mathematics literacy and problem solving: PISA 2003 results from the U.S. perspective (NCES 2005-003). U.S. Department of Education. Washington, DC: NCES.
Matsumura, L. C., Garnier, H., Pascal, J., & Valdés, R. (2002). Measuring instructional quality in accountability systems: Classroom assignments and student achievement.
Educational Assessment,
8, 207–229.
CrossRefMullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 international mathematics report: Findings from the IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.
National Board for Professional Teaching Standards. (1998). Middle childhood through early adolescence/mathematics standards. Washington, DC: Author.
National Center for Education Statistics [NCES]. (2003). Teaching mathematics in seven countries: Result from the TIMSS video study. Washington, DC: U.S. Department of Education.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
Newmann, F. M., & Associates. (1996). Authentic achievement: Restructuring schools for intellectual quality. San Francisco: Jossey-Bass.
Romagnano, L. (1994). Wrestling with change: The dilemmas of teaching real mathematics. Portsmouth, NH: Heinemann.
Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses.
Educational Psychologist,
23(2), 145–166.
CrossRefSilver, E. A. (2003). Lessons learned from examining mathematics teaching around the world.
Education Statistics Quarterly,
5(1), 20–23. Retrieved January 23, 2008, from
http://nces.ed.gov/programs/quarterly/Vol_5/5_1/q2_3.asp
Silver, E. A., Mesa, V. M., Morris, K. A., Star, J. R., & Benken, B. M. (2009). Teaching mathematics for understanding: An analysis of lessons submitted by teachers seeking NBPTS certification.
American Educational Research Journal,
46(2), 501–531. DOI: 10 3102/0002831208326559.
CrossRefStein, M. K., Grover, B. W., & Henningsen, M. (1996). Building capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research Journal, 33, 455–488.
Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project.
Educational Research and Evaluation,
2(1), 50–80.
CrossRefStein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing standards-based mathematics instruction: A casebook for professional development (2nd ed.). New York: Teachers College Press.
Stigler, J. W., & Hiebert, J. (1999). The teaching gap. New York: Free Press.
Stigler, J. W., & Hiebert, J. (2004). Improving mathematics teaching. Educational Leadership, 61(5), 12–16.
Stodolsky, S. S. (1988). The subject matters: Classroom activities in math and social sciences. Chicago: University of Chicago.
Tarr, J. E., Reys, R. E., Reys, B. J., Chavez, O., Shih, J., & Osterlind, S. J. (2008). The impact of middle-grades mathematics curricula and the classroom learning environment on student achievement. Journal for Research in Mathematics Education, 39, 247–280.
Weiss, I. R., & Pasley, J. P. (2004). What is high quality instruction?. Educational Leadership, 61(5), 24–28.
Weiss, I. R., Pasley, J. D., Smith, P. S., Banilower, E. R., & Heck, D. J. (2003). Looking inside the classroom: A study of K-12 mathematics and science education in the United States. Chapel Hill, NC: Horizon Research, Inc.
Wilson, S. M., & Floden, R. E. (2001). Hedging bets: Standards-based reform in classrooms. In S. Fuhrman (Ed.), From the capitol to the classroom: Standards-based reform in the States. Onehundredth yearbook of the National Society for the Study of Education (pp. 193–216). Chicago: University of Chicago Press.