Skip to main content

Genomics of Pathogenic Vibrio Species

  • Chapter
  • First Online:
Genomics of Foodborne Bacterial Pathogens

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

Members of the heterotrophic bacterial family Vibrionaceae are native inhabitants of aquatic environments worldwide, constituting a diverse and abundant component of marine microbial organisms. Over 60 species of the genus Vibrio have been identified (Thompson et al., 2004) and their phenotypic heterogeneity is well documented. The ecology of the genus remains less well understood, however, despite reports that vibrios are the dominant microorganisms inhabiting the superficial water layer and colonizing the chitinous exoskeleton of zooplankton (e.g., copepods, Thompson et al., 2004). Although some species were originally isolated from seawater as free living organisms, most were isolated in association with marine life such as bivalves, fish, eels, or shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd H, Saeed A, Weintraub A, Sandstrom G (2009) Vibrio cholerae O139 requires neither capsule nor LPS O side chain to grow inside Acanthamoeba castellanii. J Med Microbiol 58(1):125–131

    Google Scholar 

  • Aiyar SE, Gaal T, Gourse RL (2002) rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. J Bacteriol 184(5):1349–1358

    CAS  Google Scholar 

  • Akeda Y, Kodama T, Kashimoto T, Cantarelli V, Horiguchi Y, Nagayama K, Iida T, Honda T (2002) Dominant-negative Rho, Rac, and Cdc42 facilitate the invasion process of Vibrio parahaemolyticus into Caco-2 cells. Infect Immun 70(2):970–973

    CAS  Google Scholar 

  • Akeda Y, Nagayama K, Yamamoto K, Honda T (1997) Invasive phenotype of Vibrio parahaemolyticus. J Infect Dis 176(3):822–824

    CAS  Google Scholar 

  • Alm RA, Stroeher UH, Manning PA (1988) Extracellular proteins of Vibrio cholerae: nucleotide sequence of the structural gene (hlyA) for the haemolysin of the haemolytic El Tor strain O17 and characterization of the hlyA mutation in the non-heamolytic classical strain 569B. Mol Microbiol 2:481–488

    CAS  Google Scholar 

  • Baba K, Shirai H, Terai A, Kumagai K, Takeda Y, Nishibuchi M (1991) Similarity of the tdh gene-bearing plasmids of Vibrio cholerae non-O1 and Vibrio parahaemolyticus. Microb Pathog 10(1):61–70

    CAS  Google Scholar 

  • Barua D, Greenough WB (1992) Cholera. Plenum Medical Book Co, New York, NY

    Google Scholar 

  • Bisharat N, Amaro C, Fouz B, Llorens A, Cohen DI (2007) Serological and molecular characteristics of Vibrio vulnificus biotype 3: evidence for high clonality. Microbiology 153(Pt 3):847–856

    CAS  Google Scholar 

  • Bisharat N, Cohen DI, Harding RM, Falush D, Crook DW, Peto T, Maiden MC (2005) Hybrid Vibrio vulnificus. Emerg Infect Dis 11(1):30–35

    Google Scholar 

  • Bisharat N, Cohen DI, Maiden MC, Crook DW, Peto T, Harding RM (2007) The evolution of genetic structure in the marine pathogen, Vibrio vulnificus. Infect Genet Evol 7(6):685–693

    CAS  Google Scholar 

  • Blake PA, Merson MH, Weaver RE, Hollis DG, Heublein PC (1979) Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med 300(1):1–5

    CAS  Google Scholar 

  • Blokesch M, Schoolnik GK (2007) Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 3(6):e81

    Google Scholar 

  • Boyd EF, Cohen AL, Naughton LM, Ussery DW, Binnewies TT, Stine OC, Parent MA (2008) Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 8:110

    Google Scholar 

  • Bush CA, Patel P, Gunawardena S, Powell J, Joseph A, Johnson JA, Morris JG (1997) Classification of Vibrio vulnificus strains by the carbohydrate composition of their capsular polysaccharides. Anal Biochem 250(2):186–195

    CAS  Google Scholar 

  • Butler SM, Camilli A (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3(8):611–620

    CAS  Google Scholar 

  • Cameron DE, Urbach JM, Mekalanos JJ (2008) A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Nat Acad Sci USA 105(25):8736–8741

    CAS  Google Scholar 

  • Carroll JW, Mateescu MC, Chava K, Colwell RR, Bej AK (2001) Response and tolerance of toxigenic Vibrio cholerae O1 to cold temperatures. Antonie Van Leeuwenhoek 79(3–4):377–384

    CAS  Google Scholar 

  • Casselli T, Lynch T, Southward CM, Jones BW, DeVinney R (2008) Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect Immun 76(5):2202–2211

    CAS  Google Scholar 

  • Chatterjee SN, Chaudhuri K (2003) Lipopolysaccharides of Vibrio cholerae. I. Physical and chemical characterization. Biochim Biophys Acta 1639(2):65–79

    CAS  Google Scholar 

  • Chatzidaki-Livanis M, Jones MK, Wright AC (2006) Genetic variation in the Vibrio vulnificus group 1 capsular polysaccharide operon. J Bacteriol 188(5):1987–1998

    CAS  Google Scholar 

  • Chen Y, Bystricky P, Adeyeye J, Panigrahi P, Ali A, Johnson JA, Bush CA, Morris JG Jr, Stine OC (2007) The capsule polysaccharide structure and biogenesis for non-O1 Vibrio cholerae NRT36S: genes are embedded in the LPS region. BMC Microbiol 7:20

    Google Scholar 

  • Chen Y, Johnson JA, Pusch GD, Morris JG Jr, Stine OC (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75(5):2645–2647

    CAS  Google Scholar 

  • Chen C-Y, Wu K-M, Chang Y-C, Chang C-H, Tsai H-C, Liao T-L, Liu Y-M, Chen H-J, Shen AB-T, Li J-C, Su T-L, Shao C-P, Lee C-T, Hor L-I, Tsai S-F (2003) Comparative Genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13(12):2577

    CAS  Google Scholar 

  • CholeraWorkingGroup (1993) Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet 342:387–390

    Google Scholar 

  • Coelho A, Andrade JR, Vicente AC, Dirita VJ (2000) Cytotoxic cell vacuolating activity from Vibrio cholerae hemolysin. Infect Immun 68(3):1700–1705

    CAS  Google Scholar 

  • Cohen AL, Oliver JD, DePaola A, Feil EJ, Boyd EF (2007) Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island. Appl Environ Microbiol 73(17):5553–5565

    CAS  Google Scholar 

  • Comeau AM, Chan AM, Suttle CA (2006) Genetic richness of vibriophages isolated in a coastal environment. Environ Microbiol 8(7):1164–1176

    CAS  Google Scholar 

  • Dalsgaard A, Albert MJ, Taylor DN, Shimada T, Meza R, Serichantalergs O, Echeverria P (1995) Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J Clin Microbiol 33(10):2715–2722

    CAS  Google Scholar 

  • Dalsgaard A, Serichantalergs O, Shimada T, Sethabutr O, Echeverria P (1995) Prevalence of Vibrio cholerae with heat-stable enterotoxin (NAG-ST) and cholera toxin genes; restriction fragment length polymorphisms of NAG-ST genes among V. cholerae O serogroups from a major shrimp production area in Thailand. J Med Microbiol 43(3):216–220

    CAS  Google Scholar 

  • Daniels NA, MacKinnon L, Bishop R, Altekruse S, Ray B, Hammond RM, Thompson S, Wilson S, Bean NH, Griffin PM, Slutsker L (2000) Vibrio parahaemolyticus infections in the United States, 1973–1998. J Infect Dis 181(5):1661–1666

    CAS  Google Scholar 

  • Datta PP, Bhadra RK (2003) Cold shock response and major cold shock proteins of Vibrio cholerae. Appl Environ Microbiol 69(11):6361–6369

    CAS  Google Scholar 

  • Davis BM, Moyer KE, Boyd EF, Waldor MK (2000) CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J Bacteriol 182(24):6992–6998

    CAS  Google Scholar 

  • DePaola A, Motes ML, Chan AM, Suttle CA (1998) Phages infecting Vibrio vulnificus are abundant and diverse in oysters (Crassostrea virginica) collected from the Gulf of Mexico. Appl Environ Microbiol 64(1):346–351

    CAS  Google Scholar 

  • Dryselius R, Izutsu K, Honda T, Iida T (2008) Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location. BMC Genomics 9:559

    Google Scholar 

  • Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Nat Acad Sci USA 99(3):1556–1561

    CAS  Google Scholar 

  • Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ (2005) Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci USA 102(9):3465–3470

    CAS  Google Scholar 

  • Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56(5):1129

    CAS  Google Scholar 

  • Egan ES, Lobner-Olesen A, Waldor MK (2004) Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr Biol 14(13):R501–502

    CAS  Google Scholar 

  • Egan ES, Waldor MK (2003) Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 114(4):521–530

    CAS  Google Scholar 

  • Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55(4):1160–1182

    CAS  Google Scholar 

  • Enos-Berlage JL, McCarter LL (2000) Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. J Bacteriol 182(19):5513–5520

    CAS  Google Scholar 

  • Falcioni T, Papa S, Campana R, Mannello F, Casaroli A, Burattini S, Baffone W (2005) Flow cytometric evaluation of Vibrio parahaemolyticus adhesion inhibition to human epithelial cells. Cytometry B Clin Cytom 66B(1):25–35

    Google Scholar 

  • Fan JJ, Shao CP, Ho YC, Yu CK, Hor LI (2001) Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun 69(9):5943–5948

    CAS  Google Scholar 

  • Faruque SM, Islam MJ, Ahmad QS, Faruque AS, Sack DA, Nair GB, Mekalanos JJ (2005a) Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102(17):6119–6124

    CAS  Google Scholar 

  • Faruque SM, Mekalanos JJ (2003) Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 11(11):505–510

    CAS  Google Scholar 

  • Faruque SM, Nair GB, Mekalanos JJ (2004) Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 23(11):723–741

    CAS  Google Scholar 

  • Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ (2005b) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102(5):1702–1707

    CAS  Google Scholar 

  • Faruque SM, Sack DA, Sack RB, Colwell RR, Takeda Y, Nair GB (2003) Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci USA 100(3):1304–1309

    CAS  Google Scholar 

  • Ferreira RBR, Antunes LCM, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190(3):851–860

    CAS  Google Scholar 

  • Fullner KJ, Mekalanos JJ (1999) Genetic characterization of a new Type IV-A pilus gene cluster found in both Classical and El Tor biotypes of Vibrio cholerae. Infect Immun 67(3):1393–1404

    CAS  Google Scholar 

  • Fullner KJ, Mekalanos JJ (2000) In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J 19(20):5315–5323

    CAS  Google Scholar 

  • Funahashi T, Tanabe T, Shiuchi K, Nakao H, Yamamoto S (2009) Identification and characterization of genes required for utilization of desferri-ferrichrome and aerobactin in Vibrio parahaemolyticus. Biol Pharm Bull 32(3):359–365

    CAS  Google Scholar 

  • Gonzalez-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus L-A, DePaola A (2008) Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing. J Bacteriol 190(8):2831–2840

    CAS  Google Scholar 

  • Grau BL, Henk MC, Garrison KL, Olivier BJ, Schulz RM, O’Reilly KL, Pettis GS (2008) Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene cluster. Infect Immun 76(4):1485–1497

    CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166(5):293–300

    CAS  Google Scholar 

  • Gulig PA, Bourdage KL, Starks AM (2005) Molecular Pathogenesis of Vibrio vulnificus. J Microbiol 43(Spec No):118–131

    CAS  Google Scholar 

  • Guvener ZT, McCarter LL (2003) Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. J Bacteriol 185(18):5431–5441

    Google Scholar 

  • Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Progulske-Fox A, Handfield M, Ryan ET, Calderwood SB (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci USA 100(14):8508–8513

    Google Scholar 

  • Harris JB, Khan AI, LaRocque RC, Dorer DJ, Chowdhury F, Faruque ASG, Sack DA, Ryan ET, Qadri F, Calderwood SB (2005) Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect Immun 73(11):7422–7427

    CAS  Google Scholar 

  • Heidelberg JF, Elsen JA, Nelson WC, Clayton RJ, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson K, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg S, Smith. HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser C (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–484

    CAS  Google Scholar 

  • Honda T, Nishibuchi M, Miwatani T, Kaper JB (1986) Demonstration of a plasmid-borne gene encoding a thermostable direct hemolysin in Vibrio cholerae non-O1 strains. Appl Environ Microbiol 52(5):1218–1220

    CAS  Google Scholar 

  • Hor LI, Gao CT, Wan L (1995) Isolation and characterization of Vibrio vulnificus inhabiting the marine environment of the Southwestern area of Taiwan. J Biomed Sci 2(4):384–389

    Google Scholar 

  • Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA 103(39):14542–14547

    CAS  Google Scholar 

  • Hsiao A, Xu X, Kan B, Kulkarni RV, Zhu J (2009) Direct regulation by the Vibrio cholerae regulator ToxT to modulate colonization and anticolonization pilus expression. Infect Immun 77(4):1383–1388

    CAS  Google Scholar 

  • Hsieh Y-C, Liang S-M, Tsai W-L, Chen Y-H, Liu T-Y, Liang C-M (2003) Study of capsular polysaccharide from Vibrio parahaemolyticus. Infect Immun 71(6):3329–3336

    CAS  Google Scholar 

  • Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74(1):44–51

    CAS  Google Scholar 

  • Hurley CC, Quirke A, Reen FJ, Boyd EF (2006) Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7:104

    Google Scholar 

  • Igbinosa EO, Okoh AI (2008) Emerging Vibrio species: an unending threat to public health in developing countries. Res Microbiol 159(7–8):495–506

    Google Scholar 

  • Johnson J, Panigrahi P, Morris JG (1992) Non-O1 Vibrio cholerae NRT36S produces a polysaccharide capsule that determines colony morphology, serum resistance, and virulence in mice. Infect Immun 60:864–869

    CAS  Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77(5):1723–1733

    CAS  Google Scholar 

  • Joseph LA, Wright AC (2004) Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 186(3):889–893

    CAS  Google Scholar 

  • Judson N, Mekalanos JJ (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 18:740–745

    CAS  Google Scholar 

  • Kenner J, Coster T, Trofa A, Taylor D, Barrera-Oro M, Hyman T, Adams J, Beattie D, Killeen K, Mekalanos JJ, Sadoff JC (1995) Peru-15, a live, attenuated oral vaccine candidate for Vibrio cholerae O1 El Tor. J Infect Dis 172:1126–1129

    CAS  Google Scholar 

  • Kierek K, Watnick PI (2003a) Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 69(9):5079–5088

    CAS  Google Scholar 

  • Kierek K, Watnick PI (2003b) The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proc Natl Acad Sci USA 100(24):14357–14362

    CAS  Google Scholar 

  • Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH (2003) Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71(10):5461–5471

    CAS  Google Scholar 

  • Kim CM, Park YJ, Shin SH (2007) A widespread deferoxamine-mediated iron-uptake system in Vibrio vulnificus. J Infect Dis 196(10):1537–1545

    CAS  Google Scholar 

  • Kimsey HH, Waldor MK (2004) The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes. J Biol Chem 279(4):2640–2647

    CAS  Google Scholar 

  • Kishishita M, Matsuoka N, Kumagai K, Yamasaki S, Takeda Y, Nishibuchi M (1992) Sequence variation in the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. Appl Environ Microbiol 58(8):2449–2457

    CAS  Google Scholar 

  • Kovacikova G, Lin W, Skorupski K (2004) Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Mol Microbiol 53(1):129–142

    CAS  Google Scholar 

  • Labbate M, Boucher Y, Joss MJ, Michael CA, Gillings MR, Stokes HW (2007) Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. Microbiology 153(Pt 5):1488–1498

    CAS  Google Scholar 

  • Lan S-F, Huang C-H, Chang C-H, Liao W-C, Lin IH, Jian W-N, Wu Y-G, Chen S-Y, Wong H-c (2009) Characterization of a new plasmid-like prophage in a pandemic Vibrio parahaemolyticus O3:K6 strain. Appl Environ Microbiol 75(9):2659–2667

    CAS  Google Scholar 

  • Lee BC, Choi SH, Kim TS (2008) Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect 10(14–15):1504–1513

    Google Scholar 

  • Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS, Choi SH (2007) Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45(2):146–152

    CAS  Google Scholar 

  • Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim K-S, Kim TS, Choi SH (2008) Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76(4):1509–1517

    CAS  Google Scholar 

  • Lee JH, Rho JB, Park KJ, Kim CB, Han YS, Choi SH, Lee KH, Park SJ (2004) Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72(8):4905–4910

    CAS  Google Scholar 

  • Li L, Rock JL, Nelson DR (2008) Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun 76(6):2620–2632

    CAS  Google Scholar 

  • Limthammahisorn S, Brady YJ, Arias CR (2009) In vivo gene expression of cold shock and other stress-related genes in Vibrio vulnificus during shellstock temperature control conditions in oysters. J Appl Microbiol 106(2):642–650

    CAS  Google Scholar 

  • Lipp EK, Rivera IN, Gil AI, Espeland EM, Choopun N, Louis VR, Russek-Cohen E, Huq A, Colwell RR (2003) Direct detection of Vibrio cholerae and ctxA in Peruvian coastal water and plankton by PCR. Appl Environ Microbiol 69(6):3676–3680

    CAS  Google Scholar 

  • Litwin CM, Rayback TW, Skinner J (1996) Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun 64(7):2834–2838

    CAS  Google Scholar 

  • Liverman AD, Cheng HC, Trosky JE, Leung DW, Yarbrough ML, Burdette DL, Rosen MK, Orth K (2007) Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci USA 104(43):17117–17122

    CAS  Google Scholar 

  • Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5(3):234–243

    CAS  Google Scholar 

  • Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361(9359):743–749

    CAS  Google Scholar 

  • Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4(8):608–620

    CAS  Google Scholar 

  • Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280(5363):605–608

    CAS  Google Scholar 

  • McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65(3):445–462

    CAS  Google Scholar 

  • McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7(1–2):18–29

    CAS  Google Scholar 

  • Meador CE, Parsons MM, Bopp CA, Gerner-Smidt P, Painter JA, Vora GJ (2007) Virulence gene- and pandemic group-specific marker profiling of clinical Vibrio parahaemolyticus isolates. J Clin Microbiol 45(4):1133–1139

    CAS  Google Scholar 

  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310(5755):1824–1827

    CAS  Google Scholar 

  • Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101(8):2524–2529

    CAS  Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio Cholerae. Cell 35(1):253–263

    Google Scholar 

  • Mekalanos JJ, Swartz DJ, Pearson GD, Harford N, Groyne F, deWilde M (1983) Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306(5943):551–557

    CAS  Google Scholar 

  • Merino S, Shaw JG, Tomás JM (2006) Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett 263(2):127–135

    CAS  Google Scholar 

  • Merrell DS, Camilli A (1999) The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol 34(4):836–849

    CAS  Google Scholar 

  • Mey AR, Payne SM (2001) Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol Microbiol 42(3):835–849

    CAS  Google Scholar 

  • Mey AR, Payne SM (2003) Analysis of residues determining specificity of Vibrio cholerae TonB1 for its receptors. J Bacteriol 185(4):1195–1207

    CAS  Google Scholar 

  • Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK, Payne SM (2002) Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: Irga is not required for virulence. Infect Immun 70(7):3419–3426

    CAS  Google Scholar 

  • Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szczypinski B, Fraser CM (2003) Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185(17):5220–5233

    CAS  Google Scholar 

  • Mitra R, Figueroa P, Mukhopadhyay AK, Shimada T, Takeda Y, Berg D, Nair GB (2000) Cell vacuolation, a manifestation of the El Tor hemolysin of Vibrio cholerae. Infect Immun 68(4):1928–1933

    CAS  Google Scholar 

  • Miyamoto Y, Kato T, Obara Y, Akiyama S, Takizawa K, Yamai S (1969) In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol 100(2):1147–1149

    CAS  Google Scholar 

  • Murphy RA, Boyd EF (2008) Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol 190(2):636–647

    CAS  Google Scholar 

  • Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA (2002) New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40(9):3296–3299

    Google Scholar 

  • Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA (2007) Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 20(1):39–48

    CAS  Google Scholar 

  • Nair GB, Shimada T, Kurazono H, Okuda J, Pal A, Karasawa T, Mihara T, Uesaka Y, Shirai H, Garg S, Saha P, Mukhopadhyay A, Ohashi T, Tada J, Nakayama T, Fukushima S, Takeda T, Takeda Y (1994) Characterization of phenotypic, serological, and toxigenic traits of Vibrio cholerae O139 Bengal. J Clin Microbiol 32:2775–2779

    CAS  Google Scholar 

  • Nakaguchi Y, Ishizuka T, Ohnaka S, Hayashi T, Yasukawa K, Ishiguro T, Nishibuchi M (2004) Rapid and specific detection of tdh, trh1, and trh2 mRNA of Vibrio parahaemolyticus by transcription-reverse transcription concerted reaction with an automated system. J Clin Microbiol 42(9):4284–4292

    CAS  Google Scholar 

  • Nakaguchi Y, Nishibuchi M (2005) The promoter region rather than its downstream inverted repeat sequence is responsible for low-level transcription of the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. J Bacteriol 187(5):1849–1855

    CAS  Google Scholar 

  • Nakasone N, Iwanaga M (1990) Pili of a Vibrio parahaemolyticus strain as a possible colonization factor. Infect Immun 58(1):61–69

    CAS  Google Scholar 

  • Nakhamchik A, Wilde C, Rowe-Magnus DA (2007) Identification of a Wzy polymerase required for group IV capsular polysaccharide and lipopolysaccharide biosynthesis in Vibrio vulnificus. Infect Immun 75(12):5550–5558

    CAS  Google Scholar 

  • Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, Makino K, Shinagawa H, Honda T (2000) A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 38(6):2156–2161

    CAS  Google Scholar 

  • Naughton LM, Blumerman SL, Carlberg M, Boyd EF (2009) Osmoadaptation among Vibrio species and unique genomic features and physiological responses of Vibrio parahaemolyticus. Appl Environ Microbiol 75(9):2802–2810

    CAS  Google Scholar 

  • Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L, Shao Y, LaRocque RC, Calderwood SB, Qadri F, Camilli A (2008) Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog 4(10):e1000187

    Google Scholar 

  • Nilsson WB, Paranjype RN, DePaola A, Strom MS (2003) Sequence polymorphism of the 16S rRNA gene of Vibrio vulnificus is a possible indicator of strain virulence. J Clin Microbiol 41(1):442–446

    CAS  Google Scholar 

  • Nishibuchi M, Fasano A, Russell RG, Kaper JB (1992) Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun 60(9):3539–3545

    CAS  Google Scholar 

  • Nishibuchi M, Kaper JB (1995) Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 63(6):2093–2099

    CAS  Google Scholar 

  • Nishibuchi M, Taniguchi T, Misawa T, Khaeomanee-Iam V, Honda T, Miwatani T (1989) Cloning and nucleotide sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 57(9):2691–2697

    CAS  Google Scholar 

  • Nishioka T, Kamruzzaman M, Nishibuchi M, Satta Y (2008) On the origin and function of an insertion element VPaI-1 specific to post-1995 pandemic Vibrio parahaemolyticus strains. Genes Genet Syst 83(2):101–110

    CAS  Google Scholar 

  • Nusrin S, Gil AI, Bhuiyan NA, Safa A, Asakura M, Lanata CF, Hall E, Miranda H, Huapaya B, Vargas GC, Luna MA, Sack, DA, Yamasaki S, Nair GB (2009) Peruvian Vibrio cholerae O1 El Tor strains possess a distinct region in the Vibrio seventh pandemic island-II that differentiates them from the prototype seventh pandemic El Tor strains. J Med Microbiol 58(3):342–354

    CAS  Google Scholar 

  • Okada N, Iida T, Park K-S, Goto N, Yasunaga T, Hiyoshi H, Matsuda S, Kodama T, Honda T (2009) Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect Immun 77(2):904–913

    CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43(Spec No):93–100

    Google Scholar 

  • Olivier V, Salzman NH, Satchell KJ (2007) Prolonged colonization of mice by Vibrio cholerae El Tor O1 depends on accessory toxins. Infect Immun 75(10):5043–5051

    CAS  Google Scholar 

  • O’Shea YA, Finnan S, Reen FJ, Morrissey JP, O’Gara F, Boyd EF (2004) The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology 150(Pt 12):4053–4063

    Google Scholar 

  • Pal A, Ramamurthy T, Bhadra RK, Takeda T, Shimada T, Takeda Y, Nair GB, Pal SC, Chakrabarti S (1992) Reassessment of the prevalence of heat-stable enterotoxin (NAG-ST) among environmental Vibrio cholerae non-O1 strains isolated from Calcutta, India, by using a NAG-ST DNA probe. Appl Environ Microbiol 58(8):2485–2489

    CAS  Google Scholar 

  • Pang B, Yan M, Cui Z, Ye X, Diao B, Ren Y, Gao S, Zhang L, Kan B (2007) Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae Serogroups O1 and O139 revealed by array-based comparative genomic hybridization. J Bacteriol 189(13):4837–4849

    CAS  Google Scholar 

  • Panigrahi P, Tall BD, Russell RG, Detolla LJ, Morris JG Jr (1990) Development of an in vitro model for study of non-O1 Vibrio cholerae virulence using Caco-2 cells. Infect Immun 58(10):3415–3424

    CAS  Google Scholar 

  • Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun 73(3):1411–1422

    CAS  Google Scholar 

  • Park KS, Ono T, Rokuda M, Jang MH, Iida T, Honda T (2004) Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiol Immunol 48(4):313–318

    CAS  Google Scholar 

  • Park KS, Ono T, Rokuda M, Jang MH, Okada K, Iida T, Honda T (2004) Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72(11):6659–6665

    CAS  Google Scholar 

  • Peterson KM, Mekalanos JJ (1988) Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 56(11):2822–2829

    CAS  Google Scholar 

  • Pflughoeft KJ, Kierek K, Watnick PI (2003) Role of ectoine in Vibrio cholerae osmoadaptation. Appl Environ Microbiol 69(10):5919–5927

    CAS  Google Scholar 

  • Prouty MG, Correa NE, Klose KE (2001) The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol 39(6):1595–1609

    CAS  Google Scholar 

  • Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104(39):15508–15513

    CAS  Google Scholar 

  • Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5):1528–1533

    CAS  Google Scholar 

  • Qadri F, Chowdhury MI, Faruque SM, Salam MA, Ahmed T, Begum YA, Saha A, Al Tarique A, Seidlein LV, Park E, Killeen KP, Mekalanos JJ, Clemens JD, Sack DA (2007) Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine 25(2):231–238

    CAS  Google Scholar 

  • Quirke AM, Reen FJ, Claesson MJ, Boyd EF (2006) Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. Bioinformatics 22(8):905

    CAS  Google Scholar 

  • Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM (2008) Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27(7):347–355

    CAS  Google Scholar 

  • Raimondi F, Kao JP, Kaper JB, Guandalini S, Fasano A (1995) Calcium-dependent intestinal chloride secretion by Vibrio parahaemolyticus thermostable direct hemolysin in a rabbit model. Gastroenterology 109(2):381–386

    CAS  Google Scholar 

  • Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF (2006) The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Micro 4(9):697–704

    CAS  Google Scholar 

  • Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187(10):3551–3555

    CAS  Google Scholar 

  • Rhee JE, Jeong HG, Lee JH, Choi SH (2006) AphB influences acid tolerance of Vibrio vulnificus by activating expression of the positive regulator CadC. J Bacteriol 188(18):6490–6497

    CAS  Google Scholar 

  • Rhee JE, Kim KS, Choi SH (2008) Activation of the Vibrio vulnificus cadBA Operon by Leucine-responsive regulatory protein is mediated by CadC. J Microbiol Biotechnol 18(11):1755–1761

    CAS  Google Scholar 

  • Rhine JA, Taylor RK (1994) TcpA pilin sequences and colonization requirements for O1 and O139 Vibrio cholerae. Mol Microbiol 13(6):1013–1020

    CAS  Google Scholar 

  • Rogozin IB, Makarova KS, Wolf YI, Koonin EV (2004) Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes. Brief Bioinform 5(2):131–149

    CAS  Google Scholar 

  • Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA 102(8):3004–3009

    CAS  Google Scholar 

  • Russell RG, Tall BD, Morris JG Jr (1992) Non-O1 Vibrio cholerae intestinal pathology and invasion in the removable intestinal tie adult rabbit diarrhea model. Infect Immun 60(2):435–442

    CAS  Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363(9404):223–233

    CAS  Google Scholar 

  • Sanchez J, Holmgren J (2008) Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65(9):1347–1360

    CAS  Google Scholar 

  • Satchell KJ (2007) MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75(11):5079–5084

    CAS  Google Scholar 

  • Seguritan V, Feng IW, Rohwer F, Swift M, Segall AM (2003) Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. J Bacteriol 185(21):6434–6447

    CAS  Google Scholar 

  • Sengupta DK, Boesman-Finkelstein M, Finkelstein RA (1996) Antibody against the capsule of Vibrio cholerae O139 protects against experimental challenge. Infect Immun 64(1):343–345

    CAS  Google Scholar 

  • Shikuma NJ, Yildiz FH (2009) Identification and characterization of OscR, a transcriptional regulator involved in osmolarity adaptation in Vibrio cholerae. J Bacteriol 191(13):4082–4096

    CAS  Google Scholar 

  • Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264(1):89–97

    CAS  Google Scholar 

  • Shrivastava S, Mande SS (2008) Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS ONE 3(8):e2955

    Google Scholar 

  • Sigel SP, Stoebner JA, Payne SM (1985) Iron-vibriobactin transport system is not required for virulence of Vibrio cholerae. Infect Immun 47(2):360–362

    CAS  Google Scholar 

  • Simpson LM, Oliver JD (1983) Siderophore production by Vibrio vulnificus. Infect Immun 41(2):644–649

    CAS  Google Scholar 

  • Skorupski K, Taylor RK (1999) A new level in the Vibrio cholerae ToxR virulence cascade: aphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 31(3):763–771

    CAS  Google Scholar 

  • Strom MS, Paranjpye RN (2000) Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2(2):177–188

    CAS  Google Scholar 

  • Tacket CO, Taylor RK, Losonsky G, Lim Y, Nataro JP, Kaper JB, Levine MM (1998) Investigation of the roles of toxin-coregulated pili and mannose-sensitive hemagglutinin pili in the pathogenesis of Vibrio cholerae O139 infection. Infect Immun 66(2):692–695

    CAS  Google Scholar 

  • Takahashi A, Iida T, Naim R, Naykaya Y, Honda T (2001) Chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. J Med Microbiol 50(10):870–878

    CAS  Google Scholar 

  • Takahashi A, Kenjyo N, Imura K, Myonsun Y, Honda T (2000a) Cl(-) secretion in colonic epithelial cells induced by the Vibrio parahaemolyticus hemolytic toxin related to thermostable direct hemolysin. Infect Immun 68(9):5435–5438

    CAS  Google Scholar 

  • Takahashi A, Sato Y, Shiomi Y, Cantarelli VV, Iida T, Lee M, Honda T (2000b) Mechanisms of chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus in human colonic tissue and a human intestinal epithelial cell line. J Med Microbiol 49(9):801–810

    CAS  Google Scholar 

  • Tam VC, Serruto D, Dziejman M, Brieher W, Mekalanos JJ (2007) A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 1(2):95–107

    CAS  Google Scholar 

  • Tanabe T, Funahashi T, Nakao H, Miyoshi S, Shinoda S, Yamamoto S (2003) Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J Bacteriol 185(23):6938–6949

    CAS  Google Scholar 

  • Tanabe T, Naka A, Aso H, Nakao H, Narimatsu S, Inoue Y, Ono T, Yamamoto S (2005) A novel aerobactin utilization cluster in Vibrio vulnificus with a gene involved in the transcription regulation of the iutA homologue. Microbiol Immunol 49(9):823–834

    CAS  Google Scholar 

  • Tanabe T, Nakao H, Kuroda T, Tsuchiya T, Yamamoto S (2006) Involvement of the Vibrio parahaemolyticus pvsC gene in export of the siderophore vibrioferrin. Microbiol Immunol 50(11):871–876

    CAS  Google Scholar 

  • Tanaka Y, Kimura B, Takahashi H, Watanabe T, Obata H, Kai A, Morozumi S, Fujii T (2008) Lysine decarboxylase of Vibrio parahaemolyticus: kinetics of transcription and role in acid resistance. J Appl Microbiol 104(5):1283–1293

    CAS  Google Scholar 

  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84(9):2833–2837

    CAS  Google Scholar 

  • Terai A, Baba K, Shirai H, Yoshida O, Takeda Y, Nishibuchi M (1991) Evidence for insertion sequence-mediated spread of the thermostable direct hemolysin gene among Vibrio species. J Bacteriol 173(16):5036–5046

    CAS  Google Scholar 

  • Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64(7):2853–2856

    CAS  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68(3):403–431

    CAS  Google Scholar 

  • Trucksis M, Michalski J, Deng YK, Kaper JB (1998) The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci USA 95(24):14464–14469

    CAS  Google Scholar 

  • Twedt RM, Spaulding PL, Johnson HM (1972) Antigenic relationships among strains of Vibrio parahaemolyticus. Appl Microbiol 23(5):966–971

    CAS  Google Scholar 

  • Udden SM, Zahid MS, Biswas K, Ahmad QS, Cravioto A, Nair GB, Mekalanos JJ, Faruque SM (2008) Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA 105(33):11951–11956

    CAS  Google Scholar 

  • Wachsmuth IK, Olsvik Ø, Evins GM, Popovic T (1994) Molecular epidemiology of cholera. In: Wachsmuth IK, Blake PA, Olsvik Ø Vibrio cholerae and cholera: molecular to global perspectives. American Society for Microbiology, Washington, DC, pp 357–370

    Google Scholar 

  • Waldor MK, Colwell R, Mekalanos JJ (1994) The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci USA 91(24):11388–11392

    CAS  Google Scholar 

  • Waldor MK, Friedman DI (2005) Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8(4):459–465

    CAS  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    CAS  Google Scholar 

  • Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181(11):3606–3609

    CAS  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34(3):586–595

    CAS  Google Scholar 

  • Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39(2):223–235

    CAS  Google Scholar 

  • Webster AC, Litwin CM (2000) Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infect Immun 68(2):526–534

    CAS  Google Scholar 

  • Worden AZ, Seidel M, Smriga S, Wick A, Malfatti F, Bartlett D, Azam F (2006) Trophic regulation of Vibrio cholerae in coastal marine waters. Environ Microbiol 8(1):21–29

    CAS  Google Scholar 

  • Wright AC, Powell JL, Kaper JB, Morris JG Jr (2001) Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus. Infect Immun 69(11):6893–6901

    CAS  Google Scholar 

  • Wright AC, Powell JL, Tanner MK, Ensor LA, Karpas AB, Morris JG Jr, Sztein MB (1999) Differential expression of Vibrio vulnificus capsular polysaccharide. Infect Immun 67(5):2250–2257

    CAS  Google Scholar 

  • Wu Z, Milton D, Nybom P, Sjo A, Magnusson KE (1996) Vibrio cholerae hemagglutinin/protease (HA/protease) causes morphological changes in cultures epithelial cells and perturbs their paracellular barrier function. Microb Pathog 21(2):11–123

    Google Scholar 

  • Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM (2006) Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol 188(18):6515–6523

    CAS  Google Scholar 

  • Wyckoff EE, Mey AR, Payne SM (2007) Iron acquisition in Vibrio cholerae. Biometals 20(3–4):405–416

    CAS  Google Scholar 

  • Xicohtencatl-Cortes J, Lyons S, Chaparro AP, Hernandez DR, Saldana Z, Ledesma MA, Rendon MA, Gewirtz AT, Klose KE, Giron JA (2006) Identification of proinflammatory flagellin proteins in supernatants of Vibrio cholerae O1 by proteomics analysis. Mol Cell Proteomics 5(12):2374–2383

    CAS  Google Scholar 

  • Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S (1994) Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J Biochem 115(5):868–874

    CAS  Google Scholar 

  • Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323(5911):269–272

    CAS  Google Scholar 

  • Yeung PS, Boor KJ (2004) Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis 1(2):74–88

    Google Scholar 

  • Yeung PSM, Hayes MC, DePaola A, Kaysner CA, Kornstein L, Boor KJ (2002) Comparative phenotypic, molecular, and virulence characterization of Vibrio parahaemolyticus O3:K6 isolates. Appl Environ Microbiol 68(6):2901–2909

    CAS  Google Scholar 

  • Yildiz FH, Liu XS, Heydorn A, Schoolnik GK (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53(2):497–515

    CAS  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96(7):4028–4033

    CAS  Google Scholar 

  • Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17(3):109–118

    CAS  Google Scholar 

  • Yoon SS, Mekalanos JJ (2008) Decreased potency of the Vibrio cholerae sheathed flagellum to trigger host innate immunity. Infect Immun 76(3):1282–1288

    CAS  Google Scholar 

  • Zahid MSH, Udden SMN, Faruque ASG, Calderwood SB, Mekalanos JJ, Faruque SM (2008) Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect Immun 76(11):5266–5273

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the work of the many Vibrio labs that contributed to the information provided in this chapter. We have cited original publications when possible and referred the reader to several excellent review articles when appropriate, as they provide in depth information on specific topics that were beyond the scope of this chapter. Work in our labs is supported by grants from the NIH R01AI055987 to FHY and R01AI073785 to MD. We thank members of our laboratories for their valuable comments on the manuscript and especially Elaine Hamilton (MD) for assistance in preparing the tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Dziejman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Dziejman, M., Yildiz, F.H. (2011). Genomics of Pathogenic Vibrio Species. In: Wiedmann, M., Zhang, W. (eds) Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7686-4_9

Download citation

Publish with us

Policies and ethics