Skip to main content

The Weiszfeld Algorithm: Proof, Amendments, and Extensions

  • Chapter
  • First Online:
Foundations of Location Analysis

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 155))

Abstract

Some time in the early seventeenth century, the following geometrical optimization problem was posed:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arriola R, Laporte G, Ortega FA (2005) The Weber problem in a multi-storey building. INFOR 43(3):157–169.

    Google Scholar 

  • Bajaj C (1988) The algebraic degree of geometric optimisation problems. Discrete and Comput Geom 3:177–191

    Google Scholar 

  • Balas E, Yu CS (1982) A note on the Weiszfeld-Kuhn algorithm for the general Fermat problem. Management Science Report 484:1–16, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  • Brimberg J (2003) Further notes on convergence of the Weiszfeld algorithm. Yugoslav J Oper Res 13:199–206

    Google Scholar 

  • Brimberg J, Chen R, Chen D (1998) Accelerating convergence in the Fermat–Weber location problem. Oper Res Lett 22:151–157

    Google Scholar 

  • Brimberg J, Hansen P, Mladenović N (2006) Decomposition strategies for large-scale continuous location–allocation problems IMA J Manag Math 17:307–316

    Google Scholar 

  • Brimberg J, Hansen P, Mladenović N, Taillard ED (2000) Improvements and comparison of heuristics for solving the multisource Weber problem. Oper Res 48:444–460

    Google Scholar 

  • Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the minisum location problem with â„“ p distances. Oper Res 41:1153–1163

    Google Scholar 

  • Cánovas L, Canavate R, Marín A (2002) On the convergence of the Weiszfeld algorithm. Math Program 93:327–330

    Google Scholar 

  • Cera M, Ortega FA (2002) Locating the median hunter among n mobile prey on the plane. Inter J Ind Eng 9:6–15

    Google Scholar 

  • Chandrasekaran R, Tamir A (1989) Open questions concerning Weiszfeld’s algorithm for the Fermat-Weber location problem. Math Program 44:293–295

    Google Scholar 

  • Chen R (1991) An improved method for the solution of the problem of location on a inclined plane. RAIRO Rech Oper—Oper Res 25:45–53

    Google Scholar 

  • Chen R (2001) Optimal location of a single facility with circular demand areas. Comput Math Appl 41:1049–1061

    Google Scholar 

  • Cockayne EJ, Melzak ZA (1969) Euclidean constructibility in graph-minimization problems. Math Mag 42:206–208

    Google Scholar 

  • Cooper L (1963) Location-allocation problems. Oper Res 11:331–343

    Google Scholar 

  • Cooper L (1968) An extension of the generalized Weber problem. J Reg Sci 8:181–197

    Google Scholar 

  • Cooper L, Katz IN (1981) The Weber problem revisited. Comput Math Appl 7:225–234

    Google Scholar 

  • Dowling PD, Love RF (1986) Bounding methods for facilities location algorithms. Nav Res Logist Q 33:775–787

    Google Scholar 

  • Dowling PD, Love RF (1987) An evaluation of the dual as a lower bound in facilities location problems. Inst Ind Eng Trans 19:160–166

    Google Scholar 

  • Drezner Z (1984) The planar two center and two median problems. Transp Sci 18:351–361

    Google Scholar 

  • Drezner Z (1995) A note on accelerating the Weiszfeld procedure. Locat Sci 3:275–279

    Google Scholar 

  • Drezner Z (2009) On the convergence of the generalized Weiszfeld algorithm. Ann Oper Res 167:327–336

    Google Scholar 

  • Drezner T, Drezner Z (2004) Finding the optimal solution to the Huff based competitive location model. Comput Manag Sci 1:193–208

    Google Scholar 

  • Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2002) The Weber problem. In Drezner Z, Hamacher H (eds) Facility Location: Applications and Theory. Springer, Berlin, pp. 1–136

    Google Scholar 

  • Drezner Z, Schaible S, Wesolowsky GO (1990) Queuing-location problems in the plane. Nav Res Logist Q 37:929–935

    Google Scholar 

  • Drezner Z, Wesolowsky GO (1978) Facility location on a sphere. J Oper Res Soc 29:997–1004

    Google Scholar 

  • Drezner Z, Wesolowsky GO (1980) Optimal location of a facility relative to area demands. Nav Res Logist Q 27:199–206

    Google Scholar 

  • Drezner Z, Wesolowsky GO (1991) The Weber problem on the plane with some negative weights. INFOR 29:87–99

    Google Scholar 

  • Eckhardt U (1980) Weber’s problem and Weiszfeld’s algorithm in general spaces. Math Program 18:186–196

    Google Scholar 

  • Eilon S, Watson-Gandy CDT, Christofides N (1971) Distribution management: Mathematical modelling and practical analysis. Charles Griffin & Co., Ltd., London

    Google Scholar 

  • Elzinga DJ, Hearn DW (1983) On stopping rules for facilities location algorithms. Inst of Ind Eng Trans 15:81–83

    Google Scholar 

  • Fagnano GF (1775) Problemata quaedam ad methodum maximorum et minimorum spectantia, Nova Acta Eruditorum 1775 Mensis Iunii (published in 1779), 281–303

    Google Scholar 

  • Fernández J, Pelegrín B, Plastria F, Tóth B (2007) Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur J Oper Res 179:1274–1287

    Google Scholar 

  • Francis RL, McGinnis LF, White JA (1992) Facility layout and location: an analytical approach (2nd edition). Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Franksen OI, Grattan-Guinness I (1989) The earliest contribution to location theory? Spatio-temporal equilibrium with Lamé and Clapeyron, 1829. Math Comput Simul 31:195–220

    Google Scholar 

  • Frenk JBG, Melo MT, Zhang S (1994) A Weiszfeld method for a generalized â„“ p distance minisum location model in continuous space. Locat Sci 2:111–127

    Google Scholar 

  • Gass SA (2004) In Memoriam, Andrew (Andy) Vazsonyi: 1916–2003, OR/MS Today, February 2004, http://www.lionhrtpub.com/orms/orms-2-04/frmemoriam.html, see also Ann Oper Res 167:2–5 (2009)

  • Gendreau M, Potvin J-Y (2008) Metaheuristics: a Canadian Perspective. INFOR 46:71–80

    Google Scholar 

  • Hoos HH, Stützle T (2005) Stochastic local search: foundations and applications. Elsevier, Amsterdam

    Google Scholar 

  • Hiriart-Urruty, J-B, Lemaréchal C (2001) Fundamentals of convex analysis. Springer, Berlin

    Google Scholar 

  • Illgen A (1979) Das Verhalten von Abstiegsverfahren an einer Singularität des Gradienten. Mathematik, Operationsforschung und Statistik, Ser Optim 10:39–55

    Google Scholar 

  • Juel H (1984) On a rational stopping rule for facilities location algorithms. Nav Res Logist Q 31:9–11

    Google Scholar 

  • Katz IN (1969) On the convergence of a numerical scheme for solving some locational equilibrium problems. SIAM J Appl Math 17:1224–1231

    Google Scholar 

  • Katz IN (1974) Local convergence in Fermat’s problem. Math Program 6:89–104

    Google Scholar 

  • Katz IN, Cooper L (1980) Optimal location on a sphere. Comput Math Appl 6:175–196

    Google Scholar 

  • Katz IN, Vogl SR (2010) A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem. Comput Math Appl 59:399–410

    Google Scholar 

  • Kuhn H (1967) On a pair of dual nonlinear programs. In: Abadie J (ed) Methods of nonlinear programming. North-Holland, Amsterdam, pp. 38–54

    Google Scholar 

  • Kuhn H (1973) A note on Fermat’s problem. Math Program 4:98–107

    Google Scholar 

  • Kuhn HW, Kuenne RE (1962) An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J Reg Sci 4:21–33

    Google Scholar 

  • Kupitz YS, Martini H (1997) Geometric aspects of the generalized Fermat-Torricelli problem. In: Intuitive geometry, Bolyai Society, Math Stud 6:55–127

    Google Scholar 

  • Lamé G, Clapeyron BPE (1829) Mémoire sur l’application de la statique à la solution des problèmes relatifs à la théorie des moindres distances. Journal des Voies de Communications 10: 26–49. (In French—Memoir on the application of statics to the solution of problems concerning the theory of least distances.) For a translation into English see Franksen & Grattan-Guinness (1989)

    Google Scholar 

  • Launhardt W (1885) Mathematische Begründung der Volkswirtschaftslehre, Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Levin Y, Ben-Israel A. (2002) The Newton bracketing method for convex minimization. Comput Optim and Appl 21:213–229

    Google Scholar 

  • Li Y (1998) A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclidean distances. Comput Optim Appl 10:219–242

    Google Scholar 

  • Love RF, Dowling PD (1989) A new bounding method for single facility location models. Ann Oper Res 18:103–112

    Google Scholar 

  • Love RF, Morris JG, Wesolowsky GO (1988) Facilities location: models & methods. North-Holland, New York

    Google Scholar 

  • Love RF, Yeong WY (1981) A stopping rule for facilities location algorithms. Am Inst Ind Eng Trans 13:357–362

    Google Scholar 

  • Miehle W (1958) Link-length minimization in networks. Oper Res 6:232–243

    Google Scholar 

  • Morris JG, Verdini WA (1979) Minisum â„“ p distance location problems solved via a perturbed problem and Weiszfeld’s algorithm. Oper Res 27:1180–1188

    Google Scholar 

  • Ostresh LM Jr (1975) An efficient algorithm for solving the two-center location-allocation problem. J Reg Sci 15:209–216

    Google Scholar 

  • Ostresh LM Jr (1978a) Convergence and descent in the Fermat location problem. Transportation Science 12:153–164

    Google Scholar 

  • Ostresh LM Jr (1978b) On the convergence of a class of iterative methods for solving the Weber location problem. Oper Res 26:597–609

    Google Scholar 

  • Overton ML (1983) A quadratically convergent method for minimizing a sum of Euclidean norms. Math Program 27:34–63

    Google Scholar 

  • Plastria F (1987) Solving general continuous single facility location problems by cutting planes. Eur J Oper Res 29:98–110

    Google Scholar 

  • Plastria F (1992a) GBSSS, the generalized big square small square method for planar single facility location. Eur J Oper Res 62:163–174

    Google Scholar 

  • Plastria F (1992b) When facilities coincide: exact optimality conditions in multifacility location. J Math Anal and Appl 169:476–498

    Google Scholar 

  • Plastria F (1993) On destination optimality in asymmetric distance Fermat-Weber problems. Ann Oper Res 40:355–369

    Google Scholar 

  • Plastria F, Elosmani M (2008) On the convergence of the Weiszfeld algorithm for continuous single facility location-allocation problems. TOP 16:388–406

    Google Scholar 

  • Rado F (1988) The Euclidean multifacility location problem. Oper Res 36:485–492

    Google Scholar 

  • Rautenbach D, Struzyna M, Szegedy C, Vygen J (2004) Weiszfeld’s algorithm revisited once again. Report 04946-OR, Research Institute for Discrete Mathematics, University of Bonn, Germany

    Google Scholar 

  • Rockafellar T (1970) Convex analysis. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Rosen JB, Xue GL (1992) On the convergence of Miehle’s algorithm for the Euclidean multifacility location problem. Oper Res 40:188–191

    Google Scholar 

  • Rosen JB, Xue GL (1993) On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem. Oper Res 41:1164–1171

    Google Scholar 

  • Rosing K, Harris B (1992) Algorithmic and technical improvements: optimal solutions to the (generalized) multi-Weber problem. Pap in Reg Sci 71:331–352

    Google Scholar 

  • Schärlig A (1973) About the confusion between the center of gravity and Weber’s optimum. Reg Urban Econ 13:371–382

    Google Scholar 

  • Sturm R (1884) Ãœber den Punkt kleinster Entfernungssumme von gegebenen Punkten. Journal für die reine und angewandte Mathematik 97:49–61. (In German: On the point of smallest distance sum from given points)

    Google Scholar 

  • Shi Y, Chang Q, Xu J (2007) Convergence of fixed point iteration for deblurring and denoising problem. Appl Math and Comput 189:1178–1185

    Google Scholar 

  • Valkonen T (2006) Convergence of a SOR-Weiszfeld Type Algorithm for Incomplete Data Sets. Numer Funct Anal and Optim 27;931–952. See also Errata, same journal, (2008), volume 29:1201–1203

    Google Scholar 

  • Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat-Weber location problem. Math Program 90:559–566

    Google Scholar 

  • Vazsonyi A (2002) Which Door has the Cadillac. Writers Club Press, New York

    Google Scholar 

  • Vazsonyi A (2002) Pure mathematics and the Weiszfeld algorithm. Decision Line 33:12–13, http://www.decisionsciences.org/DecisionLine/Vol33/33_3/index.htm

    Google Scholar 

  • Weber A (1909) Ãœber den Standort der Industrien. Tübingen, Germany. (English translation: Friedrich CJ (translator) (1929), Theory of the location of industries. University of Chicago Press, Chicago)

    Google Scholar 

  • Weida NC, Richardson R, Vazsonyi A (2001) Operations analysis using Excel. Duxbury, Pacific Grove

    Google Scholar 

  • Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points données est minimum. Tôhoku Math J (first series) 43:355–386

    Google Scholar 

  • Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is minimum. Ann Oper Res 167:7–41

    Google Scholar 

  • Wendell RE, Peterson EL (1984) A dual approach for obtaining lower bounds to the Weber problem. J Reg Sci 24:219–228

    Google Scholar 

  • Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23

    Google Scholar 

  • Wu S (1994) A polynomial time algorithm for solving the Fermat-Weber location problem with mixed norms. Optimization 30:227–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Plastria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Plastria, F. (2011). The Weiszfeld Algorithm: Proof, Amendments, and Extensions. In: Eiselt, H., Marianov, V. (eds) Foundations of Location Analysis. International Series in Operations Research & Management Science, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7572-0_16

Download citation

Publish with us

Policies and ethics