Skip to main content

Genetic Resources for Drought Resistance

  • Chapter
  • First Online:
Book cover Plant Breeding for Water-Limited Environments

Summary

There is no comprehensive listing of genetic resources and potential donors for drought resistance. Sporadic data may sometime be found in seed banks but the quality of the data is uncertain. This chapter attempts to present the available groups of actual and potential genetic resources as derived from past and current literature. Five groups are recognized. These are listed by the order of their relative genetic compatibility with cultivated breeding germplasm.

While it is to be expected that breeders tend to search for donors of drought resistance among distant germplasm, it is quite apparent today that normal agronomic breeding germplasm may often carry latent genetic variation for drought resistance and this should be the first resource of choice. Landraces from dry habitats have been used successfully in breeding for water limited environments, whether towards developing open pollinated varieties or hybrids. Wild species and progenitors of our cultivated crops were always on the agenda as possible donors for drought resistance. Attempts at using these resources have increased in recent years and this chapter evaluates their potential and real contribution. Transgenic plants are first developed as a tool in functional genomics. They can constitute a realistic step towards transferring useful genes into a target crop plant, and as such they are an important genetic resource. Their importance is increasing as their drought phenotyping improves. Lastly, resurrection plants which survive extreme desiccation under harsh environments have always excited the imagination of biologists. Research on the nature of their tolerance may open new avenues for their use as donors of important genes for drought resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baalbaki R, Hajj-Hassan N, Zurayk R (2006) Aegilops species from semiarid areas of Lebanon: variation in quantitative attributes under water stress. Crop Sci 46:799–806

    Article  Google Scholar 

  • Babu CR, Zhang J, Blum A et al (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF et al (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Bhattarai T, Fettig S (2005) Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiol Plant 123:452–458

    Article  CAS  Google Scholar 

  • Blum A, Sullivan CY (1986) The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Ann Bot 57:835–846

    Google Scholar 

  • Blum A, Gozlan G, Mayer J (1981) The manifestation of dehydration avoidance in wheat breeding germplasm. Crop Sci 21:495–499

    Article  Google Scholar 

  • Blum A, Ebercon A, Sinmena B et al (1983) Drought resistance reactions of wild emmer (T. dicoccoides) and wild emmer x wheat derivatives. In: Proceedings of the 6th international wheat genetics symposium, Kyoto, pp 433–438

    Google Scholar 

  • Blum A, Golan G, Mayer J et al (1989) The drought response of landraces of wheat from the Northern Negev desert in Israel. Euphytica 43:87–96

    Article  Google Scholar 

  • Blum A, Munns R, Passioura JB et al (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110:1051

    CAS  PubMed  Google Scholar 

  • Cairns JE, Botwright Acun TL, Simborio FA et al (2009) Identification of deletion mutants with improved performance under water-limited environments in rice (Oryza sativa L). Field Crops Res 114:159–168

    Article  Google Scholar 

  • Carver BF, Nevo E (1990) Genetic diversity of photosynthetic characters in native populations of Triticum-dicoccoides. Photosynth Res 25:119–128

    Article  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Ceccarelli S, Grando S (1991) Environment of selection and type of germplasm in barley breeding for low-yielding conditions. Euphytica 57:207–219

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 10:307–318

    Article  Google Scholar 

  • Dingkuhn M, Jones MP, Johnson DE et al (1998) Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Res 57:57–69

    Article  Google Scholar 

  • Gallardo M, Jackson LE, Thompson RB (1996) Shoot and root physiological responses to localized zones of soil moisture in cultivated and wild lettuce (Lactuca spp). Plant Cell Environ 9:1169–1178

    Article  Google Scholar 

  • Gororo NN, Eagles HA, Eastwood RF et al (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241–254

    Article  Google Scholar 

  • Hamdi A, Erskine W (1996) Reaction of wild species of the genus lens to drought. Euphytica 91:173–179

    Google Scholar 

  • Huang J, Hirji R, Adam L et al (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  CAS  PubMed  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP et al (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K et al (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    Article  CAS  PubMed  Google Scholar 

  • Jenks MA, Hasegawa PM, Mohan Jain S (eds) (2007) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Jiang Q, Zhang J-Y, Guo X et al (2010) Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Funct Plant Biol 37:157–165

    Article  CAS  Google Scholar 

  • Johnson WC, Jackson LE, Ochoa O et al (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    Article  CAS  Google Scholar 

  • Lafitte HR, Li ZK, Vijayakumar CHM et al (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Res 96:77–86

    Article  Google Scholar 

  • Lakew B, Semeane Y, Alemayehu F et al (1997) Exploiting the diversity of barley landraces in Ethiopia. Genet Resour Crop Evol 44:109–116

    Article  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Trans Res 17:651–663

    Google Scholar 

  • Liu L, Lafitte R, Guan D (2004) Wild Oryza species as potential sources of drought-adaptive traits. Euphytica 138:149–161

    Article  Google Scholar 

  • Lv S, Yang A, Zhang K et al (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Marshall AH, Rascle C, Abberton MT et al (2001) Introgression as a route to improved drought tolerance in white clover (Trifolium repens L). J Agron Crop Sci 187:11–18

    Article  Google Scholar 

  • Moore JP, Le NT, Brandt WF et al (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci 14:110–117

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Nat Acad Sci U S A 104:16450–16455

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 32:670–685

    Article  Google Scholar 

  • Nevo E, Gorham J, Beiles A (1992) Variation for Na-22 uptake in wild emmer wheat, Triticum dicoccoides in Israel – salt tolerance resources for wheat improvement. J Exp Bot 43:511–518

    Article  CAS  Google Scholar 

  • Ortiz R, Iwanaga M, Reynolds MP et al (2007) Overview on crop genetic engineering for drought-prone environments. J SAT Agr Res 40:1–30

    Google Scholar 

  • Park B-J, Liu Z, Kanno A et al (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

    Article  CAS  Google Scholar 

  • Peleg Z, Fahima T, Abbo S et al (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Article  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H et al (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  CAS  PubMed  Google Scholar 

  • Reyes JL, Rodrigo M-J, Colmenero-Flores JM et al (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA et al (1996) Identification of quantitative trait loci under drought conditions in tropical maize I. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Nat Acad Sci U S A 104:19631–19636

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Rajinder K, Wu JR (2002) Genetic improvement of basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Rosenow DT, Dahlberg JA (2000) Collection, conversion and utilisation of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum, origin, history, technology and production. Wiley, New York

    Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM et al (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  CAS  PubMed  Google Scholar 

  • Suprunova T, Krugman T, Fahima T et al (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A et al (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64:17–34

    Article  CAS  PubMed  Google Scholar 

  • Sutka J, Farshadfar E, Koszegi B et al (1995) Drought tolerance of disomic chromosome additions of Agropyron elongatum to Triticum aestivum. Cereal Res Commun 23:351–357

    Google Scholar 

  • Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199

    Article  CAS  Google Scholar 

  • Trethowan RM, Mujeeb-Kazib A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • van de Wouw M, van Hintum T, Kik C et al (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252

    Article  PubMed  Google Scholar 

  • Wan J, Griffiths R, Yin J et al (2009) Development of drought-tolerant canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses. Crop Sci 49:1539–1554

    Article  CAS  Google Scholar 

  • Wang Y, Beaith M, Chalifoux M et al (2009) Shoot-specific down-regulation of protein farnesyltransferase (-subunit) for yield protection against drought in canola. Mol Plant 2:191–200

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, Crossa J, Franco J et al (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N et al (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Chen X, Xiang C-B et al (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  CAS  PubMed  Google Scholar 

  • Xu DP, Duan XL, Wang BY et al (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  PubMed  Google Scholar 

  • Yadav OP (2008) Performance of landraces, exotic elite populations and their crosses in pearl millet (Pennisetum glaucum) in drought and non-drought conditions. Plant Breed 127:208–210

    Article  Google Scholar 

  • Yadav OP, Weltzien E (2000) Differential response of landrace-based populations and high yielding varieties of pearl millet in contrasting environments. Ann Arid Zone 39:39–45

    Google Scholar 

  • Zare AG, Humphreys MW, Rogers JW et al (2002) Androgenesis in a Lolium multiflorum × Festuca arundinacea hybrid to generate genotypic variation for drought resistance. Euphytica 125:1–11

    Article  CAS  Google Scholar 

  • Zhang J-Y, Broeckling CD, Sumner LW et al (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blum, A. (2011). Genetic Resources for Drought Resistance. In: Plant Breeding for Water-Limited Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7491-4_5

Download citation

Publish with us

Policies and ethics