Skip to main content

Recent Advances in Emerging Nonthermal Technologies

  • Conference paper
  • First Online:
  • 3113 Accesses

Part of the book series: Food Engineering Series ((FSES))

Abstract

In the last several years there has been an important increase in novel technologies being tested for food processing. Technologies in the beginning stages of development 20 or 15 years ago, such as high hydrostatic pressure, are an industrial reality today. Other new physical and chemical hurdles are currently being investigated for use as microbial inactivation tools to process and extend the shelf life of food. Ultrasound, cold plasma and ozone are some of the best examples currently under research. Meanwhile, other nonthermal technologies with a high potential for use industrially in the near future, such as pulsed electric fields (PEF) and ultraviolet light, are under development with close attention to consumer needs and preferences. However, sometimes the consumer is not aware of the benefits of novel technologies because of a lack of available information. This chapter includes a brief summary of the latest developments of some of these novel technologies. An update on research using high hydrostatic pressure and pulsed electric fields is presented. Some new facts on other new technologies for food processing such as ultrasound and dense phase carbon dioxide (DPCD) are included. Also, one of the newest technologies in food engineering, cold plasma, is presented, along with some of the most recent advances in research. Consumer trends, knowledge and preferences about food processing are briefly discussed, as well as the current challenges of some of the technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiló-Aguayo I, Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2009a) Flavour retention and related enzyme activities during storage of strawberry juices processed by high-intensity pulsed electric fields or heat. Food Chem 116:59–65

    Article  CAS  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2009b) Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices. J Food Eng 92:37–43

    Article  CAS  Google Scholar 

  • Aguiló-Aguayo I, Sobrino-López A, Soliva-Fortuny R, Martín-Belloso O (2008a) Influence of high intensity pulsed electric field processing on lipoxygenase and β-glucosidase activities in strawberry juice. Innov Food Sci Emerg Technol 9:455–462

    Article  CAS  Google Scholar 

  • Aguiló-Aguayo I, Odriozola-Serrano I, Quintão-Teixeira J, Martín-Belloso O (2008b) Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chem 107:949–955

    Article  CAS  Google Scholar 

  • Alkhafaji S, Farid M (2008) Modeling the inactivation of Escherichia coli ATCC 25922 using pulsed electric field. Innov Food Sci Emerg Technol 9:448–454

    Article  Google Scholar 

  • Alothman M, Bhat R, Karim AA (2009) UV-radiation induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov Food Sci emerg Technol 10:512–516

    Article  CAS  Google Scholar 

  • Alvarez I, Virto R, Raso J, Condón S (2003) Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields. Innov Food Sci Emerg Technol 4:195–202

    Article  Google Scholar 

  • Amiali M, Ngadi MO, Smith JP, Raghavan GSV (2007) Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk. J Food Eng 79:689–694

    Article  Google Scholar 

  • Artés-Hernández F, Robles PA, Gómez PA, Tomas-Callejas A, Artés F (2010) Low UV-C illumination for keeping overall quality of fresh cut watermelon. Postharvest Biol Technol 55:114–120

    Article  CAS  Google Scholar 

  • Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg C (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg Technol 9:155–160

    Article  CAS  Google Scholar 

  • Avure Technologies. Inc (2010) Kent, WA

    Google Scholar 

  • Barbosa-Cánovas GV, Sepúlveda D (2005) Present status and the future of PEF technology. In: Barbosa-Cánovas GV, Tapia MS, Cano MP (eds) Novel food processing technologies. CRC Press, Boca Raton, FL, pp 1–44

    Google Scholar 

  • Bermúdez-Aguirre D, Corradini MG, Mawson R, Barbosa-Cánovas GV (2009) Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov Food Sci Emerg Technol 10:172–178

    Article  CAS  Google Scholar 

  • Bialka KL, Demirci A, Puri VM (2008) Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light. J Food Eng 85:444–449

    Article  Google Scholar 

  • Bizani D, Morrissy JAC, Dominguez APM, Brandelli A (2008) Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. Int J Food Microbiol 121:229–233

    Article  CAS  Google Scholar 

  • Buchanan RL, Golden MH, Whiting RC, Phillips JG, Smith JL (1994) Non-thermal inactivation models for Listeria monocytogenes. J Food Sci 59(1):179–188

    Article  Google Scholar 

  • Buckow R, Truong BQ, Versteeg C (2010) Bovine cathepsin D activity under high pressure. Food Chem 120:474–481

    Article  CAS  Google Scholar 

  • Buzrul S, Alpas H, Largeteau A, Bozoglu F, Demazeau G (2008) Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. J Food Eng 85:466–472

    Article  CAS  Google Scholar 

  • Chua SC, Tan CP, Mirhosseini H, Lai OM, Long K, Baharin BS (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. J Food Eng 92:403–409

    Article  CAS  Google Scholar 

  • Clark JP (2002) Thermal and nonthermal processing. Food Technol 56(12):63–64

    Google Scholar 

  • Clark JP (2008) Variety, novelty characterize processing and nonthermal papers. Food Technol 62(5):116–121

    Google Scholar 

  • Corradini MG, Peleg M (2003) A theoretical note on estimating the number of recoverable spores from survival curves having an “activation shoulder”. Food Res Int 36:1007–1013

    Article  Google Scholar 

  • Critzer FJ, Kelly-Wintenberg K, South SL, Golden DA (2007) Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J Food Protect 70:2290–2296

    Google Scholar 

  • Debs-Louka E, Louka N, Abraham G, Chabot V, Allaf K (1999) Effect of compressed carbon dioxide on microbial cell viability. Appl Environ Microbiol 65:626–631

    CAS  Google Scholar 

  • Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34(4):1310–1316

    Article  Google Scholar 

  • DTI (2010) Diversified Technologies, Inc. Bedford, Massachusetts

    Google Scholar 

  • Evrendilek GA, Tok FM, Soylu EM, Soylu S (2008) Inactivation of Penicillum expansum in sour cherry juice, peach and apricot nectars by pulsed electric fields. Food Microbiol 25:662–667

    Article  CAS  Google Scholar 

  • Ferrentino G, Balaban MO, Ferrari G, Poletto M (2010a) Food treatment with high pressure carbon dioxide: Saccharomyces cerevisiae inactivation kinetics expressed as a function of CO2 solubility. J Supercrit Fluid 52(1):151–160

    Article  CAS  Google Scholar 

  • Ferrentino G, Barletta D, Balaban MO, Ferrari G, Poletto M (2010b) Measurement and prediction of CO2 solubility in sodium phosphate monobasic solutions for food treatment with high pressure carbon dioxide. J Supercrit Fluid 52(1):142–150

    Article  CAS  Google Scholar 

  • Fox MB (2007) Microbial inactivation kinetics of pulsed electric field treatment. In: Lelieveld HLM, Notermans S, de Haan SWH (eds) Food preservation by pulsed electric fields. Woodhead Publishing Limited, Cambridge, England, pp 127–137

    Chapter  Google Scholar 

  • Furukawa S, Watanabe T, Koyama T, Hirata J, Narisawa N, Ogihara H, Yamasaki M (2009) Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control 20:53–58

    Article  CAS  Google Scholar 

  • Gachovska TK, Adedeji AA, Ngadi MO (2009) Influence of pulsed electric field energy on the damage degree in alfalfa tissue. J Food Eng 95:558–563

    Article  Google Scholar 

  • Gao YL, Ju XR, Ding W (2007) A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions. Int J Food Microbiol 117:287–294

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez L, Geeraerd AH, Elst K, Van Ginneken L, Van Impe JF, Devlieghere F (2009) Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms. Int J Food Microbiol 129:253–263

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117:1–28

    Article  CAS  Google Scholar 

  • Gómez N, García D, Alvarez I, Raso J, Condón S (2005) A model describing the kinetics of inactivation of Lactobacillus plantarum in a buffer system of different pH and in orange and apple juice. J Food Eng 70:7–14

    Article  Google Scholar 

  • Gómez PL, Alzamora SM, Castro MA, Salvatori DM (2009) Effect of ultraviolet-C light dose on quality of cut apple: microorganism, color and compression behavior. J Food Eng. doi:10.1016/j.jfoodeng.2009.12.008

    Google Scholar 

  • Gómez-Estaca J, López-Caballero ME, Gómez-Guillén MC, López de Lacey A, Montero P (2009) High pressure technology as a tool to obtain high quality carpaccio and carpaccio-like products from fish. Innov Food Sci Emerg Technol 10:148–154

    Article  CAS  Google Scholar 

  • Góngora-Nieto M, Sepúlveda DR, Pedrow P, Barbosa-Cánovas GV, Swanson BG (2002) Food processing by pulsed electric fields: treatment delivery, inactivation level, and regulatory aspects. Lebensm-WissTechnol 35:375–388

    Google Scholar 

  • Guerrero S, Tognon M, Alzamora SM (2005) Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control 16:131–139

    Article  CAS  Google Scholar 

  • Han Z, Zeng XA, Yu SJ, Zhang BS, Chen XD (2009) Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch. Innov Food Sci Emerg Technol 10:481–485

    Article  CAS  Google Scholar 

  • Hoogland H, de Haan W (2007) Economic aspects of pulsed electric field treatment of food. In: Lelieveld HLM, Notermans S, de Haan SWH (eds) Food preservation by pulsed electric fields. Woodhead Publishing Limited, Cambridge/England, pp 257–265

    Chapter  Google Scholar 

  • Houŝka M, Strohalm J, Kocurová K, Totuŝek J, Lefnerová D, Tříska J, Vrchotová N, Fiedlerová V, Holasova M, Gabrovská D, Paulíčková I (2006) High pressure and foods-fruit and vegetables juices. J Food Eng 77:386–398

    Article  Google Scholar 

  • Huang K, Wang J (2009) Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: a review. J Food Eng 95:227–239

    Article  Google Scholar 

  • Ince NH, Belen R (2001) Aqueous phase disinfection with power ultrasound: process kinetics and effect of solid catalysts. Environ Sci Technol 35(9):1885–1888

    Article  CAS  Google Scholar 

  • Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S (2009) Smearing of soft cheese with Enteroccus faecium WHE 81. A multi-bacteriocin producer against Listeria monocytogenes. Food Microbiol 26:16–20

    Article  CAS  Google Scholar 

  • Jambrak AR, Lelas V, Mason TJ, Kreŝič G, Badanjak M (2009) Physical properties of ultrasound treated soy proteins. J Food Eng 93:386–393

    Article  CAS  Google Scholar 

  • Kempkes M (2009) Personal communication. Pullman, Washington

    Google Scholar 

  • Khorshid N, Hossain MdM, Farid MM (2007) Precipitation of food protein using high pressure carbon dioxide. J Food Eng 79:1214–1220

    Article  CAS  Google Scholar 

  • Lado BH, Yousef AE (2002) Alternative food-preservation technologies: efficacy and mechanisms. Microb Infect 4:433–440

    Article  Google Scholar 

  • Lelieveld H (2005) PEF–A Food Industry’s View. In: Barbosa-Cánovas GV, Tapia MS, Cano MP (eds) Novel food processing technologies. CRC Press, Boca Raton, FL, pp 145–156

    Google Scholar 

  • Liao H, Kong X, Zhang Z, Liao X, Hu X (2010) Modeling the inactivation of Salmonella typhimurium by dense phase carbon dioxide in carrot juice. Food Microbiol 27:94–100

    Article  CAS  Google Scholar 

  • Lin HM, Yang ZY, Chen LF (1993) Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure. Chem Eng J Biochem Eng J 52:B29–B34

    CAS  Google Scholar 

  • López N, Puértolas E, Condón S, Álvarez I, Raso J (2008a) Application of pulsed electric fields for improving the maceration process during vinification of red wine: influence of grape variety. Eur Food Res Technol 227:1099–1107

    Article  CAS  Google Scholar 

  • López N, Puértolas E, Condón S, Álvarez I, Raso J (2008b) Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of most of Tempranillo grapes. Innov Food Sci Emerg Technol 9:477–482

    Article  CAS  Google Scholar 

  • López N, Puértolas E, Condón S, Raso J, Alvarez I (2009a) Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Eng 90:60–66

    Article  CAS  Google Scholar 

  • López N, Puértolas E, Condón S, Raso J, Alvarez I (2009b) Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT–Food Sci Technol 42:1674–1680

    Article  CAS  Google Scholar 

  • Ma YQ, Chen JC, Liu DH, Ye XQ (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57–62

    Article  CAS  Google Scholar 

  • Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72:3476–3481

    Article  CAS  Google Scholar 

  • Martínez Viedma P, Abriouel H, Sobrino-López A, Ben Omar N, Lucas López R, Valdivia E, Martín-Belloso O, Gálvez A (2009) Effect of enterocin AS-48 in combination with high-intensity pulsed electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice. Food Microbiol 26:491–496

    Article  CAS  Google Scholar 

  • Mastwijk H (2006) Pulsed power systems for application of pulsed electric fields in the food industry. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry. Springer, New York, pp 223–238

    Chapter  Google Scholar 

  • McKellar RC, Lu X (2004) Primary models. In: McKellar RC, Lu X (eds) Modeling microbial responses in food. CRC Press, Boca Raton, FL, pp 21–62

    Google Scholar 

  • National Center for Food Safety and Technology (2009) NFSCT receives regulatory acceptance of novel food sterilization process. Press release, February 27, 2009. Summit-Argo, IL

    Google Scholar 

  • Nguyen LT, Tay A, Balasubramaniam VM, Legan JD, Turek EJ, Gupta R (2010) Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods. LWT–Food Sci Technol 43:525–534

    Article  CAS  Google Scholar 

  • Nguyen TTT, Guyot JP, Icard-Vernière C, Rochette I, Loiseau G (2007) Effect of high pressure homogenization on the capacity of Lactobacillus plantarum A6 to ferment rice/soybean slurries to prepare high energy density complementary food. Food Chem 102:1288–1295

    Article  CAS  Google Scholar 

  • Nielsen HB, Sonne AM, Grunert KG, Banati D, Pollák-Tóth A, Lakner Z, Olsen NV, Ž ontar TP, Peterman M (2009) Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production. Appetite 52:115–126

    Article  Google Scholar 

  • Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. J Food Protect 71(7):1357–1365

    Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2008) Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J Food Eng 89:210–216

    Article  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Hernández-Jover T, Martín-Belloso O (2009) Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem 112:258–266

    Article  CAS  Google Scholar 

  • Ogihara H, Yatuzuka M, Horie N, Furukawa S, Yamasaki M (2009) Synergistic effect of high hydrostatic pressure treatment and food additives on the inactivation of Salmonella enteritidis. Food Control 20:963–966

    Article  CAS  Google Scholar 

  • Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2009) Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115:1312–1319

    Article  CAS  Google Scholar 

  • Pagán R, Mañas P, Raso J, Condón S (1999) Bacterial resistance to ultrasonic waves under pressure (manosonication) and lethal (manothermosonication) temperatures. Appl Environ Microbiol 65(1):297–300

    Google Scholar 

  • Parton T, Bertucco A, Elvassore N, Grimolizzi L (2007a) A continuous plant for food preservation by high pressure CO2. J Food Eng 79:1410–1417

    Article  Google Scholar 

  • Parton T, Elvassore N, Bertucco A, Bertoloni G (2007b) High pressure CO2 inactivation of food: a multi-batch reactor system for inactivation kinetic determination. J Supercrit Fluid 40:490–496

    Article  CAS  Google Scholar 

  • Patazca E, Koutchma T, Balasubramaniam VM (2007) Quasi-adiabatic temperature increase during high pressure processing of selected foods. J Food Eng 80:199–205

    Article  Google Scholar 

  • Patil S, Bourke P, Kelly B, Frías JM, Cullen PJ (2009) The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innov Food Sci Emerg Technol 10:486–490

    Article  CAS  Google Scholar 

  • Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial applications. Innov Food Sci Emerg Technol 9:147–154

    Article  CAS  Google Scholar 

  • Peleg M (2000) Microbial survival curves – the reality of flat “shoulders” and absolute thermal death times. Food Res Int 33:531–538

    Article  Google Scholar 

  • Peleg M, Cole M (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci 38(5):353–380

    Article  CAS  Google Scholar 

  • Peleg, M., Normand, M.D., and Campanella, O.H (2003) Estimating microbial inactivation parameters from survival curves obtained under varying conditions – the linear case. Bull Math Biol 65:219–234

    Article  Google Scholar 

  • Peleg M, Normand MD, Damrau E (1997) Mathematical interpretation of dose-response curves. Bull Math Biol 59(4):747–761

    Article  Google Scholar 

  • Peleg M, Penchina CM (2000) Modeling microbial survival during exposure to a lethal agent with varying intensity. Crit Rev Food Sci 40(2):159–172

    Article  CAS  Google Scholar 

  • Perni S, Liu DW, Shama G, Kong MG (2008a) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Protect 71(2):302–308

    CAS  Google Scholar 

  • Perni S, Shama G, Kong MG (2008b) Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Protect 71(8):1619–1625

    Google Scholar 

  • Pinto AL, Fernandes M, Pinto C, Albano H, Castilho F, Teixeira P, Gibbs P (2009) Characterization of anti-Listeria bactericoins isolated from shellfish: potential antimicrobials to control non-fermented seafood. Int J Food Microbiol 129:50–58

    Article  CAS  Google Scholar 

  • Puértolas E, López N, Condón S, Raso J, Alvarez I (2009) Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 130:49–55

    Article  CAS  Google Scholar 

  • Puértolas E, López N, Saldaña G, Alvarez I, Raso J (2010) Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. J Food Eng. doi:10.1016/j.foodeng.2009.12.017

    Google Scholar 

  • Rajan S, Ahn J, Balasubramaniam VM, Yousef AE (2006) Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J Food Protect 69(4):853–860

    CAS  Google Scholar 

  • Rastogi NK, Raghavarao SMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci 47:69–112

    Article  CAS  Google Scholar 

  • Reyns KMFA, Soontjens CCF, Cornelis K, Weemaes CA, Hendrickx ME, Michiels CW (2000) Kinetic analysis and modeling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii. Int J Food Microbiol 56:199–210

    Article  CAS  Google Scholar 

  • Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2008) Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chem 109:402–407

    Article  CAS  Google Scholar 

  • Rodrigo D, Barbosa-Cánovas GV, Martínez A, Rodrigo M (2003) Weibull distribution function on an empirical mathematical model for inactivation of Escherichia coli by Pulsed electric fields. J Food Protect 66(6):1007–1012

    CAS  Google Scholar 

  • Rodrigo D, Martínez A, Harte F, Barbosa-Cánovas GV, Rodrigo M (2001) Study of inactivation of Lactobacillus plantarum in orange-carrot juice by means of pulse electric fields: comparison of inactivation kinetics models. J Food Protect 64(2):259–263

    CAS  Google Scholar 

  • Saucedo-Reyes D, Marco-Celdrán A, Pina-Pérez MC, Rodrigo D, Martínez-López A (2009) Modeling survival of High Hydrostatic Pressure treated stationary- and exponential- phase Listeria innocua cells. Innov Food Sci Emerg Technol 10:135–141

    Article  CAS  Google Scholar 

  • Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technol 99:5104–5109

    Article  CAS  Google Scholar 

  • Selma MV, Allende A, López-Gálvez F, Conesa MA, Gil MI (2008) Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh cut vegetable industry. Food Microbiol 25:809–814

    Article  CAS  Google Scholar 

  • Sloan E (2010) What, when, and where America Eats. Food Technol 64(1):34–40

    Google Scholar 

  • Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20:544–556

    Article  CAS  Google Scholar 

  • Tabilo-Munizaga G, Barbosa-Cánovas GV (2004) Color and textural parameters of pressurized and heat-treated surimi gels as affected by potato starch and egg white. Food Res Int 37(8):767–775

    Article  Google Scholar 

  • Tabilo-Munizaga G, Barbosa-Cánovas GV (2005) Pressurized and heat-treated surimi gels as affected by potato starch and egg white:microstructure and water-holding capacity. LebensmWissTechnol 38(1):47–57

    CAS  Google Scholar 

  • Taniguchi M, Ishiyama Y, Takata T, Nakanishi T, Kaneoke M, Watanabe K, Yanagida F, Chen Y, Kouya T, Tanaka T (2009) Growth-inhibition of hiochi bacteria in namazake (raw sake) by bacteriocins from lactic acid bacteria. J Biosci Bioeng. doi:10.1016/j.jbiosc.2009.11.015

    Google Scholar 

  • Tiwari BK, Patras A, Brunton N, Cullen PJ, ÓDonell CP (2010) Effect of ultrasound processing in anthocyanins and color or red grape juice. Ultrason Sonochem 17:598–604

    Article  CAS  Google Scholar 

  • Torres JA, Velazquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67:95–112

    Article  Google Scholar 

  • Ugarte-Romero E, Feng H, Martin SE, Cadwallader KR, Robinson SJ (2006) Inactivation of Escherichia coli with power ultrasound in apple cider. J Food Sci 71(2):E102–E108

    Article  CAS  Google Scholar 

  • Valdramidis VP, Cullen PJ, Tiwari BK, ÓDonnell CP (2010) Quantitative modeling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. J Food Eng 96:449–454

    Article  CAS  Google Scholar 

  • Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innov Food Sci Emerg Technol 9:161–169

    Article  CAS  Google Scholar 

  • Virot M, Tomao V, Le Bourvellec C, Renard CMCG, Chemat F (2009) Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason Sonochem. doi:10.1016/j.ultsonch.2009.10.015

    Google Scholar 

  • Wilson DR, Dabrowski L, Stringer S, Moezelaar R, Brocklehurst TF (2008) High pressure in combination with elevated temperature as a method for the sterilization of food. Trends Food Sci Technol 19:289–299

    Article  CAS  Google Scholar 

  • Yu H, Perni S, Shi JJ, Wang DZ, Kong MG, Shama G (2006) Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. J Appl Microbiol 101:1323–1330

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Bermúdez-Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this paper

Cite this paper

Bermúdez-Aguirre, D., Barbosa-Cánovas, G.V. (2010). Recent Advances in Emerging Nonthermal Technologies. In: Aguilera, J., Simpson, R., Welti-Chanes, J., Bermudez-Aguirre, D., Barbosa-Canovas, G. (eds) Food Engineering Interfaces. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7475-4_13

Download citation

Publish with us

Policies and ethics