Skip to main content

Three-Dimensional Silicon–Germanium Nanostructures for CMOS-Compatible Light Emitters

  • Chapter
  • First Online:
Nanotechnology for Electronics, Photonics, and Renewable Energy

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The present status of light emitters based on SiGe nanostructures is reviewed. To be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most importantly, compatible with the “main stream” CMOS technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3–1.6 μm. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence (PL) and electroluminescence (EL) in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS-compatible light emitters for on-chip optical interconnects is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, G.P.: Fiber-Optic Communication Systems, p. 580. Wiley-Interscience, New York (2002)

    Google Scholar 

  2. Senior, J.M.: Optical Fiber Communications: Principles and Practice, 3rd edn. p. 1128. Prentice Hall, Englewood Cliffs, NJ (2008)

    Google Scholar 

  3. Miller, B.A.D.: Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88(6), 728–749 (2000)

    Article  Google Scholar 

  4. International Technology Roadmap for Semiconductors, 2007 Edition, Interconnect, http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf

  5. Horowitz, M., Yang, K.K.C., Sidiropoulos, S.: High-speed electrical signaling: Overview and limitations. IEEE Micro. 18(1), 12–24 (1998)

    Article  Google Scholar 

  6. Plant, D.V., Kirk, A.G.: Optical interconnects at the chip and board level: challenges and solutions. Proc. IEEE 88, 806–818 (2000)

    Article  Google Scholar 

  7. Plant, D.V., Venditti, M.B., Laprise, E., Faucher, J., Razavi, K., Chateauneuf, M., Kirk, A.G., Ahearn, J.S.: 256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS. J. Lightwave Technol. 19(8), 1093–1103 (2001)

    Article  Google Scholar 

  8. Savage, N.: Linking with light [high-speed optical interconnects]. IEEE Spectrum 39(8), 32–38 (2002)

    Article  Google Scholar 

  9. Neff, J.A., Chen, C., McLaren, T., Mao, C.-C., Fedor, A., Berseth, W., Lee, Y.C., Morozov, V.: VCSEL/CMOS smart pixel arrays for free-space optical interconnects. Proceedings of the third international conference on massively parallel processing using optical interconnections, 1996, pp. 282–289. 27–29 Oct 1996

    Google Scholar 

  10. Neff, J.A.: Optical interconnects based on two-dimensional VCSEL arrays. Proceedings of 1st international conference on massively parallel processing using optical interconnections, IEEE Computer Society Press, Washington, DC, 202–212 April 1994

    Google Scholar 

  11. Wada, H., Kamijoh, T.: Room-temperature CW operation of InGaAsP lasers on Si fabricated by Wafer Bonding. IEEE Photon. Technol. Lett. 8, 73–175 (1996)

    Google Scholar 

  12. Kromer, C., Sialm, G., Berger, C., Morf, T., Schmatz, M.L., Ellinger, F., Erni, D., Bona, G.-L., Jackel, H.: A 100-mW 4×10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects. Solid-State Circuits 40(12), 2667–2679 (2005)

    Article  Google Scholar 

  13. Sieg, R.M., Carlin, J.A., Boeckl, J.J., Ringel, S.A., Currie, M.T., Ting, S.M., Langdo, T.A., Taraschi, G., Fitzgerald, E.A., Keyes, B.M.: High minority-carrier lifetimes in GaAs grown on low-defect-density Ge/GeSi/Si substrates. Appl. Phys. Lett. 73, 3111–3113 (1998)

    Article  CAS  Google Scholar 

  14. Razeghi, M., Defour, M., Blondeau, R., Omnes, F., Maurel, P., Acher, O., Brillouet, F., C-Fan J.C., Salerno, J.: First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate. Appl. Phys. Lett. 53, 2389–2392 (1988)

    Article  CAS  Google Scholar 

  15. Park, H., Fang, A., Kodama, S., Bowers, J.: Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt. Express 13, 9460–9464 (2005)

    Article  CAS  Google Scholar 

  16. Fang, A.W., Park, H., Cohen, O., Jones, R., Paniccia, M.J., Bowers, J.E.: Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006)

    Article  CAS  Google Scholar 

  17. Soref, R.A.: Silicon-based optoelectronics. Proc. IEEE 81(12), 1687–1706 (1993)

    Article  CAS  Google Scholar 

  18. Pavesi, L., Lockwood, D.J.: Silicon Photonics, pp. 397. Springer, Berlin (2004)

    Google Scholar 

  19. Chatterjee, A., Mongkolkachit, P., Bhuva, B., Verma, A.: All Si-based optical interconnect for interchip signal transmission. Photonic Technol. Lett. 15(11), 1663–1665 (2003)

    Article  Google Scholar 

  20. Kobrinsky, M.J., Block, B.A., Zheng, J.-F., Barnett, B.C., Mohammed, E., Reshotko, M., Robertson, F., List, S., Young, I., Cadien, K.: On-chip optical interconnects. Intel Technol. J. 8(2), 129–141 (2004)

    Google Scholar 

  21. Cullis, A.G., Canham, L.T.: Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991)

    Article  CAS  Google Scholar 

  22. Cullis, A.G., Canham, L.T., Calcott, J.D.P.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)

    Article  CAS  Google Scholar 

  23. Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y.-H., Ross, F.M., Chabal, Y.J., Harris, T.D., Brus, L.E., Brown, W.L., Chaban, E.E., Szajowski, P.F., Christman, S.B., Citrin, P.H.: Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si. Phys. Rev. B 52, 4910–4925 (1995)

    Article  CAS  Google Scholar 

  24. Kanemitsu, Y.: Light emission from porous silicon and related materials. Phys. Rep. 263, 1–91 (1995)

    Article  CAS  Google Scholar 

  25. Lu, Z.H., Lockwood, D.J., Baribeau, J.-M., Quantum confinement and light emission in SiO2/Si superlattices. Nature 378, 258–260 (1995)

    Article  CAS  Google Scholar 

  26. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., Fauchet, P.M.: Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996)

    Article  CAS  Google Scholar 

  27. Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCaffrey, J.P., Lockwood, D.J.: Nanocrystalline-silicon superlattices produced by controlled recrystallization. Appl. Phys. Lett. 72, 43–45 (1998)

    Article  CAS  Google Scholar 

  28. Grom, G.F., Lockwood, D.J., McCaffrey, J.P., Labbe, H.J., Fauchet, P.M., White, B., Diener, J., Kovalev, D., Koch, F., Tsybeskov, L.: Ordering and self-organization in nanocrystalline silicon. Nature 407, 358–361 (2000)

    Article  CAS  Google Scholar 

  29. Tsybeskov, L. Lockwood, D.J.: Nanocrystalline silicon-silicon dioxide superlattices: structural and optical properties In: Efros, A.L., Lockwood, D.J., Tsybeskov, L. (eds.) Semiconductor Nanocrystals: From Basic Principles to Applications, pp. 209–229. Kluwer Academics/Plenum Publishers, New York (2003)

    Google Scholar 

  30. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G., Priolo, F.: Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000)

    Article  CAS  Google Scholar 

  31. Coffa, S., Franzò, G., Priolo, F.: High efficiency and fast modulation of Er-doped light emitting Si diodes. Appl. Phys. Lett. 69, 2077–2079 (1996)

    Article  CAS  Google Scholar 

  32. Fukatsu, S., Usami, N., Shiraki, Y., Nishida, A., Nakagawa, K.: High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecular-beam epitaxy. Appl. Phys. Lett. 63, 967–969 (1993)

    Article  CAS  Google Scholar 

  33. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., Luth, H.: Photoluminescence and electroluminescence of SiGe dots fabricated by island growth. Appl. Phys. Lett. 66, 445–447 (1995)

    Article  CAS  Google Scholar 

  34. Houghton, D.C., Noël, J.-P., Rowell, N.L.: Electroluminescence and photoluminescence from Si1-xGex alloys grown on (100) silicon by molecular beam epitaxy. Mater. Sci. Eng. B 9(1–3), 237–244 (1991)

    Article  Google Scholar 

  35. Leong, D., Harry, M., Reeson, K.J. Homewood, K.P.: A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature 387, 686–688 (1997)

    Article  CAS  Google Scholar 

  36. Haynes, J.R. Briggs, H.B., Radiation produced in germanium and silicon by electron-hole recombination. Phys. Rev. 86, 647–649 (1952)

    CAS  Google Scholar 

  37. van Roosbroeck, W., Shockley, W.: Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954)

    Article  Google Scholar 

  38. Haynes, J.R., Lax, M., Flood, W.F.: Analysis of intrinsic recombination radiation from silicon and germanium. J. Phys. Chem. Solids 8, 392–396 (1959)

    Article  CAS  Google Scholar 

  39. Cuthbert, J.D.: Recombination kinetics of excitonic molecules and free excitons in intrinsic silicon. Phys. Rev. B 1, 1552–1557 (1970)

    Article  Google Scholar 

  40. Pilkuhin, M.H.: Non-radiative recombination and luminescence in silicon. J. Luminescence 18–19(1), 81–87 (1979)

    Article  Google Scholar 

  41. Muss, D.R.: Injection luminescence in germanium. J. Appl. Phys. 35, 3529 (1964)

    Article  CAS  Google Scholar 

  42. Debay, G., Kolzer, J., Fundamentals of light emission from silicon devices. Semicond. Sci. Technol. 9, 1017–1032 (1994)

    Article  Google Scholar 

  43. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T., Bright, T.B.: Unusually low surface-recombination velocity on silicon and germanium surfaces. Phys. Rev. Lett. 57, 249–252 (1986)

    Article  CAS  Google Scholar 

  44. Trupke, T., Zhao, J., Wang, A., Corkish, R., Green, M.A.: Very efficient light emission from bulk crystalline silicon. Appl. Phys. Lett. 82, 2996–2998 (2003)

    Article  CAS  Google Scholar 

  45. Zelsmann, M., Picard, E., Charvolin, T., Hadji, E., Heitzmann, M., Dal'zotto, B., Nier, M.E., Seassal, C., Rojo-Romeo, P., Letartre, X.: Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator. Appl. Phys. Lett. 83, 2542–2544 (2003)

    Article  CAS  Google Scholar 

  46. Davies, G.: The optical properties of luminescence centres in silicon. Phys. Rep. 176(3–4), 83–188 (1989)

    Article  CAS  Google Scholar 

  47. Wilson, W.L., Szajowski, P.F., Brus, L.E.: Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262(5137), 1242–1244 (1993)

    Article  CAS  Google Scholar 

  48. Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calcott, J.D.P., Qteish, A.: First-principles calculations of the electronic properties of silicon quantum wires. Phys. Rev. Lett. 69, 1232–1235 (1992)

    Article  CAS  Google Scholar 

  49. Zhao, X., Wei, C.M., Yang, L., Chou, M.Y.: Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 92, 236805–236808 (2004)

    Article  CAS  Google Scholar 

  50. Jeffries, C.D.: Electron-hole condensation in semiconductors. Science 189(4207), 955–964 (1975)

    Article  CAS  Google Scholar 

  51. Benoît à la Guillaume, C., Voos, M., Salvan, F.: Condensation of free excitons into electron-hole drops in pure germanium. Phys. Rev. B 5, 3079–3087 (1972)

    Article  Google Scholar 

  52. Thomas, G.A., Phillips, T.G., Rice, T.M., Hensel, J.C.: Temperature-dependent luminescence from the electron-hole liquid in Ge. Phys. Rev. Lett. 31, 386–389 (1973)

    Article  CAS  Google Scholar 

  53. Brinkman, W. F., Rice, T.M.: Electron-hole liquids in semiconductors. Phys. Rev. B 7, 1508–1523 (1973)

    Article  CAS  Google Scholar 

  54. Cuthbert, J. D.: Recombination kinetics of excitonic molecules and free excitons in intrinsic silicon. Phys. Rev. B 1, 1552–1557 (1970)

    Article  Google Scholar 

  55. Patel, N.K.C.: Stimulated effects in the radiative recombination from electron-hole liquid in semiconductors. Phys. Rev. 29, 366–369 (1972)

    CAS  Google Scholar 

  56. Lee, E.-K., Lockwood, D.J., Baribeau, J.-M., Bratkovsky, A.M., Kamins, T.I., Tsybeskov, L.: Photoluminescence dynamics and auger fountain in three-dimensional Si/SiGe multilayer nanostructures. Phys. Rev. B 79, 233307 (2009); Phys. Rev. B 80, 049904 (2009)

    Article  CAS  Google Scholar 

  57. Tajima, M., Ibuka, S.: Luminescence due to electron-hole condensation in silicon-on-insulator. J. Appl. Phys. 84, 2224–2228 (1998)

    Article  CAS  Google Scholar 

  58. See http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/index.html

  59. Tsang, J.C., Kash, J.A.: Picosecond hot electron light emission from submicron complementary metal-oxide-semiconductor circuits. Appl. Phys. Lett. 70, 889–891 (1997)

    Article  CAS  Google Scholar 

  60. Askerov, B.: Electron transport phenomena in semiconductors. World Sci., 389 (1994)

    Google Scholar 

  61. Klingenstein, W., Schmid, W.: Recombination of donor bound excitons in germanium. Phys. Rev. B 20(8), 3285–3291 (1979)

    Article  CAS  Google Scholar 

  62. Elliott, B.J., Gunn, J.B., McGroddy, J.C.: Bulk negative differential conductivity and traveling domains in n-type germanium. Appl. Phys. Lett. 11(8), 253–254 (1967)

    Article  CAS  Google Scholar 

  63. Wagner, J., Virla, L.: Radiative recombination in heavily doped p-type germanium. Phys. Rev. B. 30(12), 7030–7036 (1984)

    Article  CAS  Google Scholar 

  64. Auston, D.H., Shank, C.V., LeFur, P.: Picosecond optical measurements of band-to-band auger recombination of high-density plasmas in germanium. Phys. Rev. Lett. 35, 1022–1025 (1975)

    Article  CAS  Google Scholar 

  65. Othonos, A.: Probing ultrafast carrier and phonon dynamics in semiconductors. J. Appl. Phys. 83, 1789–1830 (1998)

    Article  CAS  Google Scholar 

  66. Weber, J., Alonso, M.I., Near-band-gap photoluminescence of Si-Ge alloys. Phys. Rev. B 40(8), 5683–5693 (1989)

    Article  CAS  Google Scholar 

  67. Sturm, J.C., Manoharan, H., Lenchyshyn, L.C., Thewalt, W.L.M., Rowell, N.L., Noël, J.-P., Houghton, D.C.: Well-resolved band-edge photoluminescence of excitons confined in strained Si1–x Gex quantum wells. Phys. Rev. Lett. 66, 1362–1365 (1991)

    Article  CAS  Google Scholar 

  68. Lenchyshyn, L.C., Thewalt, W.L.M., Sturm, J.C., Schwartz, P.V., Prinz, E.J., Rowell, N.L., Noël, J.-P., Houghton, D.C.: High quantum efficiency photoluminescence from localized excitons in Si1-x Ge x . Appl. Phys. Lett. 60, 3174–3176 (1992)

    Article  CAS  Google Scholar 

  69. Paul, D.J.: Si/SiGe heterostructures: from material and physics to devices and circuits. Semicond. Sci. Technol. 19(10), R75–R108 (2004)

    Article  CAS  Google Scholar 

  70. Robbins, D.J., Canham, L.T., Barnett, S.J., Pitt, A.D., Calcott, P.: Near-band-gap photoluminescence from pseudomorphic Si1-x Ge x single layers on silicon. J. Appl. Phys. 71, 1407–1414 (1992)

    Article  CAS  Google Scholar 

  71. Houghton, D.C., Aers, G.C., Eric Yang, S.R., Wang, E., Rowell, N.L.: Type I Band Alignment in Si1-x Ge x /Si\(001\) quantum wells: photoluminescence under applied [111] and [100] uniaxial stress. Phys. Rev. Lett. 75, 866–869 (1995)

    Article  CAS  Google Scholar 

  72. Thewalt, W.L.M., Harrison, D.A., Reinhart, C.F., Wolk, J.A., Lafontaine, H.: Type II band alignment in Si1-x Ge x /Si(001) quantum wells: the ubiquitous type I luminescence results from band bending. Phys. Rev. Lett. 79, 269–272 (1997)

    Article  CAS  Google Scholar 

  73. Shiraki, Y., Sakai, A.: Fabrication technology of SiGe hetero-structures and their properties. Surface Sci. Rep. 59, 153–207 (2005)

    Article  CAS  Google Scholar 

  74. Savage, D.E., Liu, F., Zielasek, V., Lagaly, M.G.: Fundamental mechanisms of film growth. In: Hull, R., Bean, J.C. (eds.) Germanium Silicon: Growth and Materials, Semiconductor and Semimetals, vol. 56, pp. 49–96. Academic, New York, NY (1999)

    Google Scholar 

  75. Baribeau, J.-M., Pascual, R., Saimoto, S.: Interdiffusion and strain relaxation in (SimGen)p superlattices. Appl. Phys. Lett. 57, 1502–1504 (1990)

    Article  CAS  Google Scholar 

  76. Eaglesham, D.J., Cerullo, M.: Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943–1946 (1990)

    Article  CAS  Google Scholar 

  77. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., Lagally, M.G.: Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020–1023 (1990)

    Article  CAS  Google Scholar 

  78. Jesson, D.E., Pennycook, S.J., Tischler, J.Z., Budai, J.D., Baribeau, J.-M., Houghton, D.C.: Interplay between evolving surface morphology, atomic-scale growth modes, and ordering during Si x Ge1–x epitaxy. Phys. Rev. Lett. 70, 2293–2296 (1993)

    Article  CAS  Google Scholar 

  79. Kamins, T.I., Carr, E.C., Williams, R.S., Rosner, S.J.: Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures. J. Appl. Phys. 81, 211–219 (1997)

    Article  CAS  Google Scholar 

  80. Baribeau, J.-M., Wu, X., Rowell, N.L., Lockwood, D.J.: Ge Dots and nanostructures grown epitaxially on Si. J. Phys. Condens. Mat. 18, R139–R174 (2006)

    Article  CAS  Google Scholar 

  81. Schittenhelm, P., Gail, M., Brunner, J., Nützel, J. F. Abstreiter, G., Photoluminescence study of the crossover from two-dimensional to three-dimensional growth for Ge on Si(100). Appl. Phys. Lett. 67, 1292–1294 (1995)

    Article  CAS  Google Scholar 

  82. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., Lüth, H.: Photoluminescence and electroluminescence of SiGe dots fabricated by island growth. Appl. Phys. Lett. 66, 445–447 (1995)

    Article  CAS  Google Scholar 

  83. Schmidt, O.G., Lange, C., Eberl, K.: Photoluminescence study of the initial stages of island formation for Ge pyramids/domes and hut clusters on Si(001). Appl. Phys. Lett. 75, 1905–1907 (1999)

    Article  CAS  Google Scholar 

  84. Kamenev, B.V., Tsybeskov, L., Baribeau, J.-M., Lockwood, D.J.: Photoluminescence and Raman scattering in three-dimensional Si/Si1–xGex nanostructures. Appl. Phys. Lett. 84, 1293–1295 (2004)

    Article  CAS  Google Scholar 

  85. Van de Walle, C.G., Martin, R.M.: Theoretical calculations of heterojunction discontinuities in Si/Ge system. Phys. Rev. B 34, 5621–5634 (1986)

    Article  Google Scholar 

  86. Schittenhelm, P., Engel, C., Findeis, F., Abstreiter, G., Darhuber, A.A., Bauer, G., Kosogov, A.O., Werner, P.: Self-assembled Ge dots: Growth, characterization, ordering, and applications. J. Vac. Sci. Technol. B 16, 1575–1581 (1998)

    Article  CAS  Google Scholar 

  87. El Kurdi, M., Sauvage, S., Fishman, G., Boucaud, P.: Band-edge alignment of SiGe/Si quantum wells and SiGe/Si self-assembled islands. Phys. Rev. B 73, 195327–195336 (2006)

    Article  CAS  Google Scholar 

  88. Kamenev, B.V., Tsybeskov, L., Baribeau, J.-M., Lockwood, D.J.: Coexistence of fast and slow luminescence in three-dimensional Si/Si1–x Ge x nanostructures. Phys. Rev. B 72, 193306–193309 (2005)

    Article  CAS  Google Scholar 

  89. Baribeau, J.-M., Rowell, N.L., Lockwood, D.J.: Advances in the growth and characterization of Ge quantum dots and Islands. J. Mat. Res. 20, 3278–3293 (2005)

    Article  CAS  Google Scholar 

  90. Baribeau, J.-M., Wu, X., Lockwood, D.J.: Probing the composition of Ge dots and Si/Si1-x Ge x Island superlattices. J. Vac. Sci. Technol. A 24, 663–667 (2006)

    Article  CAS  Google Scholar 

  91. Baribeau, J.-M., Wu, X., Picard, M.-J., Lockwood, D.J.: Characterization of coherent Si1-x Ge x island superlattices on Si(100). In: Tsybeskov, L., Lockwood, D.J., Delerue, C., Ichikawa, M., van Buuren, A.W. (eds.) Group IV Semiconductor Nanostructures—2006, vol. 958, pp. 119–125. MRS, Pittsburgh, PA (2007)

    Google Scholar 

  92. Lockwood, D.J., Wu, X. Baribeau, J.-M.: Compositional redistribution in coherent Si1–xGex islands on Si(100). IEEE Trans. Nanotech. 6, 245–249 (2007)

    Article  Google Scholar 

  93. Kamenev, B.V., Grebel, H., Tsybeskov, L., Kamins, T.I., Williams, R.S., Baribeau, J.-M., Lockwood, D.J.: Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures. Appl. Phys. Lett. 83, 5035–5037 (2003)

    Article  CAS  Google Scholar 

  94. Henstrom, W.L., Liu, C.-P., Gibson, J.M., Kamins, T.I., Williams, R.S.: Dome-to-pyramid shape transition in Ge/Si islands due to strain relaxation by interdiffusion. Appl. Phys. Lett. 77, 1623–1625 (2000)

    Article  CAS  Google Scholar 

  95. Sunamura, H., Shiraki, Y., Fukatsu, S.: Growth mode transition and photoluminescence properties of Si1–x Ge x /Si quantum well structures with high Ge composition. Appl. Phys. Lett. 66, 953–955 (1995)

    Article  CAS  Google Scholar 

  96. Bozzo, S., Lazzari, J.-L., Bremond, G., Derrien, J.: Temperature and excitation power dependencies of the photoluminescence of planar and vertically self-organized Si0.70Ge0.30/Si strained superlattices. Thin Solid Films 380, 130–133 (2000)

    Article  CAS  Google Scholar 

  97. Schmidt, O.G., Eberl, K.: Multiple layers of self-assembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation. Phys. Rev. B 61, 13721–13729 (2000)

    Article  CAS  Google Scholar 

  98. Wan, J., Jin, G.L., Jiang, Z.M., Luo, Y.H., Liu, J.L., Wang, K.L.: Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si(001). Appl. Phys. Lett. 78, 1763–1765 (2001)

    Article  CAS  Google Scholar 

  99. Brunner, K.: Si/Ge nanostructures. Rep. Prog. Phys. 6, 27–72 (2002)

    Article  Google Scholar 

  100. Baier, T., Mantz, U., Thonke, K., Sauer, R., Schäffler, F., Herzog, H.-J.: Type-II band alignment in Si/Si1-x Ge x quantum wells from photoluminescence line shifts due to optically induced band-bending effects: experiment and theory. Phys. Rev. B 50, 15191–15196 (1994)

    Article  CAS  Google Scholar 

  101. Hu, J., Xu, X.G., Stotz, H.A.J., Watkins, S.P., Curzon, A.E., Thewalt, W.L.M., Matine, N., Bolognesi, C.R.: Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 73, 2799–2801 (1998)

    Article  CAS  Google Scholar 

  102. Kamenev, B.V., Lee, E.-K., Chang, H.-Y., Han, H., Grebel, H., Tsybeskov, L., Kamins, T.I.: Excitation-dependent photoluminescence in Ge/Si Stranski-Krastanov nanostructures. Appl. Phys. Lett. 89, 153106–153108 (2006)

    Article  CAS  Google Scholar 

  103. Tilly, L.P., Mooney, P.M., Chu, J.O., LeGoues, F.K.: Near band-edge photoluminescence in relaxed Si1–x Ge x layers. Appl. Phys. Lett. 67, 2488–2490 (1995)

    Article  CAS  Google Scholar 

  104. Qin, H., Holleitner, A.W., Eber, K., Blick, R.H.: Coherent superposition of photon- and phonon-assisted tunneling in coupled quantum dots. Phys. Rev. B 64, 241302–241306 (2001)

    Article  CAS  Google Scholar 

  105. Williams, C.J., Corbin, E., Jaros, M., Herbert, D.C.: Auger recombination in strained Si x Ge1-x /Si superlattices. Physica B 254(3–4), 240–248, (1998)

    Article  CAS  Google Scholar 

  106. Stoffel, M., Denker, U., Schmidt, O.G.: Electroluminescence of self-assembled Ge hut clusters. Appl. Phys. Lett. 82, 3236–3238 (2003)

    Article  CAS  Google Scholar 

  107. Peng, Y.H., Hsu, C.-H., Kuan, C.H., Liu, C.W., Chen, P.S., Tsai, M.-J.: The evolution of electroluminescence in Ge quantum-dot diodes with the fold number. Appl. Phys. Lett. 85, 6107–6109 (2006)

    Article  CAS  Google Scholar 

  108. Special issue on Silicon Photonics of Proc. IEEE, 97(7) (2009)

    Google Scholar 

  109. Vescan, L., Dieker, C., Souifi, A., Stoica, T.: Lateral confinement by low pressure chemical vapor deposition-based selective epitaxial growth of Si1-x Ge x /Si nanostructures. J. Appl. Phys. 81, 6709–6715 (1997)

    Article  CAS  Google Scholar 

  110. Wang, K.L., Karunasiri, G.P.R.: SiGe/Si electronics and optoelectronics. J. Vac. Sci. Technol. B 11(3), 1159–1167 (1993)

    Article  CAS  Google Scholar 

  111. Forbes, M., Gourlay, J., Desmulliez, M.: Optically interconnected electronic chips: a tutorial and review of the technology. Electron. Commun. Eng. J. 13, 221–232 (2001)

    Article  Google Scholar 

  112. Pinto, M.R.: Integrated communications microsystems. Proc. of 6th Int. C. Solid-State Integrated-Circuit Technol. 1, 17–18 (2001)

    Google Scholar 

  113. Masini, G., Colace, L., Assanto, G.: Si based optoelectronics for communications. Mater. Sci. Eng. B 89(1–3), 2–9 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the invaluable contributions over a number of years from our many collaborators on this work and whose names are given in the references to our work in this chapter and thank especially B. Kamenev of NJIT, J.-M. Baribeau and X. Wu of NRC Canada, and T. Kamins of HP Laboratories. We acknowledge the partial financial support for this research provided by US National Science Foundation, Intel Corporation, Semiconductor Research Corporation, and Foundation at NJIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Lockwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lockwood, D.J., Tsybeskov, L. (2010). Three-Dimensional Silicon–Germanium Nanostructures for CMOS-Compatible Light Emitters. In: Korkin, A., Krstić, P., Wells, J. (eds) Nanotechnology for Electronics, Photonics, and Renewable Energy. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7454-9_2

Download citation

Publish with us

Policies and ethics