Skip to main content

Signal Transduction Pathways: From Receptor to the Actin Cytoskeleton

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

In order to make functional connections in the developing nervous system, neurons must be actively guided through the extracellular environment to reach their appropriate targets. The growth cone, a motile structure located at the tip of axons, responds to extracellular guidance cues that can act as either attractants or repellents thereby steering the axon. As in motile non-neuronal cells, motility is achieved through actin and microtubule cytoskeletal rearrangements. The driving forces in growth cone advance, turning, and retraction all require changes in actin dynamics (Tessier-Lavigne and Goodman 1996, Dent and Gertler 2003, Dontchev and Letourneau 2003, Huber et al. 2003). Rho GTPases are proteins that have been shown to be principal actin regulators in both neuronal and non-neuronal cells (Mackay and Hall 1998, Burridge and Wennerberg 2004, Govek et al. 2005, Hall 2005, Jaffe and Hall 2005). These GTPases can regulate actin through effectors that can directly bind to or activate more downstream actin-binding proteins (Van Aelst and D’Souza-Schorey 1997, Takai et al. 2001). Activation of Rho GTPases can thereby coordinate actin dynamics by enhancing polymerization or by inhibiting monomer binding to filaments as well as by regulating actin disassembly and acto-myosin contractility. These GTPases have been shown to be essential in guidance decisions and, through their effects on actin and microtubules, orchestrate directional motility in growth cones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aizawa H, Wakatsuki S, Ishii A, Moriyama K, Sasaki Y, Ohashi K, Sekine-Aizawa Y, Sehara-Fujisawa A, Mizuno K, Goshima Y, Yahara I (2001) Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat Neurosci 4:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Alabed YZ, Grados-Munro E, Ferraro GB, Hsieh SH, Fournier AE (2006) Neuronal responses to myelin are mediated by rho kinase. J Neurochem 96:1616–1625.

    Article  PubMed  CAS  Google Scholar 

  • Alabed YZ, Pool M, Tone SO, Fournier AE (2007) Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 27:1702–1711.

    Article  PubMed  CAS  Google Scholar 

  • Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M, Iwamatsu A, Goshima Y, Kaibuchi K (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275:23973–23980.

    Article  PubMed  CAS  Google Scholar 

  • Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M, Morone N, Usukura J, Kaibuchi K (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 25:9973–9984.

    Article  PubMed  CAS  Google Scholar 

  • Aurandt J, Vikis HG, Gutkind JS, Ahn N, Guan KL (2002) The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. Proc Natl Acad Sci USA 99:12085–12090.

    Article  PubMed  CAS  Google Scholar 

  • Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bandtlow CE (2003) Regeneration in the central nervous system. Exp Gerontol 38:79–86.

    Article  PubMed  CAS  Google Scholar 

  • Barallobre MJ, Pascual M, Del Rio JA, Soriano E (2005) The netrin family of guidance factors: emphasis on netrin-1 signalling. Brain Res Brain Res Rev 49:22–47.

    Article  PubMed  CAS  Google Scholar 

  • Barberis D, Casazza A, Sordella R, Corso S, Artigiani S, Settleman J, Comoglio PM, Tamagnone L (2005) p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling. J Cell Sci 118:4689–4700.

    Article  PubMed  CAS  Google Scholar 

  • Bashaw GJ, Hu H, Nobes CD, Goodman CS (2001) A novel Dbl family RhoGEF promotes Rho-dependent axon attraction to the central nervous system midline in Drosophila and overcomes Robo repulsion. J Cell Biol 155:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  • Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS (2000) Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101:703–715.

    Article  PubMed  CAS  Google Scholar 

  • Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521.

    Article  PubMed  CAS  Google Scholar 

  • Beg AA, Sommer JE, Martin JH, Scheiffele P (2007) alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits. Neuron 55:768–78.

    Article  PubMed  CAS  Google Scholar 

  • Bernards A (2003) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603:47–82.

    PubMed  CAS  Google Scholar 

  • Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781.

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C (2004) Alpha2-chimaerin, cyclin-dependent kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 24:8994–9004.

    Article  PubMed  CAS  Google Scholar 

  • Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M (2005) Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett 579:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179.

    Article  PubMed  CAS  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29:356–370.

    Article  PubMed  CAS  Google Scholar 

  • Causeret F, Hidalgo-Sanchez M, Fort P, Backer S, Popoff MR, Gauthier-Rouviere C, Bloch-Gallego E (2004) Distinct roles of Rac1/Cdc42 and Rho/Rock for axon outgrowth and nucleokinesis of precerebellar neurons toward netrin 1. Development 131:2841–2852.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Sasaki Y, Shoji M, Sugiyama Y, Tanaka H, Nakayama T, Mizuki N, Nakamura F, Takei K, Goshima Y (2003) Cdk5/p35 and Rho-kinase mediate ephrin-A5-induced signaling in retinal ganglion cells. Mol Cell Neurosci 24:632–645.

    Article  PubMed  CAS  Google Scholar 

  • Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 292:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Cole SJ, Bradford D, Cooper HM (2006) Neogenin: a multi-functional receptor regulating diverse developmental processes. Int J Biochem Cell Biol 39(9):1569–1575.

    Article  PubMed  CAS  Google Scholar 

  • Conrad S, Genth H, Hofmann F, Just I, Skutella T (2007) Neogenin-RGMa signaling at the growth cone is bone morphogenetic protein-independent and involves RhoA, ROCK, and PKC. J Biol Chem 282:16423–16433.

    Article  PubMed  CAS  Google Scholar 

  • Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME (2005) Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46:205–217.

    Article  PubMed  CAS  Google Scholar 

  • David S, Lacroix S (2003) Molecular approaches to spinal cord repair. Annu Rev Neurosci 26:411–440.

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227.

    Article  PubMed  CAS  Google Scholar 

  • DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363.

    Article  PubMed  CAS  Google Scholar 

  • Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290.

    Article  PubMed  CAS  Google Scholar 

  • Dong JM, Leung T, Manser E, Lim L (2002) Cdc42 antagonizes inductive action of cAMP on cell shape, via effects of the myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) on myosin light chain phosphorylation. Eur J Cell Biol 81:231–242.

    Article  PubMed  CAS  Google Scholar 

  • Dontchev VD, Letourneau PC (2003) Growth cones integrate signaling from multiple guidance cues. J Histochem Cytochem 51:435–444.

    PubMed  CAS  Google Scholar 

  • dos Remedios CG, Chhabsra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473.

    PubMed  CAS  Google Scholar 

  • Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Dransart E, Olofsson B, Cherfils J (2005) RhoGDIs revisited: novel roles in Rho regulation. Traffic 6:957–966.

    Article  PubMed  CAS  Google Scholar 

  • Driessens MH, Hu H, Nobes CD, Self A, Jordens I, Goodman CS, Hall A (2001) Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr Biol 11:339–344.

    Article  PubMed  CAS  Google Scholar 

  • Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793.

    Article  PubMed  CAS  Google Scholar 

  • Evans IR, Renne T, Gertler FB, Nobes CD (2007) Ena/VASP proteins mediate repulsion from ephrin ligands. J Cell Sci 120:289–298.

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Labrador JP, Hing H, Bashaw GJ (2003) Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40:113–127.

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Raper JA (1995) Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 14:263–274.

    Article  PubMed  CAS  Google Scholar 

  • Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423.

    PubMed  CAS  Google Scholar 

  • Fritz JL, VanBerkum MF (2002) Regulation of rho family GTPases is required to prevent axons from crossing the midline. Dev Biol 252:46–58.

    Article  PubMed  CAS  Google Scholar 

  • Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME, Ip NY (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Mammoto A, Kim Y, Takai Y (2000) Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271:626–629.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119:3413–3423.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Letourneau P (2002) Axon guidance: proteins turnover in turning growth cones. Curr Biol 12:R560–R562.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58:92–102.

    Article  PubMed  CAS  Google Scholar 

  • Garbe DS, Bashaw GJ (2007) Independent functions of Slit–Robo repulsion and Netrin–Frazzled attraction regulate axon crossing at the midline in Drosophila. J Neurosci 27:3584–3592.

    Article  PubMed  CAS  Google Scholar 

  • Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM (2002) The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4:720–724.

    Article  PubMed  CAS  Google Scholar 

  • Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–514.

    Article  PubMed  CAS  Google Scholar 

  • Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1–49.

    Article  PubMed  CAS  Google Scholar 

  • Groeger G, Nobes CD (2007) Co-operative Cdc42 and Rho signalling mediates ephrinB-triggered endothelial cell retraction. Biochem J 404:23–29.

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Rao Y (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4:941–956.

    Article  PubMed  CAS  Google Scholar 

  • Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895.

    Article  PubMed  CAS  Google Scholar 

  • Harbott LK, Nobes CD (2005) A key role for Abl family kinases in EphA receptor-mediated growth cone collapse. Mol Cell Neurosci 30:1–11.

    Article  PubMed  CAS  Google Scholar 

  • He Z, Koprivica V (2004) The Nogo signaling pathway for regeneration block. Annu Rev Neurosci 27:341–368.

    Article  PubMed  CAS  Google Scholar 

  • Hilpela P, Vartiainen MK, Lappalainen P (2004) Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 282:117–163.

    PubMed  CAS  Google Scholar 

  • Hirotani M, Ohoka Y, Yamamoto T, Nirasawa H, Furuyama T, Kogo M, Matsuya T, Inagaki S (2002) Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors. Biochem Biophys Res Commun 297:32–37.

    Article  PubMed  CAS  Google Scholar 

  • Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, Kirschner MW (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. Cell 118:203–216.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SH, Ferraro GB, Fournier AE (2006) Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and slingshot phosphatase. J Neurosci 26:1006–1015.

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Li M, Labrador JP, McEwen J, Lai EC, Goodman CS, Bashaw GJ (2005) Cross GTPase-activating protein (CrossGAP)/Vilse links the roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci USA 102:4613–4618.

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Marton TF, Goodman CS (2001) Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signaling. Neuron 32:39–51.

    Article  PubMed  CAS  Google Scholar 

  • Huang JK, Phillips GR, Roth AD, Pedraza L, Shan W, Belkaid W, Mi S, Fex-Svenningsen A, Florens L, Yates JR III, Colman DR (2005) Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310:1813–1817.

    Article  PubMed  CAS  Google Scholar 

  • Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone: ligand–receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563.

    Article  PubMed  CAS  Google Scholar 

  • Huot J (2004) Ephrin signaling in axon guidance. Prog Neuropsychopharmacol Biol Psychiatry 28:813–818.

    Article  PubMed  CAS  Google Scholar 

  • Iwasato T, Katoh H, Nishimaru H, Ishikawa Y, Inoue H, Saito YM, Ando R, Iwama M, Takahashi R, Negishi M, Itohara S (2007) Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell 130:742–53.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A (2003) Cell biology. Smurfing at the leading edge. Science 302:1690–1691.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  PubMed  CAS  Google Scholar 

  • Jurney WM, Gallo G, Letourneau PC, McLoon SC (2002) Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J Neurosci 22:6019–6028.

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Kuroda S, Fukata M, Nakamura T, Nagase T, Nomura N, Matsuura Y, Yoshida-Kubomura N, Iwamatsu A, Kaibuchi K (1998) p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J Biol Chem 273:291–295.

    Article  PubMed  CAS  Google Scholar 

  • Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11:1645–1655.

    Article  PubMed  CAS  Google Scholar 

  • Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486.

    Article  PubMed  CAS  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474.

    Article  PubMed  CAS  Google Scholar 

  • Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42:37–49.

    Article  PubMed  CAS  Google Scholar 

  • Li W, Lee J, Vikis HG, Lee SH, Liu G, Aurandt J, Shen TL, Fearon ER, Guan JL, Han M, Rao Y, Hong K, Guan KL (2004) Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat Neurosci 7:1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Meriane M, Triki I, Shekarabi M, Kennedy TE, Larose L, Lamarche-Vane N (2002a) The adaptor protein Nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism. J Biol Chem 277: 37788–37797.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Saint-Cyr-Proulx E, Aktories K, Lamarche-Vane N (2002b) Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J Biol Chem 277:15207–15214.

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Beggs H, Jurgensen C, Park HT, Tang H, Gorski J, Jones KR, Reichardt LF, Wu J, Rao Y (2004) Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat Neurosci 7:1222–1232.

    Article  PubMed  CAS  Google Scholar 

  • Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190–1193.

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Li W, Gao X, Li X, Jurgensen C, Park HT, Shin NY, Yu J, He ML, Hanks SK, Wu JY, Guan KL, Rao Y (2007) p130CAS is required for netrin signaling and commissural axon guidance. J Neurosci 27:957–968.

    Article  PubMed  CAS  Google Scholar 

  • Lundstrom A, Gallio M, Englund C, Steneberg P, Hemphala J, Aspenstrom P, Keleman K, Falileeva L, Dickson BJ, Samakovlis C (2004) Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 18:2161–2171.

    Article  PubMed  Google Scholar 

  • Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156.

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD (1999) Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci USA 96:3739–3744.

    Article  PubMed  CAS  Google Scholar 

  • Mackay DJ, Hall A (1998) Rho GTPases. J Biol Chem 273:20685–20688.

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Takenawa T (2002) WAVE2 serves a functional partner of IRSp53 by regulating its interaction with Rac. Biochem Biophys Res Commun 293:93–99.

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Yamaguchi H, Suetsugu S, Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408:732–735.

    Article  PubMed  CAS  Google Scholar 

  • Millard TH, Sharp SJ, Machesky LM (2004) Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Mimura F, Yamagishi S, Arimura N, Fujitani M, Kubo T, Kaibuchi K, Yamashita T (2006) Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem 281:15970–15979.

    Article  PubMed  CAS  Google Scholar 

  • Moon SY, Zheng Y (2003) Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 13:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Aoki K, Matsuda M (2005) FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain. Brain Res Mol Brain Res 139:277–287.

    Article  PubMed  CAS  Google Scholar 

  • Ng J, Luo L (2004) Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44:779–793.

    Article  PubMed  CAS  Google Scholar 

  • Nie DY, Ma QH, Law JW, Chia CP, Dhingra NK, Shimoda Y, Yang WL, Gong N, Chen QW, Xu G, Hu QD, Chow PK, Ng YK, Ling EA, Watanabe K, Xu TL, Habib AA, Schachner M, Xiao ZC (2006) Oligodendrocytes regulate formation of nodes of Ranvier via the recognition molecule OMgp. Neuron Glia Biol 2:151–164.

    Article  PubMed  Google Scholar 

  • Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11:545–554.

    Article  PubMed  CAS  Google Scholar 

  • Park JB, Yiu G, Kaneko S, Wang J, Chang J, He Z (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45:345–351.

    Article  PubMed  CAS  Google Scholar 

  • Parri M, Buricchi F, Giannoni E, Grimaldi G, Mello T, Raugei G, Ramponi G, Chiarugi P (2007) Ephrina1 activates a SRC/FAK-mediated motility response leading to RHO-dependent actino/myosin contractility. J Biol Chem 282:19619–19628.

    Article  PubMed  CAS  Google Scholar 

  • Perrot V, Vazquez-Prado J, Gutkind JS (2002) Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ–RhoGEF. J Biol Chem 277:43115–43120.

    Article  PubMed  CAS  Google Scholar 

  • Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072.

    Article  PubMed  CAS  Google Scholar 

  • Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Ren XR, Ming GL, Xie Y, Hong Y, Sun DM, Zhao ZQ, Feng Z, Wang Q, Shim S, Chen ZF, Song HJ, Mei L, Xiong WC (2004) Focal adhesion kinase in netrin-1 signaling. Nat Neurosci 7:1204–1212.

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 81:1–28.

    Article  PubMed  CAS  Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180.

    Article  PubMed  CAS  Google Scholar 

  • Round J, Stein E (2007) Netrin signaling leading to directed growth cone steering. Curr Opin Neurobiol 17:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Rudrabhatla RS, Sukumaran SK, Bokoch GM, Prasadarao NV (2003) Modulation of myosin light-chain phosphorylation by p21-activated kinase 1 in Escherichia coli invasion of human brain microvascular endothelial cells. Infect Immun 71:2787–2797.

    Article  PubMed  CAS  Google Scholar 

  • Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O’Connell S, Cowan CW, Hu L, Goldberg JL, Debant A, Corfas G, Krull CE, Greenberg ME (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46:191–204.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, Yagi T, Taniguchi M, Nakayama T, Kishida R, Kudo Y, Ohno S, Nakamura F, Goshima Y (2002) Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35:907–920.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki N, Miki H, Takenawa T (2000) Arp2/3 complex-independent actin regulatory function of WAVE. Biochem Biophys Res Commun 272:386–390.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Takai Y (1998) The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245:641–645.

    Article  PubMed  CAS  Google Scholar 

  • Schoenwaelder SM, Petch LA, Williamson D, Shen R, Feng GS, Burridge K (2000) The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Curr Biol 10:1523–1526.

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14:118–124.

    Article  PubMed  CAS  Google Scholar 

  • Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A, Greenberg ME (2001) EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M, Sah D, McCoy JM, Murray B, Jung V, Pepinsky RB, Mi S (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45:353–359.

    Article  PubMed  CAS  Google Scholar 

  • Shekarabi M, Kennedy TE (2002) The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci 19:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Shekarabi M, Moore SW, Tritsch NX, Morris SJ, Bouchard JF, Kennedy TE (2005) Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J Neurosci 25:3132–3141.

    Article  PubMed  CAS  Google Scholar 

  • Shelton SB, Johnson GV (2004) Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 88:1313–1326.

    Article  PubMed  CAS  Google Scholar 

  • Sivasankaran R, Pei J, Wang KC, Zhang YP, Shields CB, Xu XM, He Z (2004) PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci 7:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Skare P, Karlsson R (2002) Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett 522:119–124.

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Li R (2004) Actin polymerization: riding the wave. Curr Biol 14:R109–R111.

    PubMed  CAS  Google Scholar 

  • Song H, Poo M (2001) The cell biology of neuronal navigation. Nat Cell Biol 3:E81–E88.

    Article  PubMed  CAS  Google Scholar 

  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 is a negative regulator of growth cone translocation. Neuron 43:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S, Miki H, Takenawa T (1999) Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun 260:296–302.

    Article  PubMed  CAS  Google Scholar 

  • Swiercz JM, Kuner R, Behrens J, Offermanns S (2002) Plexin-B1 directly interacts with PDZ–RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35:51–63.

    Article  PubMed  CAS  Google Scholar 

  • Swiercz JM, Kuner R, Offermanns S (2004) Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J Cell Biol 165:869–880.

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208.

    PubMed  CAS  Google Scholar 

  • Tang S, Qiu J, Nikulina E, Filbin MT (2001) Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol Cell Neurosci 18:259–269.

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133.

    Article  PubMed  CAS  Google Scholar 

  • Tomasevic N, Jia Z, Russell A, Fujii T, Hartman JJ, Clancy S, Wang M, Beraud C, Wood KW, Sakowicz R (2007) Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46:3494–3502.

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Killeen M, Steven R, Binns KL, Culotti J, Pawson T (2001) Netrin stimulates tyrosine phosphorylation of the UNC-5 family of netrin receptors and induces Shp2 binding to the RCM cytodomain. J Biol Chem 276:40917–40925.

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322.

    Article  PubMed  Google Scholar 

  • Vikis HG, Li W, Guan KL (2002) The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev 16:836–845.

    Article  PubMed  CAS  Google Scholar 

  • Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285.

    Article  PubMed  CAS  Google Scholar 

  • Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) From the cover: gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417.

    Article  PubMed  CAS  Google Scholar 

  • Wahl S, Barth H, Coiossek T, Akoriess K, Mueller BK (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 149:263–270.

    Article  PubMed  CAS  Google Scholar 

  • Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002a) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78.

    Article  PubMed  CAS  Google Scholar 

  • Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002b) Oligodendrocyte–myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944.

    Article  PubMed  CAS  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003) Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302:1775–1779.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Noritake J, Kaibuchi K (2005) Regulation of microtubules in cell migration. Trends Cell Biol 15:76–83.

    Article  PubMed  CAS  Google Scholar 

  • Wegmeyer H, Egea J, Rabe N, Gezelius H, Filosa A, Enjin A, Varoqueaux F, Deininger K, Schnutgen F, Brose N, Klein R, Kullander K, Betz A (2007) EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. Neuron 55:756–67.

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Zheng JQ (2006) Directional guidance of nerve growth cones. Curr Opin Neurobiol 16:52–58.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2:155–164.

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Wu SC, McKenna WL, Hinck L (2003) Surface expression of the netrin receptor UNC5H1 is regulated through a protein kinase C-interacting protein/protein kinase-dependent mechanism. J Neurosci 23:11279–11288.

    PubMed  CAS  Google Scholar 

  • Wilson NH, Key B (2006) Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain. Dev Biol 296:485–498.

    Article  PubMed  CAS  Google Scholar 

  • Wilson NH, Key B (2007) Neogenin: one receptor, many functions. Int J Biochem Cell Biol 39:874–878.

    Article  PubMed  CAS  Google Scholar 

  • Winton MJ, Dubreuil CI, Lasko D, Leclerc N, McKerracher L (2002) Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 277:32820–32829.

    Article  PubMed  CAS  Google Scholar 

  • Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  • Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit–-Robo pathway. Cell 107:209–221.

    Article  PubMed  CAS  Google Scholar 

  • Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER, Jaffrey SR (2005) Local translation of RhoA regulates growth cone collapse. Nature 436:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Samuels BA, Tsai LH (2006) Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling – a hypothesis on neuronal migration. Cereb Cortex 16(Suppl 1):i64–i68.

    Article  PubMed  Google Scholar 

  • Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157:565–570.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6:461–467.

    PubMed  CAS  Google Scholar 

  • Yang L, Bashaw GJ (2006) Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline. Neuron 52:595–607.

    Article  PubMed  CAS  Google Scholar 

  • Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4(Suppl): 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XF, Schaefer AW, Burnette DT, Schoonderwoert VT, Forscher P (2003) Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40:931–944.

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZS, Manser E (2005) PAK and other Rho-associated kinases – effectors with surprisingly diverse mechanisms of regulation. Biochem J 386:201–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Van Vactor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dubreuil, C.I., Van Vactor, D.L. (2011). Signal Transduction Pathways: From Receptor to the Actin Cytoskeleton. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_12

Download citation

Publish with us

Policies and ethics