Skip to main content

Targeted Therapeutics in Cancer Treatment

  • Chapter
  • First Online:
Principles of Anticancer Drug Development

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1747 Accesses

Abstract

Historically, chemotherapy used for the treatment of malignancy was restricted to cytotoxic agents. Perturbation of DNA synthesis and the events regulating cell division are the primary targets of traditional cytotoxic drugs, as outlined in a previous chapter. Unfortunately, the events regulating cell division are not specific to cancer cells; therefore, these medications result in broad range of toxic side effects due to damage of normal cells. The narrow therapeutic window of traditional cytotoxic drugs is quite troublesome, given that palliation is the primary goal of oncology therapy. Recently, oncology therapy has migrated to the use of small molecules targeting intracellular events specific to tumor cells. The era of “targeted therapy” was heralded by the approval of the antibodies Rituximab and Trastuzumab for the treatment of relapsed or refractory low-grade follicular B-cell non-Hodgkin’s lymphoma and Her2/Neu-positive metastatic breast cancer, respectively [1, 2]. The use of small molecule inhibitors of intracellular pathways as a therapeutic principle was validated by the efficacy of imatinib mesylate for the treatment of bcr/abl-positive chronic myelogenous leukemia and gastrointestinal stromal tumors (GIST) [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maloney DG, Grillo-Lopex AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Lefy R. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 90(6):2188–2195, 1997

    PubMed  CAS  Google Scholar 

  2. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792, 2001

    Article  PubMed  CAS  Google Scholar 

  3. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 344:1031–1037, 2001

    Article  PubMed  CAS  Google Scholar 

  4. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuvenson DA, Singer S, Janicek M, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 347:472–480, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256:495–497, 1975

    Article  PubMed  CAS  Google Scholar 

  6. Clynes R. Antitumor antibodies in the treatment of cancer: Fc receptors link opsonic antibody with cellular immunity. Hematol Oncol Clin North Am. 20:585–612, 2006

    Article  PubMed  Google Scholar 

  7. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 24:487–499, 2005

    Article  PubMed  CAS  Google Scholar 

  8. Goldspy RA, Kindt TJ, Osborne BA, et al. Immunology, Fifth Edition. New York: WH Freeman and Company, 1–551, 2003

    Google Scholar 

  9. Koene HR, Kleijer M, Algra J, et al. FcγRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell FcγRIIIa, independently of the FcγRIIIa-48L/R/H phenotype. Blood. 90:1109–1114, 1997

    PubMed  CAS  Google Scholar 

  10. Van Sorge NM, van der Pol WL, van de Winkel JGJ. FcγR polymorphisms: implications for function, disease susceptibility and immunotherapy. Tissue Antigens. 61:189–202, 2003

    Article  PubMed  Google Scholar 

  11. Cartron C, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood. 99:754–758, 2002

    Article  PubMed  CAS  Google Scholar 

  12. Weng W-K, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 21:3940–3947, 2003

    Article  PubMed  CAS  Google Scholar 

  13. Bibeau F, Lopez-Crapez E, Di Fiore F, Thezenas S, Ychou M, Blanchard F, Lamy A, Penault-Llorca F, Frebourg T, Michel P, Sabourin J-C, Boissiere-Michot F. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol. 27:1122–1129, 2009

    Article  PubMed  CAS  Google Scholar 

  14. Traxler P, Furet P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther. 82:195–206, 1999

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Gray NS. Rational design of inhibitors that bind to inactivate kinase conformations. Nat Chem Biol. 2:358–364, 2006

    Article  PubMed  CAS  Google Scholar 

  16. Chan JHP, Lim S, Wong WSF. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharm Physiol. 33:533–540, 2006

    Article  CAS  Google Scholar 

  17. Eckstein F. Phosphorothioate oligonucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 10:117–121, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Altmann KH, Fabbro D, Dean NM, et al. Second-generation antisense oligonucleotides: structure-activity relationships and the design of improved signal-transduction inhibitors. Biochem Soc Trans. 24:630–637, 1996

    PubMed  CAS  Google Scholar 

  19. Gleave ME, Monia BP. Antisense therapy for cancer. Nat Rev Cancer. 5:468–479, 2005

    Article  PubMed  CAS  Google Scholar 

  20. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 254:1497–1500, 1991

    Article  PubMed  CAS  Google Scholar 

  21. Nielsen PE. PNA technology. Mol Biotechnol. 26:233–248, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Vester B, Wengel J. LNA (locked nucleotide acid): high-affinity targeting of complementary RNA and DNA. Biochemistry. 43:13233–13241, 2004

    Article  PubMed  CAS  Google Scholar 

  23. Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acid. Nucleic Acids Res. 30:1911–1918, 2002

    Article  PubMed  CAS  Google Scholar 

  24. Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol. 5:550–555, 2005

    Article  PubMed  CAS  Google Scholar 

  25. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811, 1998

    Article  PubMed  CAS  Google Scholar 

  26. Jana S, Chakraborty C, Nandi S, Deb JK. RNA interference: potential therapeutic targets. Appl Microbiol Biotechnol. 65:649–657, 2004

    Article  PubMed  CAS  Google Scholar 

  27. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 110:563–574, 2002

    Article  PubMed  CAS  Google Scholar 

  28. Lewis DL, Wolff JA. Systemic siRNA delivery via hydrodynamic intravascular injection. Adv Drug Deliv Rev. 59:115–123, 2007

    Article  PubMed  CAS  Google Scholar 

  29. Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm. 6:651–658, 2009

    Article  PubMed  CAS  Google Scholar 

  30. de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther. 19:125–132, 2008

    Article  PubMed  CAS  Google Scholar 

  31. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, Kato T, Terada M, Ochiya T. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32:e109, 2004

    Article  PubMed  Google Scholar 

  32. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 64:3365–3370, 2004.

    Article  PubMed  CAS  Google Scholar 

  33. Lysik MA, Wu-Pong S. Innovations in oligonucleotide drug delivery. J Pharm Sci. 92:1559–1573, 2003

    Article  PubMed  CAS  Google Scholar 

  34. Fattal E, Couvreur P, Dubernet C. ‘Smart’ delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev. 56:931–946, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Jarver P, Langel U. The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today. 9:395–402, 2004

    Article  PubMed  CAS  Google Scholar 

  36. Xu Y, Szoka FC, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 35:5616–5623, 1996

    Article  PubMed  CAS  Google Scholar 

  37. Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther. 16:942–946, 2008

    Article  PubMed  CAS  Google Scholar 

  38. Sherr CJ, Roberts JM. CDK Inhibitors: positive and negative regulators of G-1 phase progression. Genes Dev. 13:1125–1126, 1999

    Google Scholar 

  39. Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 1:222–231, 2001

    Article  PubMed  CAS  Google Scholar 

  40. Buckley M, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, DeFazio A, Watts CK, Musgrove EA, Sutherland RL. Expression and amplification of cyclin genes in human breast cancer. Oncogene. 8:2127–2133, 1993

    PubMed  CAS  Google Scholar 

  41. Yatabe Y, Suzuki R, Tobinai K, Matsuno Y, Ichinohasama R, Okamoto M, Yamaguchi M, Tamaru J, Uike N, Hashimoto Y, et al. Significance of cyclin D1 overexpression for the diagnosis of mantle cell lymphoma: a clinicopathologic comparison of cyclin D1-positive ML and cyclin D1-negative MCL-like-B-cell lymphoma. Blood. 95:2253–2261, 2000

    PubMed  CAS  Google Scholar 

  42. Shahjehan WA, Laird P, DeMeester T. DNA methylation: an alternative pathway to cancer. Ann Surg. 234:10–20, 2001

    Article  Google Scholar 

  43. Senderowicz AM. Cyclin-dependent kinases as targets for cancer therapy. In: Cancer Chemotherapy and Biological Response Modifiers. (Giaccone G, Schilsky R, Sondel P, eds), New York, NY, Elsevier Science, pp 169–188, 2002

    Google Scholar 

  44. Oelgeschlager T. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control. J Cell Physiol. 190:160–169, 2002

    Article  PubMed  CAS  Google Scholar 

  45. Kobor M, Greenblatt J. Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta. 13:261–275, 2002

    Google Scholar 

  46. Koumenis C, Giaccia A. Transformed cell require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol Cell Biol. 17:7306–7316, 1997

    PubMed  CAS  Google Scholar 

  47. Te Poele R, Okorokov A, Joel S. RNA synthesis block by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) triggers p53-dependent apoptosis in human colon carcinoma cells. Oncogene. 18:5765–5772, 1999

    Article  CAS  Google Scholar 

  48. Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of cdc2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun. 201:589–595, 1994

    Article  PubMed  CAS  Google Scholar 

  49. Drees M, Dengler WA, Roth T, Labonte H, Mayo J, Malspeis L, Grever M, Sausville EA, Fiebig HH. Flavopiridol (L86-8275): selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin Cancer Res. 3:271–279, 1997

    Google Scholar 

  50. Patel V, Senderowicz AM, Pinto D, Igishi T, Raffeld M, Quintanilla-Martinez L, Ensley JF, Sausville EA, Gutkind JS. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest. 102:1674–1681, 1998

    Article  PubMed  CAS  Google Scholar 

  51. Byrd JC, Lin T, Dalton JT, Wu B, Phelps MA, Fischer B, Moran M, Blum KA, Rovin B, Brooker-McEldowney M, Broering S, Schaaf LF, Johnson AJ, Lucas DM, Heerema NA, Lozanski G, Young DC, Suarez IR, Colevas AD, Grever MR. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood. 109:399–404, 2007

    Article  PubMed  CAS  Google Scholar 

  52. Shah MA, Kortmansky J, Motwani M, Drobnjak M, Gonen M, Yi S, Weyerbacher A, Cordon-Cardo C, Lefkowitz R, Brenner B, et al. A phase I/pharmacologic study of weekly sequential Irinotecan (CPT) and flavopiridol. Clin Cancer Res. 11:3836–3845, 2005

    Article  PubMed  CAS  Google Scholar 

  53. Shah MA, Kortmansky J, Gonen M, Tse A, Lefkowitz R, Kelsen D, Colevas D, Winkelman J, Yi S, Schwartz G. A phase I study of weekly sequential Irinotecan (CPT), cisplatin (CIS) and flavopiridol (F). J Clin Oncol Suppl. 22:14S, 2004

    Google Scholar 

  54. Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM. Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol. 6:232–237, 2004

    Article  PubMed  CAS  Google Scholar 

  55. Lampson MA, Kapoor TM. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol. 7:93–98, 2005

    Article  PubMed  CAS  Google Scholar 

  56. Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PM, Gandara DR. Aurora kinases as anticancer drug targets. Clin Cancer Res. 14:1639–1648, 2008

    Article  PubMed  CAS  Google Scholar 

  57. Duncan P, Pollet N, Niehrs C, Nigg EA. Cloning and characterization of Plx2 and Plx3, two additional Polo-like kinases from Xenopus laevis. Exp Cell Res. 270:78–87, 2001

    Article  PubMed  CAS  Google Scholar 

  58. Kotani S, Tugendreich S, Fujii M, Jorgensen PM, Watanabe N, Hoog C, Hieter P, Todokoro K, et al. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell. 1:371–380, 1998

    Article  PubMed  CAS  Google Scholar 

  59. Takaki T, Trenz K, Costanzo V, Petronczki M. Polo-like kinase 1 reaches beyond mitosis-cytokinesis, DNA damage response and development. Curr Opin Cell Biol. 20:650–660, 2008

    Article  PubMed  CAS  Google Scholar 

  60. Mross K, Frost A, Steinbild S, Hedbom S, Rentschler J, Kaiser R, Rouyrre N, Trommeshauser D, Hoesl CE, Munzert G. Phase I dose escalation and pharmacokinetic study of BI 2536, a novel polo-like kinase 1 inhibitor, in patients with advanced solid tumors. J Clin Oncol. 26:5511–5517, 2008

    Article  PubMed  CAS  Google Scholar 

  61. Gumireddy K, Reddy M, Cosenza SC, Boominathan R, Baker SJ, Papathi N, Jiang J, Holland J, Reddy EP. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 7:275–286, 2005

    Article  PubMed  CAS  Google Scholar 

  62. Jimeno A, Li J, Messersmith WA, Laheru D, Rudek MA, Maniar M, Hidalgo M, Baker SD, Donehower RC. Phase I study of ON 01910.Na, a novel modulator of the Polo-like kinase 1 pathway, in adult patients with solid tumors. J Clin Oncol. 26:5504–5510, 2008

    Article  PubMed  CAS  Google Scholar 

  63. Jimeno A, Chan A, Cusatis G, Zhang X, Wheelhouse J, Solomon A, Chan F, Zhao M, Cosenza SC, Ramana Reddy MV, Rudek MA, Kulesza P, Donehower RC, Reddy EP, Hidalgo M. Evaluation of the novel mitotic modulator ON 01910.Na in pancreatic cancer and preclinical development of an ex vivo predictive assay. Oncogene. 28:610–618, 2009

    Article  PubMed  CAS  Google Scholar 

  64. Futreal P, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR. Cancer and genomics. Nature. 409:850–852, 2001

    Article  PubMed  CAS  Google Scholar 

  65. Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature. 411:355–365, 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Plowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci U S A. 96:13603–13610, 1999

    Article  PubMed  CAS  Google Scholar 

  67. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 19:5548–5557, 2000

    Article  PubMed  CAS  Google Scholar 

  68. Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer. Biochim Biophys Acta. 1333:F217–F248, 1997

    PubMed  CAS  Google Scholar 

  69. Susman E. Bevacizumab adds survival benefit in colorectal cancer. Lancet Oncol. 6:136, 2005

    Article  PubMed  Google Scholar 

  70. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med. 352:476–487, 2005

    Article  PubMed  CAS  Google Scholar 

  71. Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther. 82:241–250, 1999

    Article  PubMed  CAS  Google Scholar 

  72. Mitsiades CS, Mitsiades N, Hideshima T, Richardson PG, Anderson KC. Proteasome inhibitors as therapeutics. Essays Biochem. 41:205–218, 2005

    Article  PubMed  CAS  Google Scholar 

  73. Wells A. EGF receptor. Int J Biochem Cell Biol. 31:637–643, 1999

    Article  PubMed  CAS  Google Scholar 

  74. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol Suppl. 18:32S–40S, 2001

    Google Scholar 

  75. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, Yarden Y. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15:2452–2467, 1996

    PubMed  CAS  Google Scholar 

  76. Yarden Y, Sliwkowski MS. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2:127–137, 2001

    Article  PubMed  CAS  Google Scholar 

  77. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 16:1647–1655, 1997

    Article  PubMed  CAS  Google Scholar 

  78. Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem. 247:8865–8874, 1999

    Article  Google Scholar 

  79. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 103:211–225, 2000

    Article  PubMed  CAS  Google Scholar 

  80. Blenis J. Signal transduction via the MAP kinases: proceed at your RSK. Proc Natl Acad Sci U S A. 90:5889–5892, 1993

    Article  PubMed  CAS  Google Scholar 

  81. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 376:599–602, 1995

    Article  PubMed  CAS  Google Scholar 

  82. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 74:49–139, 1998

    Article  PubMed  CAS  Google Scholar 

  83. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 296:1655–1657, 2002

    Article  PubMed  CAS  Google Scholar 

  84. Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD, Tweardy DJ. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 90:824–832, 1998

    Article  Google Scholar 

  85. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A. 91:7727–7731, 1994

    Article  PubMed  CAS  Google Scholar 

  86. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 22:337–345, 2004

    Article  Google Scholar 

  87. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 9:1803–1810, 2005

    Article  CAS  Google Scholar 

  88. Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chien C-R, Makhson A, D’Haens G, Pintér T, Lim R, Bodoky G, Roh J, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 360:1408–1417, 2009

    Article  PubMed  Google Scholar 

  89. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A, Koralewski P. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 27:663–671, 2009

    Article  PubMed  CAS  Google Scholar 

  90. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 354:567–578, 2006

    Article  PubMed  CAS  Google Scholar 

  91. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, Peyrade F, Benasso M, Vynnychenko I, De Raucourt D, Bokemeyer C, Schueler A, Amellal N, Hitt R. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 359:1116–1127, 2008

    Article  PubMed  CAS  Google Scholar 

  92. Gibson TB, Ranganathan A, Grothey A. Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer. Clin Colorectal Cancer. 6:29–31, 2006

    Article  PubMed  Google Scholar 

  93. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 353:1659–1672, 2005

    Article  PubMed  CAS  Google Scholar 

  94. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 353:1673–1684, 2005

    Article  PubMed  CAS  Google Scholar 

  95. Van Cutsem E, Kang Y, Chung H, Shen L, Sawaki A, Lordick F, Hill J, Lehle M, Feyereislova A, Bang Y. Efficacy results from the ToGA trial: a phase III study of trastuzumab added to standard chemotherapy (CT) in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (GC). J Clin Oncol. 27:18s, 2009

    Article  Google Scholar 

  96. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res. 6:4885–4892, 2000

    PubMed  CAS  Google Scholar 

  97. Pollack VA, Savage DM, Baker DA, Tsaparikos KE, Sloan DE, Moyer JD, Barbacci EG, Pustilnik LR, Smolarek TA, Davis JA, et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther. 291:739–748, 1999

    PubMed  CAS  Google Scholar 

  98. Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A, DiOrio C, Doty J, Morin AJ, Moyer MP, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57:4838–4848, 1997

    PubMed  CAS  Google Scholar 

  99. Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Keiback DG, Kaye SB, Gianni L, Harris A, Bjork T, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 20:4292–4302, 2002

    Article  PubMed  CAS  Google Scholar 

  100. Herbst RS, Maddox AM, Rothenberg ML, Small EJ, Rubin EH, Baselga J, Rojo F, Hong WK, Swaisland H, Averbuch SD, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-­small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol. 20:3815–3825, 2002

    Article  PubMed  CAS  Google Scholar 

  101. Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, Miller V, Averbuch S, Ochs J, Morris C, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol. 20:2240–2250, 2002.

    Article  PubMed  CAS  Google Scholar 

  102. Hidalgo M, Siu LL, Nemunaitis J, Rizzo J, Hammond LA, Takimoto C, Eckhardt SG, Tolcher A, Britten CD, Denis L, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with solid malignancies. J Clin Oncol. 19:3267–3279, 2001

    PubMed  CAS  Google Scholar 

  103. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 21:2237–2246, 2003

    Article  PubMed  CAS  Google Scholar 

  104. Kris MG, Natale RB, Herbst RS, Lynch TJ, Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 290:2149–2158, 2004.

    Article  Google Scholar 

  105. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, Von Pawel J, Pluzanska A, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial – INTACT 1. J Clin Oncol. 22:777–784, 2004

    Article  PubMed  CAS  Google Scholar 

  106. Herbst R, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, Kris MG, Tran HT, Klein P, Li X. et al. TRIBUTE – a phase III trial of erlotinib HCl (OSI-774) combined with carboplatin and paclitaxel (CP) chemotherapy in advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 23:5892–5899, 2005

    Article  PubMed  CAS  Google Scholar 

  107. Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu YL, Li LY, Watkins CL, Sellers MV, Lowe ES, Sun Y, Liao ML, Osterlind K, Reck M, Armour AA, Shepherd FA, Lippman SM, Douillard JY. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet. 372:1809–1818, 2008

    Article  PubMed  CAS  Google Scholar 

  108. Mok T, et al. Phase III, randomized, open-label, first line study of gefitinib vs. carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer (NSCLC) (iPASS). Ann Oncol. 10(Suppl 8), 2008; abstr LBA2

    Google Scholar 

  109. Shepherd F, Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Bezjak A, Tu D, Santabarbara P, Seymour L. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. J Clin Oncol Suppl. 22:14S, 2004

    Google Scholar 

  110. Moore M, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos G, Ptasynski M and Parulekar W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 25:1960–1966, 2007

    Article  PubMed  CAS  Google Scholar 

  111. Burris H, Taylor C, Jones S, Pandite L, Smith DA, Versola M, Stead A, Whitehead B, Spector N, Wilding G, et al. A phase I study of GW572016 in patients with solid tumors. J Clin Oncol Suppl. 22:248, 2003

    Google Scholar 

  112. Erlichman C, Hidalgo M, Boni JP, Martins P, Quinn SE, Zacharchuk C, Amorusi P, Adjei AA, Rowinsky EK. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol. 24:2252–2260, 2006

    Article  PubMed  CAS  Google Scholar 

  113. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 355:2733–2743, 2006

    Article  PubMed  CAS  Google Scholar 

  114. Jimeno A, Rubio-Viquiera B, Amador ML, Oppenheimer D, Bouraroud N, Kuleza P, Sebastiani V, Maitra A, Hidalgo M. Epidermal growth factor receptor dynamics influences response to epidermal growth factor targeted agents. Cancer Res. 65:3003–3010, 2005

    PubMed  CAS  Google Scholar 

  115. Yee D. Targeting insulin-like growth factor pathways. Br J Cancer. 94:465–468, 2006

    Article  PubMed  CAS  Google Scholar 

  116. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 28:20–47, 2007

    Article  PubMed  CAS  Google Scholar 

  117. Boulle N, Logie A, Gicquel C, Perin L, Le Bouc Y. Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab. 83:1713–1720, 1998

    Article  PubMed  CAS  Google Scholar 

  118. Butler AA, Blakesley VA, Poulaki V, et al. Stimulation of tumor growth by recombinant human insulin-like growth factor-I (IGF-I) is dependent on the dose and the level of IGF-I receptor expression. Cancer Res. 58:3021–3027, 1998

    PubMed  CAS  Google Scholar 

  119. Haluska P, Shaw HM, Batzel GN, et al. Phase I dose escalation study of the antiinsulin-like growth factor-I receptor monoclonal antibody CP751,871 in patients with refractory solid tumors. Clin Cancer Res. 13:5834–5840, 2007

    Article  PubMed  CAS  Google Scholar 

  120. de Bono JS, Attard G, Adjei A, et al. Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin Cancer Res, 13:3611–3616, 2007

    Article  PubMed  CAS  Google Scholar 

  121. Karp DD, Paz-Ares LG, Novello S, et al. CP751,871 in combination with paclitaxel and carboplatin in squamous NSCLC. J Clin Oncol. 26:8015, 2008

    Google Scholar 

  122. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as c-met proto-oncogene product. Science. 251:802–804, 1991

    Article  PubMed  CAS  Google Scholar 

  123. Birchmeier C, Birchmeier W, Gherardi E, VandeWoude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 4:915–925, 2003

    Article  PubMed  CAS  Google Scholar 

  124. Ponzetto C, Bardelli A, Maina F, et al. A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor. Mol Cell Biol. 13:4600–4608, 1993

    PubMed  CAS  Google Scholar 

  125. Ponzetto C, Bardelli A, Zhen Z, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 77:261–271, 1994

    Article  PubMed  CAS  Google Scholar 

  126. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 16:68–73, 1997

    Article  PubMed  CAS  Google Scholar 

  127. Gordon MS, Mendelson D, Sweeney C, et al. Interim results from a first-in-human study with AMG102, a fully human monoclonal antibody that neutralizes hepatocyte growth factor (HGF), the ligand to c-Met receptor, in patients with advanced solid tumors. J Clin Oncol. 18S:3551, 2007

    Google Scholar 

  128. Jeay S, Munshi N, Hill J, et al. ARQ197, a highly selective small molecule inhibitor of c-Met, with selective antitumor properties in a broad spectrum of human cancer cells. Presented at 98th AACR Annual Meeting, 2007; abstr 3525

    Google Scholar 

  129. Garcia A, Rosen L, Cunningham CC, et al. Phase I study of ARQ197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. J Clin Oncol. 25, 2007; abstr 3525

    Google Scholar 

  130. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 304:1497–1500, 2004

    Article  PubMed  CAS  Google Scholar 

  131. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al. EGF receptor gene mutations are common in lung cancers from never smokers and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 101:13306–13311, 2004

    Article  PubMed  CAS  Google Scholar 

  132. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer Suppl. 37:S9–S15, 2001

    CAS  Google Scholar 

  133. Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Jänne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res. 15(16):5267–5273, 2009

    Article  PubMed  CAS  Google Scholar 

  134. Zhou HY, Lee JH, et al. An orally available small molecule inhibitor of c-Met, PF2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67:4408–4417, 2007

    Article  CAS  Google Scholar 

  135. Jimeno A, Messersmith WA, Hirsch FR, Franklin WA, Eckhardt SG. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol. 27:1130–1136, 2009

    Article  PubMed  CAS  Google Scholar 

  136. Zeng Q, Chen S, You Z, et al. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFκB. J Biol Chem. 277:25203–25208, 2002

    Article  PubMed  CAS  Google Scholar 

  137. Tulasne D, Foveau B. The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ. 15:427–434, 2008

    Article  PubMed  CAS  Google Scholar 

  138. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 104:20932–20937, 2007

    Article  PubMed  CAS  Google Scholar 

  139. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Jänne PA. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316:1039–1043, 2007

    Article  PubMed  CAS  Google Scholar 

  140. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 6:729–734, 2006

    Article  PubMed  CAS  Google Scholar 

  141. Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 16:64–67, 1997

    Article  PubMed  CAS  Google Scholar 

  142. Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6:91–99, 2004

    Article  PubMed  CAS  Google Scholar 

  143. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 115:577–590, 2003

    Article  PubMed  CAS  Google Scholar 

  144. Johannessen CM, Reczek EE, James MF, et al. The NF1 tumor suppressor critically ­regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 102:8573–8578, 2005

    Article  PubMed  CAS  Google Scholar 

  145. Koltin Y, Faucette L, Bergsma DJ, Levy MA, Cafferkey R, Koser PL, Johnson RK, Livi GP. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol. 11:1718–1723, 1991

    PubMed  CAS  Google Scholar 

  146. Fruman DA, Wood MA, Gjertson CK, Katz HR, Burakoff SJ, Bierer BE. FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. Eur J Immunol. 25:563–571, 1995

    Article  PubMed  CAS  Google Scholar 

  147. Seufferlein T, Rozengurt E. Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res. 56:3895–3897, 1996

    PubMed  CAS  Google Scholar 

  148. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 59:3581–3587, 1999

    PubMed  CAS  Google Scholar 

  149. Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem. 273:14424–14429, 1998

    Article  PubMed  CAS  Google Scholar 

  150. Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ. p53/p21CIP1 cooperate in enforcing rapamycin-induced G1 arrest and determine the cellular response to rapamycin. Cancer Res. 61:3373–3381, 2001

    PubMed  CAS  Google Scholar 

  151. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Burns CJ, Zuelke C, Farkas S, Anthuber M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 8:128–135, 2002

    Article  PubMed  CAS  Google Scholar 

  152. Yu Y, Sato JD. MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J Cell Physiol. 178:235–246, 1999.

    Article  PubMed  CAS  Google Scholar 

  153. O’Donnell A, Faivre S, Burris HA, 3rd, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 26:1588–1595, 2008

    Article  PubMed  CAS  Google Scholar 

  154. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon y Cajal S, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 26:1603–1610, 2008

    Article  PubMed  CAS  Google Scholar 

  155. Hartford CM, Desai AA, Janisch L, Karrison T, Rivera VM, Berk L, Loewy JW, Kindler H, Stadler WM, Knowles HL, Bedrosian C, Ratain MJ. A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res. 15:1428–1434, 2009

    Article  PubMed  CAS  Google Scholar 

  156. Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, Patnaik A, Mathews L, Ricart AD, Mays T, Knowles H, Rivera VM, Kreisberg J, Bedrosian CL, Tolcher AW. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 26:361–367, 2008

    Article  PubMed  CAS  Google Scholar 

  157. Hidalgo M, Buckner JC, Erlichman C, Pollack MS, Boni JP, Dukart G, Marshall B, Speicher L, Moore L, Rowinsky EK. A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res. 12:5755–5763, 2006

    Article  PubMed  CAS  Google Scholar 

  158. Raymond E, Alexander J, Faivre S, Vera K, Materman E, Boni J, Leister C, Korth-Bradley J, Hanauske A, Jean-Pierre A. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 22:2336–2347, 2004

    Article  PubMed  CAS  Google Scholar 

  159. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ; Global ARCC Trial. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 356:2271–2281, 2007

    Article  PubMed  CAS  Google Scholar 

  160. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A; RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 372:449–456, 2008

    Article  PubMed  CAS  Google Scholar 

  161. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 22:4991–5004, 2004

    Article  PubMed  CAS  Google Scholar 

  162. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, Laurell A, Offner F, Strahs A, Berkenblit A, Hanushevsky O, Clancy J, Hewes B, Moore L, Coiffier B. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 27:3822–3829, 2009

    Article  PubMed  CAS  Google Scholar 

  163. Oza AM, Elit L, Provencher D, Biagi JJ, Panasci L, Sederias J, Dancey JE, Tsao MS, Eisenhauer EA. A phase II study of temsirolimus (CCI-779) in patients with metastatic and/or locally advanced recurrent endometrial cancer previously treated with chemotherapy: NCIC CTG IND 160b. J Clin Oncol. 26:18S, 2008; abstr 5516

    Article  CAS  Google Scholar 

  164. Chang SM, Kuhn J, Wen P, Greenberg H, Schiff D, Conrad C, Fink K, Robins HI, Cloughesy T, De Angelis L, et al. Phase I/Pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-induced antiepileptic drugs. Invest New Drugs. 22:427–435, 2004

    Article  PubMed  CAS  Google Scholar 

  165. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 98:10314–10319, 2001

    Article  PubMed  CAS  Google Scholar 

  166. Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 1773:1177–1195, 2007

    Article  PubMed  CAS  Google Scholar 

  167. Zhu K, Hamilton AD, Sebti SM. Farnesyl transferase inhibitors as anticancer agents: current status. Curr Opin Investig Drugs. 4:1428–1435, 2004

    Google Scholar 

  168. Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, Safran H, Humblet Y, Perez Ruixo J, Ma Y, Von Hoff D. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 22:1430–1438, 2004

    Article  PubMed  CAS  Google Scholar 

  169. End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Skrzat S, Devine A, Wouters W, Bowden C. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 61:131–137, 2001

    PubMed  CAS  Google Scholar 

  170. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of BRAF gene in human cancers. Nature. 417:949–954, 2002

    Article  PubMed  CAS  Google Scholar 

  171. Strumberg D, Richly H, Hilger RA. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 23:965–972, 2005

    Article  PubMed  CAS  Google Scholar 

  172. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 24:2505–2512, 2006

    Article  PubMed  CAS  Google Scholar 

  173. Llovet JM, Ricci S, Mazzaferro V, et al. Sorefenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390, 2008

    Article  PubMed  CAS  Google Scholar 

  174. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM; TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 356:125–134, 2007

    Article  PubMed  CAS  Google Scholar 

  175. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 27:3584–3590, 2009

    Article  PubMed  CAS  Google Scholar 

  176. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, Gorbunova V, Bay JO, Bodrogi I, Jagiello-Gruszfeld A, Moore N; AVOREN Trial investigators. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 370:2103–2111, 2007

    Article  PubMed  Google Scholar 

  177. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Ou SS, Archer L, Atkins JN, Picus J, Czaykowski P, Dutcher J, Small EJ. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 26:5422–5428, 2008

    Article  PubMed  CAS  Google Scholar 

  178. Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 77:841–852, 1994

    Article  PubMed  CAS  Google Scholar 

  179. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 265:966–970, 1994

    Article  PubMed  CAS  Google Scholar 

  180. Brott BK, Alessandrini A, Largaespada DA, Copeland NG, Jenkins NA, Crews CM, Erikson RL. MEK2 is a kinase related to MEK1 and is differentially expressed in murine tissues. Cell Growth Differ. 4:921–929, 1993

    PubMed  CAS  Google Scholar 

  181. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 11:1192–1197, 2004

    Article  PubMed  CAS  Google Scholar 

  182. Seger R, Ahn NG, Posada J, Munar ES, Jensen AM, Cooper JA, Cobb MH, Krebs EG. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem. 267:14373–14381, 2003

    Google Scholar 

  183. Zheng CF, Guan KL. Cloning and characterization of two distinct human extracellular ­signal-regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem. 268:11435–11439, 1993

    PubMed  CAS  Google Scholar 

  184. Giroux S, Tremblay M, Bernard D, Cardin-Girard JF, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J. Embryonic death of Mek1-deficient mice reveals a role for the kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol. 9:369–372, 2002

    Article  Google Scholar 

  185. Belanger LF, Roy S, Tremblay M, Brott B, Steff AM, Mourad W, Hugo P, Erikson R, Charron J. Mek2 is dispensible for mouse growth and development. Mol Cell Biol. 23:4778–4787, 2003

    Article  PubMed  CAS  Google Scholar 

  186. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 4:937–947, 2004

    Article  PubMed  CAS  Google Scholar 

  187. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 270:27489–27494, 1995

    Article  PubMed  CAS  Google Scholar 

  188. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 273:18623–18632, 1998

    Article  PubMed  CAS  Google Scholar 

  189. Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol Suppl. 16:105–116, 2003

    Article  Google Scholar 

  190. Lorusso PM, Krishnamurthi S, Rinehart JR, Nabell L, Croghan G, Varterasian M, Sadis SS, Menon SS, Leopold J, Meyer MB, et al. A phase 1-2 clinical study of a second generation oral MEK inhibitor, PD 0325901 in patients with advanced cancer. J Clin Oncol Suppl. 23:16S, 2005

    Google Scholar 

  191. Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian P, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 22:4456–4462, 2004

    Article  PubMed  CAS  Google Scholar 

  192. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S, Maloney L, Gordon G, Simmons H, Marlow A, Litwiler K, Brown S, Poch G, Kane K, Haney J, Eckhardt SG. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 26:2139–2146, 2008

    Article  PubMed  CAS  Google Scholar 

  193. Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer. Cancer Cell. 6:209–214, 2004.

    Article  PubMed  CAS  Google Scholar 

  194. Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Src inhibitors: genomics to therapeutics. Expert Opin Investig Drugs. 10:1327–1344, 2001

    Article  PubMed  CAS  Google Scholar 

  195. Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ. Tyrosine kinase signaling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2:203–210, 2000

    Article  PubMed  CAS  Google Scholar 

  196. Biscardi JS, Tice DA, Parsons SJ. c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res. 76:61–119, 1999

    Article  PubMed  CAS  Google Scholar 

  197. Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 274:8335–8343, 1999

    Article  PubMed  CAS  Google Scholar 

  198. Duxbury MS. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res. 10:2307–2318, 2004

    Article  PubMed  CAS  Google Scholar 

  199. Zhang Q, Thomas SM, Xi S, Smithgall TE, Siegfried JM, Kamens J, Gooding WE, Grandis JR. SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells. Cancer Res. 64:6166–6173, 2004

    Article  PubMed  CAS  Google Scholar 

  200. Shakespeare W, Yang M, Bohacek R, Cerasoli F, Stebbins K, Sundaramoorthi R, Azimioara M, Vu C, Pradeepan S, Metcalf C, et al. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc Natl Acad Sci U S A. 97:9373–9378, 2000

    Article  PubMed  CAS  Google Scholar 

  201. Workman P. Overview: translating Hsp90 biology into Hsp90 drugs. Curr Cancer Drug Targets. 3:297–300, 2003

    Article  PubMed  CAS  Google Scholar 

  202. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J, Frost P, Ye F, Boschelli DH, Boschelli F. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 63:375–381, 2002

    Google Scholar 

  203. Ple PA, Green TPHennequin LF, Curwen J, Fennell M, Allen J, Lambert-Van Der Brempt C, Costello G. Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J Med Chem. 47:871–887, 2004

    Article  PubMed  CAS  Google Scholar 

  204. Yezhelyev MV, Koehl G, Guba M, Brabletz T, Jauch KW, Ryan A, Barge A, Green T, Fennell M, Bruns CJ, et al. Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res. 10:8028–8036, 2004

    Article  PubMed  CAS  Google Scholar 

  205. Messersmith WA, Rajeshkumar NV, Tan AC, Wang XF, Diesl V, Choe SE, Follettie M, Coughlin C, Boschelli F, Garcia-Garcia E, Lopez-Rios F, Jimeno A, Hidalgo M. Efficacy and pharmacodynamic effects of bosutinib (SKI-606), a Src/Abl inhibitor, in freshly generated human pancreas cancer xenografts. Mol Cancer Ther. 8:1484–1493, 2009

    Article  PubMed  CAS  Google Scholar 

  206. Rajeshkumar NV, Tan AC, De Oliveira E, Womack C, Wombwell H, Morgan S, Warren MV, Walker J, Green TP, Jimeno A, Messersmith WA, Hidalgo M. Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res. 15:4138–4146, 2009

    Article  PubMed  CAS  Google Scholar 

  207. Ashkenazi A. Targeting death and decoy receptors in the tumor necrosis factor superfamily. Nat Rev Cancer. 2:420–430, 2002

    Article  PubMed  CAS  Google Scholar 

  208. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 7:1013–1030, 2008

    Article  PubMed  CAS  Google Scholar 

  209. Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 7:989–1000, 2008

    Article  PubMed  CAS  Google Scholar 

  210. O’brien S, Moore JO, Boyd TE, et al. Randomized phase III trial of fludaribine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 25:1114–1120, 2007

    Article  PubMed  CAS  Google Scholar 

  211. Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 24:4738–4745, 2006

    Article  PubMed  CAS  Google Scholar 

  212. Chanan-Khan AA, Niesvizky R, Hohl RJ, Zimmerman TM, Christiansen NP, Schiller GJ, Callander N, Lister J, Oken M, Jagannath S. Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma. 50:559–565, 2009

    Article  PubMed  CAS  Google Scholar 

  213. Rudin CM, Salgia R, Wang X, et al. Randomized phase II study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-small cell lung cancer: CALGB 30103. J Clin Oncol. 26:870–876, 2008

    Article  PubMed  CAS  Google Scholar 

  214. Frieden M, Orum H. The application of locked nucleic acids in the treatment of cancer. IDrugs. 9:706–711, 2006

    PubMed  CAS  Google Scholar 

  215. Hansen JB, Fisker N, Westergaard M, Kjaerulff LS, Hansen HF, Thrue CA, Rosenbohm C, Wissenbach M, Orum H, Koch T. SPC3042: a proapoptotic survivin inhibitor. Mol Cancer Ther. 7:2736–2745, 2008

    Article  PubMed  CAS  Google Scholar 

  216. Satoh T, Okamoto I, Miyazaki M, Morinaga R, Tsuya A, Hasegawa Y, Terashima M, Ueda S, Fukuoka M, Ariyoshi Y, Saito T, Masuda N, Watanabe H, Taguchi T, Kakihara T, Aoyama Y, Hashimoto Y, Nakagawa K. Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res. 15:3872–3880, 2009

    Article  PubMed  CAS  Google Scholar 

  217. Dean E, Jodrell D, Connolly K, Danson S, Jolivet J, Durkin J, Morris S, Jowle D, Ward T, Cummings J, Dickinson G, Aarons L, Lacasse E, Robson L, Dive C, Ranson M. Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol. 27:1660–1666, 2009

    Article  PubMed  CAS  Google Scholar 

  218. Schimmer AD, Estey EH, Borthakur G, Carter BZ, Schiller GJ, Tallman MS, Altman JK, Karp JE, Kassis J, Hedley DW, Brandwein J, Xu W, Mak DH, Lacasse E, Jacob C, Morris SJ, Jolivet J, Andreeff M. Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol. 27(28):4741–4746, 2009

    Article  PubMed  CAS  Google Scholar 

  219. Liu G, Kelly WK, Wilding G, Leopold L, Brill K, Somer B. An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin Cancer Res. 15:3172–3176, 2009

    Article  PubMed  CAS  Google Scholar 

  220. Schimmer AD, O’Brien S, Kantarjian H, Brandwein J, Cheson BD, Minden MD, Yee K, Ravandi F, Giles F, Schuh A, Gupta V, Andreeff M, Koller C, Chang H, Kamel-Reid S, Berger M, Viallet J, Borthakur G. A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies Clin Cancer Res. 14:8295–8301, 2008

    Article  PubMed  CAS  Google Scholar 

  221. O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, Viallet J, Cheson BD. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood. 113:299–305, 2009

    Article  PubMed  CAS  Google Scholar 

  222. Firozvi K, Hwang J, Hansen N, et al. A phase I study of the panCL2 family inhibitor GX15-070, administered as a 3-hour weekly infusion in patients with refractory solid tumors or lymphomas. Proc Am Soc Clin Oncol. 24:141s, 2006; abstr 3081

    Google Scholar 

  223. Wilson WH, Tulpule A, Levine AM, et al. A phase I/2a study evaluating the safety, pharmacokinetics, and efficacy of ABT-263 in subjects with refractory or relapsed lymphoid malignancies. Blood. 110, 2007; abstr 1371

    Google Scholar 

  224. Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic K, Hill M, Mays T, McCoy T, Fox NL, Halpern W, Corey A, Cohen RB. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol. 25:1390–1395, 2007

    Article  PubMed  CAS  Google Scholar 

  225. Greco FA, Bonomi P, Crawford J, Kelly K, Oh Y, Halpern W, Lo L, Gallant G, Klein J. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer. 61:82–90, 2008

    Article  PubMed  Google Scholar 

  226. Leong S, Cohen RB, Gustafson DL, Langer CJ, Camidge DR, Padavic K, Gore L, Smith M, Chow LQ, von Mehren M, O’Bryant C, Hariharan S, Diab S, Fox NL, Miceli R, Eckhardt SG. Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase i and pharmacokinetic study. J Clin Oncol. 27(26):4413–4421, 2009

    Article  PubMed  CAS  Google Scholar 

  227. Camidge DR, Herbst RS, Gordon M, et al. A phase I safety and pharmacokinetic study of Apomab, a human DR5 agonist antibody in patients with advanced cancer. Proc Am Soc Clin Oncol. 25(18S), 2007; abstr 3582

    Google Scholar 

  228. LoRusso P, Hong D, Heath E, et al. First-in-human study of AMG 655, a pro-apoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. Proc Am Soc Clin Oncol. 25, 2007; abstr 3534

    Google Scholar 

  229. Plummer R, Attard G, Pacey S, Li L, Razak A, Perrett R, Barrett M, Judson I, Kaye S, Fox NL, Halpern W, Corey A, Calvert H, de Bono J. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res. 13(20):6187–6194, 2007

    Article  PubMed  CAS  Google Scholar 

  230. Wakelee HA, Patnaik A, Sikic BI, Mita M, Fox NL, Miceli R, Ullrich SJ, Fisher GA, Tolcher AW. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol. 21(2):376–381, 2010

    Article  PubMed  CAS  Google Scholar 

  231. Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J, Sawyers CL. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 12:122–127, 2006

    Article  PubMed  CAS  Google Scholar 

  232. Hylton N. Dynamic contrast enhanced – magnetic resonance imaging as an imaging ­biomarker. J Clin Oncol. 24:3293–3298, 2004

    Article  CAS  Google Scholar 

  233. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 10:45–147, 2004

    Google Scholar 

  234. Wu X, Rubin M, Fan Z, DeBlasio T, Soos T, Koff A, Mendelsohn J. Involvement of p27KIP1 in GI arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene. 12:1397–1403, 1996

    PubMed  CAS  Google Scholar 

  235. Salazar R, Tabernero J, Rojo F, Jimenez E, Montaner I, Casado E, Sala G, Tillner J, Malik R, Baselaga J, et al. Dose-dependent inhibition of the EGFR and signaling pathways with the anti-EGFR monoclonal antibody (MAb) EMD 7200 administered every three weeks (q3w). A phase I pharmacokinetic/pharmacodynamic (PK/PD) study to define the optimal biological dose (OBD). J Clin Oncol. 22:14S, 2004

    Google Scholar 

  236. Ciardiello F, Bianco R, Caputo R, Caputo R, Damiano V, Troiani T, Melisi D, De Vita F, De Placido S, Bianco AR, et al. Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res. 10:784–793, 2004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weekes, C.D., Hidalgo, M. (2011). Targeted Therapeutics in Cancer Treatment. In: Garrett-Mayer, E. (eds) Principles of Anticancer Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7358-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7358-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7357-3

  • Online ISBN: 978-1-4419-7358-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics