Skip to main content

Analytical Methods for the Extraction and Identification of Secondary Metabolite Production in ‘In Vitro’ Plant Cell Cultures

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

The production of plant secondary metabolites by in vitro culture is one of the most challenging and thrilling field of recent scientific researches. In the few last years, pharmaceutical and food industry demand in phytochemicals has increased steadily. Therefore, the establishment of in vitro plant protocols has to be monitored by phytochemical investigation of their selected extracts in order to supply standardized raw material. In this chapter, the advantages and disadvantages of some modern techniques have been described for the sampling, extraction and analysis of the in vitro plants and derivatives. Depending on the volatile or nonvolatile substances produced by in vitro plant raw material, différent kinds of laboratory facilities are needed for the extraction and quali-quantitative analysis. Recent extraction technology such as Accelerated Solvent Extraction or Microwave Assisted Extraction in combination with hyphenated techniques such as Gas Chromathography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) represent a modern approach to perform fast and reproducible analytical methods for the quality control of secondary metabolite production in ‘in vitro’ plant material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oksman-Caldentey K-M, Inze D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 2004; 9(9):433–440.

    Article  PubMed  CAS  Google Scholar 

  2. Verpoorte R, Memelink J. Engineering secondary metabolite production in plants. Curr Opin Biotechnol 2002; 13(2): 181–187.

    Article  PubMed  CAS  Google Scholar 

  3. Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 2003; 62(6):817–836.

    Article  PubMed  CAS  Google Scholar 

  4. Halket JM, Waterman D, Przyborowska AM et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 2005; 56:219–243.

    Article  PubMed  CAS  Google Scholar 

  5. Kurz W, Constabel E Production of secondary metabolites. In: Altman A, Colwell R, ed. Agricultural Biotechnology, 1997. New York: CRC Press, 1998:183–213.

    Google Scholar 

  6. Rout GR, Samantaray S, Das P. In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 2000; 18(2):91–120.

    Article  PubMed  CAS  Google Scholar 

  7. Bourgaud F. Plant cell and tissue culture for the production of food ingredients. Plant Sci 2001; 160(3):571–572.

    Article  CAS  Google Scholar 

  8. Wu J, Zhong JJ. Production of ginseng and its bioactive components in plant cell culture: Current technological and applied aspects. J Biotechnol 1999; 68(2):89–99.

    Article  PubMed  CAS  Google Scholar 

  9. Zhong JJ. Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 2002; 94(6):591–599.

    PubMed  CAS  Google Scholar 

  10. Ramachandra RS, Ravishankar GA. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv 2002; 20(2):101–153.

    Article  Google Scholar 

  11. Charchoglyan A, Abrahamyan A, Fujii I et al. Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 2007; 68(21):2670–2677.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 2005; 23(4):283–333.

    Article  PubMed  CAS  Google Scholar 

  13. Trethewey RN. Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 2004; 7(2):196–201.

    Article  PubMed  CAS  Google Scholar 

  14. Weckwerth W, Fiehn O. Can we discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 2002; 13(2):156–160.

    Article  PubMed  CAS  Google Scholar 

  15. Ton-Jen Fu. Plant cell and tissue culture for food ingredient production, safety considerations. In: Fu TJ, ed. Plant Cell and Tissue Culture for the Production of Food Ingredients. New York: Kluwer Accademic Plenum Publishers, 1999:237.

    Google Scholar 

  16. Beru N. Food Ingredients from plant cell and tissue culture: regulatory considerations. In: Fu TJ, ed. Plant Cell and Tissue Culture for the Production of Food Ingredients. New York: Kluwer Accademic Plenum Publishers, 1999:265.

    Chapter  Google Scholar 

  17. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 1962; 15:472–475.

    Article  Google Scholar 

  18. Wiermann R. Secondary products and cell tissue differentiation. In: Conn EE, ed. The Biochemistry of Plants. New York: Academic Press 1981; 7:85–115.

    Google Scholar 

  19. Wink M. Physiology of accumulation of secondary metabolites with special reference to alkaloids. In: Constabel F, ed. Cell Culture and Somatic Cell Genetics of Plants. London: Academic Press, 1987; 4:17–42.

    Google Scholar 

  20. Wink M. Production of secondary metabolites by plant cell cultures in relation to the site and mechanism of their accumulation. In: Marin B, ed. Plant Vacuoles. NATO Advanced Institute, Series 134. 1987:477–484.

    Google Scholar 

  21. Guern J, Renaudin JP, Brown SC. The compartmentation of secondary metabolites in plant cell cultures. Constabel F, Vasil IK, eds. In: Cell Culture and Somatic Cell Genetics. New York: Academic Press, 1987; 9:43–76.

    Google Scholar 

  22. Barz W, Beimen A, Drager B et al. Turnover and storage of secondary products in cell cultures. In: Charlwood B, Rhodes M, eds. Secondary Products from Plant Tissue Culture. Oxford: Claredon Press, 1990:79–102.

    Google Scholar 

  23. San-Francisco S, Houdusse F, Zamarreno AM et al. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content. Scientia Horticulturae 2005; 106(1):38–52.

    Article  CAS  Google Scholar 

  24. Thorpe TA. The current status of plant tissue culture. In: Bhojwani, ed. Handbook of Plant Cell Culture, Techniques and Applications. New York: Macmillan, 1990; 4:1–33.

    Google Scholar 

  25. Srivastava S, Srivastava AK. Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 2007; 27(1):29–43.

    Article  PubMed  CAS  Google Scholar 

  26. Saito K, Yamazaki M, Murakoshi I. Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. J Nat Prod 1992; 55(2):149–162.

    Article  PubMed  CAS  Google Scholar 

  27. Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 2005; 56(410):255–265.

    Article  PubMed  CAS  Google Scholar 

  28. Huie W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 2002; 373:23.

    Article  PubMed  CAS  Google Scholar 

  29. Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P et al. Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 2005; 1089(1): 1–17.

    Article  PubMed  CAS  Google Scholar 

  30. Smelcerovic A, Spiteller M, Zuehlke S. Comparison of methods for the exhaustive extraction of hypericins, flavonoids and hyperforin from Hypericum perforatum L. J Agric Food Chem 2006; 54(7):2750–2753.

    Article  PubMed  CAS  Google Scholar 

  31. Benthin B, Danz H, Hamburger M. Pressurized liquid extraction of medicinal plants. J Chromatogr A 1999; 837(1):211–219.

    Article  PubMed  CAS  Google Scholar 

  32. Choa SK, Abd El-Atya AM, Choia J-H et al. Optimized conditions for the extraction of secondary volatile metabolites in Angelica roots by accelerated solvent extraction. J Pharm Biomed Anal 2007; 44(5):1154–1158.

    Article  CAS  Google Scholar 

  33. Mendiola JA, Rodriguez-Meizoso I, Señoráns FJ et al. Antioxidants in plant foods and microalgae extracted using compressed fluids. JEAF 2008; 7(10):3279–3287.

    Google Scholar 

  34. Chena J, Li W, Yang B et al. Determination of four major saponins in the seeds of Aesculus chinensis Bunge using accelerated solvent extraction followed by high-performance liquid chromatography and electrospray-time of flight mass spectrometry. Anal Chim Acta 2007; 596:273–280.

    Article  CAS  Google Scholar 

  35. Alonso-Salces RM, Korta E, Barranco A et al. Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A 2001; 933(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  36. Anand R, Verma N, Gupta DK et al. Comparison of extraction techniques for extraction of bioactive molecules from Hypericum perforatum L. plant. J Chromatogr Sci 2005; 43(10):530–531.

    PubMed  CAS  Google Scholar 

  37. Bertoli A, Giovannini A, Ruffoni B et al. Bioactive constituent production in St. John’s Wort in vitro hairy roots regenerated plant lines, J Agric Food Chem 2008; 56:5078–5082.

    Article  PubMed  CAS  Google Scholar 

  38. Cavero S, Garcia-Risco MR, Marin FRJ et al. Supercritical fluid extraction of antioxidant compounds from oregano, chemical and functional characterization via LC-MS and in vitro assays. J Supercrit Fluids 2006; 38:62–66.

    Article  CAS  Google Scholar 

  39. Wu SJ, Tsai JY, Chang SP et al. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana. J Ethnopharmacol 2006; 108:407–413.

    Article  PubMed  CAS  Google Scholar 

  40. Celiktas OY, Bedir E, Sukan FV. In vitro antioxidant activities of Rosmarinus officinalis extracts treated with supercritical carbon dioxide. Food Chem 2007; 101(4):1457–1464.

    Article  CAS  Google Scholar 

  41. Caruso JL, Callahan J. Carnosic acid in green callus and regenerated shoots of Rosmarinus officinalis. Plant Cell Rep 2000; 19(5):500–503.

    Article  CAS  Google Scholar 

  42. Modey WK, Mulholand DA, Raynor MW. Analytical supercritical fluid extraction of natural products? A review. Phytochem Anal 1996; 7:1–15.

    Article  CAS  Google Scholar 

  43. Jarvis AP, Morgan ED. Isolation of plant products by supercritical-fluid extraction. Phytochem Anal 1997; 8:217–222.

    Article  CAS  Google Scholar 

  44. Senorans FJ, Ibanez E. Liquid chromatographic-mass spectrometric analysis of supercritical-fluid extracts of rosemary plants. J Chromatogr A 2000; 870(1–2):491–499.

    Article  PubMed  CAS  Google Scholar 

  45. Carvalho RN, Moura LS, Rosa PTV et al. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield. J Supercrit Fluids 2005; 35(3): 197–204.

    Article  CAS  Google Scholar 

  46. Reverchon E, Daghero J, Marrone C et al. Supercritical fractionation extraction of phenel seed oil and essential oil: experiments and mathematical modelling. Ind Eng Chem Res (381999) 3069–3075.

    Google Scholar 

  47. Reverchon E, Delia Porta G, Taddeo R. Extraction of sage essential oil by supercritical CO2: influence of some process parameters. J Supercrit Fluids 8 1995;302–309.

    Google Scholar 

  48. Carro N, García CM, Cela R. Terpenic compounds, responsible for a variety of aromas in musts and wines can be extracted with good recoveries using MAE. Analyst 1997; 122:325.

    Article  CAS  Google Scholar 

  49. Chen SS, Spiro M. Study of microwave extraction of essential oil constituents from plant materials. J Micro Power Electromagn Energy 1994; 29:231–241.

    Google Scholar 

  50. Cavero S, Garcia-Risco MR, Marína FR et al. Supercritical fluid extraction of antioxidant compounds from oregano: Chemical and functional characterization via LC-MS and in vitro assays, J Supercrit Fluids 2006; 38(1):62–69.

    Article  CAS  Google Scholar 

  51. Rostagno MA, Palma M, Barroso CG. Microwave assisted extraction of soy isoflavones. Anal Chim Acta 2007; 588(2):274–282.

    Article  PubMed  CAS  Google Scholar 

  52. Mattina MJI, Berger WAI, Denson CL. Microwave assisted extraction of taxanes from Taxus biomass. J Agric Food Chem 1997; 45:4691–4696.

    Article  CAS  Google Scholar 

  53. Trbová D, Matjíek D, Vlek J et al. Combined microwave-assisted isolation and solid-phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials. Anal Chim Acta 2004; 513(2):435–444.

    Article  CAS  Google Scholar 

  54. Ferhata MA, Meklatia BY, Smadjab J et al. An improved microwave Clevenger apparatus for distillation of essential oils from orange peel, J Chromatogr A 2006; 1112(1–2):121–126.

    Article  CAS  Google Scholar 

  55. Bertoli A, Pistelli L, Morelli I et al. Volatile constituents of micropropagated plants of Bupleurum fruticosum L. Plant Sci 2004; 167(4):807–810.

    Article  CAS  Google Scholar 

  56. Banthorpe DV, Branch SA. Ability of plant callus cultures to synthesize and accumulate lower terpenoids. Phytochemistry 1986; 25(3):629–636.

    Article  CAS  Google Scholar 

  57. Jain M, Banerji R. In vitro production of essential oil from proliferating shoots of Rosmarinus officinalis, Planta Medica 1991; 57(2):122–124.

    Article  PubMed  CAS  Google Scholar 

  58. Charron CS, Cantliffe DJ, Heath RR. Volatile emissions from plants. Hort Rev 1995; 17:43–72.

    Google Scholar 

  59. Maes K, Debergh PC. Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell Tissue Organ Cult 2003; 75(1):73–78.

    Article  CAS  Google Scholar 

  60. Maes K, Vercammen J, Pham-Tuan H et al. Critical aspects for the reliable headspace analysis of plants cultivated in vitro. Phytochemical Analysis 2001; 12(3):153–158.

    Article  PubMed  CAS  Google Scholar 

  61. Exarchou V, Fiamegos YC, van Beek TA. Hyphenated chromatographic techniques for the rapid screening and identification of antioxidants in methanolic extracts of pharmaceutically used plants. J Chromatogr A 2006; 1112(1–2):293–302.

    Article  PubMed  CAS  Google Scholar 

  62. Stahl E. Thin Layer Chromatography: A Laboratory Handbook. San Diego: Academic Press, 1965:485–502.

    Google Scholar 

  63. Pothier J, Galand N, Ouali M et al. Comparison of planar chromatographic methods (TLC, OPLC, AMD) applied to essential oils of wild thyme and seven chemotypes of thyme. Il Farmaco 2001; 56:505–511.

    Article  PubMed  CAS  Google Scholar 

  64. Galand N, Pothier J, Dollet J et al. OPLC and AMD, recent techniques of planar chromatography: their interest for separation and characterization of extractive and synthetic compounds. Fitoterapia 2002; 73(2):121–134.

    Article  PubMed  CAS  Google Scholar 

  65. Pasqua G, Avato P, Monacelli B et al. Metabolites in cell suspension cultures, calli and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 2003; 165:977–982.

    Article  CAS  Google Scholar 

  66. Kevers C, Jacques P, Gaspar T et al. Comparative titration of ginsenosides by different techniques in commercial ginseng products and callus cultures. J Chromatogr Sci 2004; 42(10):554–558.

    PubMed  CAS  Google Scholar 

  67. Bondarev N, Reshetnyak O, Nosov A. Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci 2001; 161:155–163.

    Article  CAS  Google Scholar 

  68. Botz L, Nagy S, Kocsis B. Planar Chromatography: A Retrospective View for the Third Millennium. Budapest: Springer, 2001:103.

    Google Scholar 

  69. Nyiredy S. The bridge between TLC and HPLC: overpressured layer chromatography (OPLC). Trends Anal Chem 2001; 20:91–101.

    Article  CAS  Google Scholar 

  70. Tabanca N, Demirci B, Baser KHC et al. Characterization of volatile constituents of Scaligeria tripartita and studies on the antifungal activity against phytopathogenic fungi. J Chromatogr. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 850(1–2):221–229.

    Article  CAS  Google Scholar 

  71. Cheel J, Schmeda-Hirschmann G, Jordan M et al. Zeitschrift für Naturforschung. C, Free radical scavenging activity and secondary metabolites from in vitro cultures of Sanicula graveolens. J Biosci 2007; 62:555–562.

    CAS  Google Scholar 

  72. Meloan CE. Chemical Separations: Principles, Techniques and Experiments. Canada: Wiley and Sons, 1999.

    Google Scholar 

  73. Sakakibara H et al. Simultaneous determination of all polyphenols in vegetables, fruits and teas. J Agric Food Chem 2003; 51:571–581.

    Article  PubMed  CAS  Google Scholar 

  74. Tanaka N, Kobayashi H, Ishizuka N et al. Monolithic silica columns for high-efficiency Chromatographic separations. J Chromatogr A 2002; 965:35–49.

    Article  CAS  Google Scholar 

  75. Tanaka N, Kimura H, Tokuda D et al. Simple and comprehensive two-dimensional reversed-phase HPLC using monolithic silica columns. Anal Chem 2004; 76:1273–1281.

    Article  PubMed  CAS  Google Scholar 

  76. Sook YL, Hui X, Yong KK et al. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 2008; 24:969–972.

    Article  Google Scholar 

  77. Cheel J, Schmeda-Hirschmann G, Jordan M et al. Free radical scavenging activity and secondary metabolites from in vitro cultures of Sanicula graveolens. Z Naturforsch C 2007; 62(7–8):555–562.

    PubMed  CAS  Google Scholar 

  78. Łuczkiewicz M, Głod D. Morphogenesis-dependent accumulation of phytoestrogenes in Genista tinctoria in vitro cultures. Plant Sci 2005; 168:967–979.

    Article  CAS  Google Scholar 

  79. Thiem B. In vitro propagation of isoflavone-producing Pueraria lobata (Willd.) Ohwi. Plant Sci 2003; 165(5):1123–1128.

    Article  CAS  Google Scholar 

  80. Charchoglyana A, Abrahamyana A, Fujiib I et al. Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 2007; 68:2670–2677.

    Article  CAS  Google Scholar 

  81. Conceição LFR, Ferreres F, Tavares RM et al. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 2006; 67(2):149–155.

    Article  PubMed  CAS  Google Scholar 

  82. Pasqua G, Monacelli B, Valletta A. Cellular localization of the anti-cancer drug camptothecin in Camptotheca acuminata. Eur J Histochem 2004; 48:321–328.

    PubMed  Google Scholar 

  83. Pasqua G, Silvestrini A, Monacelli B et al. Triterpenoids and ellagic acid derivatives from in vitro cultures of Camptotheca acuminata Decaisne. Plant Physiol Biochem 2006; 44(4):220–225.

    Article  PubMed  CAS  Google Scholar 

  84. Tolstikov VV, Fiehn O. Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 2002; 301:298–307.

    Article  PubMed  CAS  Google Scholar 

  85. Tolstikov VV, Lommen A, Nakanishi K et al. Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Anal Chem 2003; 75:6737–6740.

    Article  PubMed  CAS  Google Scholar 

  86. Wolfender JL, Rodriguez S, Hostettmann K. Liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy for the screening of plant constituents. J Chromatogr A 1998; 794:299–316.

    Article  CAS  Google Scholar 

  87. Cole RB. Cole RB. Electrospray Ionization Mass Spectrometry-Fundamentals. Instrumentation and Applications. New York: Wiley, 1997.

    Google Scholar 

  88. Lee JS, Kim DH, Liu KH et al. Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library. Rapid Commun Mass Spectrom 2005; 19(23):3539–3548.

    Article  PubMed  CAS  Google Scholar 

  89. Tolonen A, György Z, Jalonen J et al. LC/MS/MS identification of glycosides produced by biotransformation of cinnamyl alcohol in Rhodiola rosea compact callus aggregates. Biomed Chromatogr 2004; 18(8):550–558.

    Article  PubMed  CAS  Google Scholar 

  90. Gyorgy Z, Tolonen A, Pakonen M et al. Enhancing the production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea. Plant Sci 2004; 166(1):229–236.

    Article  CAS  Google Scholar 

  91. Novakova L, Matysova L, Solich P. Advantages of application of UPLC in pharmaceutical analysis. Talanta 2006; 68(3):908–918.

    Article  PubMed  CAS  Google Scholar 

  92. Gruza J, Novák O, Strnad M. Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chem 2008; 111(3):789–794.

    Article  CAS  Google Scholar 

  93. De Villiers A, Lestremau F, Szucs R et al. Evaluation of ultra performance liquid chromatography. J Chromatogr A 2006; 1127(l):60–69.

    Article  PubMed  CAS  Google Scholar 

  94. Guan J, Lai CM, Li SP. A rapid method for the simultaneous determination of 11 saponins in Panax notoginseng using ultra performance liquid chromatography J Pharm Biomed Anal 2007; 44:996–1000.

    Article  PubMed  CAS  Google Scholar 

  95. Chena XJ, Jic H, Zhang QW et al. A rapid method for simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and ultra-performance liquid chromatography. J Pharm Biomed Anal 2008; 46:226–235.

    Article  CAS  Google Scholar 

  96. Xiangyu D, Guihua G, Shuning Z et al. Qualitative and quantitative analysis of flavonoids in the leaves of Isatis indigatica Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. J Pharm Biomed Anal 2008; 48:562–567.

    Article  CAS  Google Scholar 

  97. Magnotta M, Murata J, Chen J et al. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 2007; 68:1922–1931.

    Article  PubMed  CAS  Google Scholar 

  98. Adams RP. Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy. Carol Stream: Allured Publ Corp, 1995.

    Google Scholar 

  99. Schauera N, Steinhausera D, Strelkovb S et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 2005; 579:1332–1337.

    Article  CAS  Google Scholar 

  100. Schauera N, Steinhausera D, Strelkovb S et al. Strawberry flavour: analysis and biosynthesis. J Sci Food Agric 1997; 74:421–434.

    Article  Google Scholar 

  101. Khaled MS, Salem A, Charlwood BV. Accumulation of essential oils by Agrobacterium tumefaciens-transformed shoot cultures of Pimpinella anisum. Plant Cell Tissue Organ Cult 1995; 40(3):75–93.

    Google Scholar 

  102. Gbolade AA, Lockwood GB. Volatile constituents from parsley cultures. Flavour and Fragrance Journal 2006; 4(2):69–71.

    Article  Google Scholar 

  103. Figueiredo AC, Almendra MJ, Barroso JG et al. Biotransformation of monoterpenes and sesquiterpenes by cell suspension cultures of Achillea millefolium L. ssp. Millefolium. Biotechnol Lett 1996; 18:8.

    Article  Google Scholar 

  104. Gbolade AA, Lockwood GB. XIX Petroselinum crispum (Mill.) Nyman (Parsley), in vitro culture, production and metabolism of volatile constituents. In: Bajaj YPS, ed. Biotechnology in Agriculture and Forestry-Medicinal and Aromatic Plants. Berlin: Springer-Verlag, 1999; 43:324–336.

    Google Scholar 

  105. Nogueira JF, Romano A. Essential oils from micropropagated plants of Lavandula viridis. Phytochem Anal 2002; 13(1):4–7.

    Article  PubMed  CAS  Google Scholar 

  106. Zhu W, Asghari G, Lockwood GB. Factors affecting volatile terpene and nonterpene biotransformation products in plant cell cultures. Fitoterapia 2000; 71(5):501–506.

    Article  PubMed  CAS  Google Scholar 

  107. Mauri P, Pietta P. Electrospray characterization of selected medicinal plant extracts. J Pharm Biomed Anal 2000; 23:61–68.

    Article  PubMed  CAS  Google Scholar 

  108. Sterner JL, Johnston MV, Nicol GR et al. Signal suppression in electrospray ionization Fourier transform mass spectrometry of multi-component samples. J Mass Spectrom 2000; 35:385–391.

    Article  PubMed  CAS  Google Scholar 

  109. Favretto D, Piovan A, Filippini R et al. Monitoring the production yields of vincristine and vinblastine in Catharanthus roseus from somatic embryogenesis. Semiquantitative determination by flow-injection electrospray ionization mass spectrometry. Rapid Comm Mass Spec 2001; 15:364–369.

    Article  CAS  Google Scholar 

  110. Higgs RE, Zahn JA, Gygi JD et al. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl Environ Microbiol 2001; 67:371–376.

    Article  PubMed  CAS  Google Scholar 

  111. Zahn JA, Higgs RE, Hilton MD. Use of direct-infusion electrospray mass spectrometry to guide empirical development of improved conditions for expression of secondary metabolites from actinomycetes, Appl Environ Microbiol 2001; 67:377–386.

    Article  PubMed  CAS  Google Scholar 

  112. Goodacrea R, York EV, Heald JK et al. Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry. Phytochemistry 2003; 62(6):859–863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bertoli, A., Ruffoni, B., Pistelli, L., Pistelli, L. (2010). Analytical Methods for the Extraction and Identification of Secondary Metabolite Production in ‘In Vitro’ Plant Cell Cultures. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_19

Download citation

Publish with us

Policies and ethics