Skip to main content

The Problem of Expression of Multidisulfide Bonded Recombinant Proteins in E. coli

  • Chapter
  • First Online:
Folding of Disulfide Proteins

Part of the book series: Protein Reviews ((PRON,volume 14))

  • 1200 Accesses

Abstract

Recombinant proteins currently play an important role in the pharmaceutical industry. Very frequently, proteins of therapeutic value contain complex disulfide bond patterns that are necessary for folding, stability, and/or function. Although the folding of proteins with multiple disulfide bonds in E. coli poses considerable challenges, a number of approaches developed in recent years can now be deployed for the production of such proteins at significant yields. Here, we present a summary of disulfide bond formation in E. coli and the main strategies aimed toward optimization of multidisulfided recombinant protein expression by secretion into the periplasmic space, expression in the cytoplasm of strains engineered to favor the formation of disulfide bonds in that compartment, and finally cell-free synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Alkaline phosphatase

BPTI:

Bovine pancreatic trypsin inhibitor

CHO:

Chinese hamster ovary

DTT:

Dithiothreitol

ER:

Endoplasmic reticulum

FDA:

Food and drug administration

GAPDH:

d-Glyceraldehyde-3-phosphate dehydrogenase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione S-transferase

l-Arg:

l-Arginine

l-Glu:

l-Glutamine

MBP:

Maltose-binding protein

NADPH:

Nicotinamide adenine dinucleotide phosphate reduced

scFv:

Single-chain fragment variable antibody

Sec-pathway:

Secretory pathway

SRP:

Signal recognition particle

References

  • Aggarwal S (2008) What’s fueling the biotech engine-2007. Nat Biotechnol 26(11):1227–1233

    PubMed  CAS  Google Scholar 

  • Angov E, Hillier CJ, Kincaid RL, Lyon JA (2008) Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 3(5):e2189

    PubMed  Google Scholar 

  • Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783(4):535–548

    PubMed  CAS  Google Scholar 

  • Arredondo S, Segatori L, Gilbert HF, Georgiou G (2008) De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC. J Biol Chem 283(46):31469–31476

    PubMed  CAS  Google Scholar 

  • Arredondo SA, Chen TF, Riggs AF, Gilbert HF, Georgiou G (2009) Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC. J Biol Chem 284(36):23972–23979

    PubMed  CAS  Google Scholar 

  • Aslund F, Beckwith J (1999) The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol 181(5):1375–1379

    PubMed  CAS  Google Scholar 

  • Assadi-Porter FM, Patry S, Markley JL (2008) Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E.coli. Protein Expr Purif 58(2):263–268

    PubMed  CAS  Google Scholar 

  • Bader MW, Hiniker A, Regeimbal J, Goldstone D, Haebel PW, Riemer J, Metcalf P, Bardwell JC (2001) Turning a disulfide isomerase into an oxidase: DsbC mutants that Imitate DsbA. EMBO J 20(7):1555–1562

    PubMed  CAS  Google Scholar 

  • Bader MW, Xie T, Yu CA, Bardwell JC (2000) Disulfide bonds are generated by quinone reduction. J Biol Chem 275(34):26082–26088

    PubMed  CAS  Google Scholar 

  • Bardwell JC, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67(3):581–589

    PubMed  CAS  Google Scholar 

  • Behrens S, Maier R, de Cock H, Schmid FX, Gross CA (2001) The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20(1–2):285–294

    PubMed  CAS  Google Scholar 

  • Berkmen M, Boyd D, Beckwith J (2005) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem 280(12):11387–11394

    PubMed  CAS  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J, Georgiou G (1999a) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96(24):13703–13708

    PubMed  CAS  Google Scholar 

  • Bessette PH, Cotto JJ, Gilbert HF, Georgiou G (1999b) In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem 274(12):7784–7792

    PubMed  CAS  Google Scholar 

  • Bessette PH, Qiu J, Bardwell JC, Swartz JR, Georgiou G (2001) Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J Bacteriol 183(3):980–988

    PubMed  CAS  Google Scholar 

  • Bogomolovas J, Simon B, Sattler M, Stier G (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64(1):16–23

    PubMed  CAS  Google Scholar 

  • Bowden GA, Paredes AM, Georgiou G (1991) Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (N Y) 9(8):725–730

    CAS  Google Scholar 

  • Bowden GA, Georgiou G (1988) The effect of sugars on β-lactamase aggregation in E.coli. Biotechnol Prog 4:97–101

    CAS  Google Scholar 

  • Breustedt DA, Schonfeld DL, Skerra A (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764(2):161–173

    PubMed  CAS  Google Scholar 

  • Burgess RR (2009) Refolding solubilized inclusion body proteins. Methods Enzymol 463:259–282

    PubMed  CAS  Google Scholar 

  • Calhoun KA, Swartz JR (2005) An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol Prog 21(4):1146–1153

    PubMed  CAS  Google Scholar 

  • Chen J, Song JL, Zhang S, Wang Y, Cui DF, Wang CC (1999) Chaperone activity of DsbC. J Biol Chem 274(28):19601–19605

    PubMed  CAS  Google Scholar 

  • Cho SH, Beckwith J (2009) Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD. J Biol Chem 284(17):11416–11424

    PubMed  CAS  Google Scholar 

  • Collet JF, Riemer J, Bader MW, Bardwell JC (2002) Reconstitution of a disulfide isomerization system. J Biol Chem 277(30):26886–26892

    PubMed  CAS  Google Scholar 

  • Darby NJ, Creighton TE (1995) Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase. Biochemistry 34(51):16770–16780

    PubMed  CAS  Google Scholar 

  • Darby NJ, Penka E, Vincentelli R (1998a) The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J Mol Biol 276(1):239–247

    PubMed  CAS  Google Scholar 

  • Darby NJ, Raina S, Creighton TE (1998b) Contributions of substrate binding to the catalytic activity of DsbC. Biochemistry 37(3):783–791

    PubMed  CAS  Google Scholar 

  • Datar RV, Cartwright T, Rosen CG (1993) Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Biotechnology (N Y) 11(3):349–357

    CAS  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100(10):6115–6120

    PubMed  CAS  Google Scholar 

  • Depuydt M, Leonard SE, Vertommen D, Denoncin K, Morsomme P, Wahni K, Messens J, Carroll KS, Collet JF (2009) A periplasmic reducing system protects single cysteine residues from oxidation. Science 326(5956):1109–1111

    PubMed  CAS  Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262(5140):1744–1747

    PubMed  CAS  Google Scholar 

  • Devi VS, Sprecher CB, Hunziker P, Mittl PR, Bosshard HR, Jelesarov I (2006) Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori. Biochemistry 45(6):1599–1607

    PubMed  CAS  Google Scholar 

  • Dracheva S, Palermo RE, Powers GD, Waugh DS (1995) Expression of soluble human interleukin-2 receptor alpha-chain in Escherichia coli. Protein Expr Purif 6(6):737–747

    PubMed  CAS  Google Scholar 

  • Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    PubMed  CAS  Google Scholar 

  • Faulkner MJ, Veeravalli K, Gon S, Georgiou G, Beckwith J (2008) Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Proc Natl Acad Sci USA 105(18):6735–6740

    PubMed  CAS  Google Scholar 

  • Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10

    PubMed  CAS  Google Scholar 

  • Fisher AC, DeLisa MP (2009) Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J Mol Biol 385(1):299–311

    PubMed  CAS  Google Scholar 

  • Frey S, Haslbeck M, Hainzl O, Buchner J (2008) Synthesis and characterization of a functional intact IgG in a prokaryotic cell-free expression system. Biol Chem 389(1):37–45

    PubMed  CAS  Google Scholar 

  • Gadermaier G, Jahn-Schmid B, Vogel L, Egger M, Himly M, Briza P, Ebner C, Vieths S, Bohle B, Ferreira F (2010) Targeting the cysteine-stabilized fold of Art v 1 for immunotherapy of Artemisia pollen allergy. Mol Immunol 47(6):1292–1298

    PubMed  CAS  Google Scholar 

  • Gagliardo B, Faye A, Jaouen M, Deschemin JC, Canonne-Hergaux F, Vaulont S, Sari MA (2008) Production of biologically active forms of recombinant hepcidin, the iron-regulatory hormone. FEBS J 275(15):3793–3803

    PubMed  CAS  Google Scholar 

  • Garcia-Ortega L, Lacadena J, Lacadena V, Masip M, De Antonio C, Martinez-Ruiz A, Martinez Del Pozo A (2000) The solubility of the ribotoxin alpha-sarcin, produced as a recombinant protein in Escherichia coli, is increased in the presence of thioredoxin. Lett Appl Microbiol 30(4):298–302

    PubMed  CAS  Google Scholar 

  • Glockshuber R (1999) Protein folding. Where do the electrons go? Nature 401(6748):30–31

    PubMed  CAS  Google Scholar 

  • Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76(1):106–110

    PubMed  CAS  Google Scholar 

  • Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99(2):351–367

    PubMed  CAS  Google Scholar 

  • Golovanov AP, Hautbergue GM, Wilson SA, Lian LY (2004) A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126(29):8933–8939

    PubMed  CAS  Google Scholar 

  • Grauschopf U, Fritz A, Glockshuber R (2003) Mechanism of the electron transfer catalyst DsbB from Escherichia coli. EMBO J 22(14):3503–3513

    PubMed  CAS  Google Scholar 

  • Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83(6):947–955

    PubMed  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31(8):455–464

    PubMed  CAS  Google Scholar 

  • Guilhot C, Jander G, Martin NL, Beckwith J (1995) Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Natl Acad Sci USA 92(21):9895–9899

    PubMed  CAS  Google Scholar 

  • Guisez Y, Fache I, Campfield LA, Smith FJ, Farid A, Plaetinck G, Van der Heyden J, Tavernier J, Fiers W, Burn P, Devos R (1998) Efficient secretion of biologically active recombinant OB protein (leptin) in Escherichia coli, purification from the periplasm and characterization. Protein Expr Purif 12(2):249–258

    PubMed  CAS  Google Scholar 

  • Haebel PW, Goldstone D, Katzen F, Beckwith J, Metcalf P (2002) The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J 21(18):4774–4784

    PubMed  CAS  Google Scholar 

  • Hammarstrom M, Hellgren N, van Den Berg S, Berglund H, Hard T (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11(2):313–321

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    PubMed  CAS  Google Scholar 

  • Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11(11):2807–2850

    PubMed  CAS  Google Scholar 

  • Hayhurst A, Harris WJ (1999) Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif 15(3):336–343

    PubMed  CAS  Google Scholar 

  • Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S (2005) The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J Biol Chem 280(25):23540–23548

    PubMed  CAS  Google Scholar 

  • Heo MA, Kim SH, Kim SY, Kim YJ, Chung J, Oh MK, Lee SG (2006) Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr Purif 47(1):203–209

    PubMed  CAS  Google Scholar 

  • Heras B, Edeling MA, Schirra HJ, Raina S, Martin JL (2004) Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc Natl Acad Sci USA 101(24):8876–8881

    PubMed  CAS  Google Scholar 

  • Hiniker A, Bardwell JC (2004) In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279(13):12967–12973

    PubMed  CAS  Google Scholar 

  • Hiniker A, Collet JF, Bardwell JC (2005) Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280(40):33785–33791

    PubMed  CAS  Google Scholar 

  • Hiniker A, Ren G, Heras B, Zheng Y, Laurinec S, Jobson RW, Stuckey JA, Martin JL, Bardwell JC (2007) Laboratory evolution of one disulfide isomerase to resemble another. Proc Natl Acad Sci USA 104(28):11670–11675

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone trigger factor. Biochim Biophys Acta 1803(6):650–661

    PubMed  CAS  Google Scholar 

  • Hoshino K, Eda A, Kurokawa Y, Shimizu N (2002) Production of brain-derived neurotrophic factor in Escherichia coli by coexpression of Dsb proteins. Biosci Biotechnol Biochem 66(2):344–350

    PubMed  CAS  Google Scholar 

  • Hu X, O’Hara L, White S, Magner E, Kane M, Wall JG (2007) Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support. Protein Expr Purif 52(1):194–201

    PubMed  CAS  Google Scholar 

  • Huang L, Ching CB, Jiang R, Leong SS (2008) Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression. Protein Expr Purif 61(2):168–174

    PubMed  CAS  Google Scholar 

  • Humphreys DP, Weir N, Mountain A, Lund PA (1995) Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J Biol Chem 270(47):28210–28215

    PubMed  CAS  Google Scholar 

  • Inaba K, Ito K (2008) Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. Biochim Biophys Acta 1783(4):520–529

    PubMed  CAS  Google Scholar 

  • Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K (2006) Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127(4):789–801

    PubMed  CAS  Google Scholar 

  • Ito K, Inaba K (2008) The disulfide bond formation (Dsb) system. Curr Opin Struct Biol 18(4):450–458

    PubMed  CAS  Google Scholar 

  • Jarchow S, Luck C, Gorg A, Skerra A (2008) Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone skp. Proteomics 8(23–24):4987–4994

    PubMed  CAS  Google Scholar 

  • Jeong KJ, Lee SY (2000) Secretory production of human leptin in Escherichia coli. Biotechnol Bioeng 67(4):398–407

    PubMed  CAS  Google Scholar 

  • Jeong KJ, Lee SY (2001) Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Expr Purif 23(2):311–318

    PubMed  CAS  Google Scholar 

  • Joly JC, Swartz JR (1997) In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 36(33):10067–10072

    PubMed  CAS  Google Scholar 

  • Jonda S, Huber-Wunderlich M, Glockshuber R, Mossner E (1999) Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. EMBO J 18(12):3271–3281

    PubMed  CAS  Google Scholar 

  • Jurado P, Ritz D, Beckwith J, de Lorenzo V, Fernandez LA (2002) Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J Mol Biol 320(1):1–10

    PubMed  CAS  Google Scholar 

  • Kadokura H, Beckwith J (2009) Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 138(6):1164–1173

    PubMed  CAS  Google Scholar 

  • Kamitani S, Akiyama Y, Ito K (1992) Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J 11(1):57–62

    PubMed  CAS  Google Scholar 

  • Kang SH, Kim DM, Kim HJ, Jun SY, Lee KY, Kim HJ (2005) Cell-free production of aggregation-prone proteins in soluble and active forms. Biotechnol Prog 21(5):1412–1419

    PubMed  CAS  Google Scholar 

  • Katzen F, Beckwith J (2000) Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103(5):769–779

    PubMed  CAS  Google Scholar 

  • Keefer LM, Piron MA, De Meyts P (1981) Human insulin prepared by recombinant DNA techniques and native human insulin interact identically with insulin receptors. Proc Natl Acad Sci USA 78(3):1391–1395

    PubMed  CAS  Google Scholar 

  • Kiedzierska A, Czepczynska H, Smietana K, Otlewski J (2008) Expression, purification and crystallization of cysteine-rich human protein muskelin in Escherichia coli. Protein Expr Purif 60(1):82–88

    PubMed  CAS  Google Scholar 

  • Kim DM, Swartz JR (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol Bioeng 85(2):122–129

    PubMed  CAS  Google Scholar 

  • Kim JY, Fogarty EA, Lu FJ, Zhu H, Wheelock GD, Henderson LA, DeLisa MP (2005) Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Appl Environ Microbiol 71(12):8451–8459

    PubMed  CAS  Google Scholar 

  • Klappa P, Ruddock LW, Darby NJ, Freedman RB (1998) The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17(4):927–935

    PubMed  CAS  Google Scholar 

  • Knapp KG, Goerke AR, Swartz JR (2007) Cell-free synthesis of proteins that require disulfide bonds using glucose as an energy source. Biotechnol Bioeng 97(4):901–908

    PubMed  CAS  Google Scholar 

  • Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 8:9

    PubMed  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324(5924):255–258

    PubMed  CAS  Google Scholar 

  • Kumano-Kuramochi M, Xie Q, Sakakibara Y, Niimi S, Sekizawa K, Komba S, Machida S (2008) Expression and characterization of recombinant C-terminal biotinylated extracellular domain of human receptor for advanced glycation end products (hsRAGE) in Escherichia coli. J Biochem 143(2):229–236

    PubMed  CAS  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2000) Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl Environ Microbiol 66(9):3960–3965

    PubMed  CAS  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2001) Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J Biol Chem 276(17):14393–14399

    PubMed  CAS  Google Scholar 

  • Lauber T, Marx UC, Schulz A, Kreutzmann P, Rosch P, Hoffmann S (2001) Accurate disulfide formation in Escherichia coli: overexpression and characterization of the first domain (HF6478) of the multiple Kazal-type inhibitor LEKTI. Protein Expr Purif 22(1):108–112

    PubMed  CAS  Google Scholar 

  • Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39

    PubMed  CAS  Google Scholar 

  • Lee DH, Kim MD, Lee WH, Kweon DH, Seo JH (2004) Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl Microbiol Biotechnol 63(5):549–552

    PubMed  CAS  Google Scholar 

  • Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    PubMed  Google Scholar 

  • Lefebvre J, Boileau G, Manjunath P (2009) Recombinant expression and affinity purification of a novel epididymal human sperm-binding protein, BSPH1. Mol Hum Reprod 15(2):105–114

    PubMed  CAS  Google Scholar 

  • Levy R, Weiss R, Chen G, Iverson BL, Georgiou G (2001) Production of correctly folded fab antibody fragment in the cytoplasm of escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23(2):338–347

    PubMed  CAS  Google Scholar 

  • Liddy N, Molloy PE, Bennett AD, Boulter JM, Jakobsen BK, Li Y (2010) Production of a soluble disulfide bond-linked TCR in the cytoplasm of Escherichia coli trxB gor mutants. Mol Biotechnol 45(2):140–149

    PubMed  CAS  Google Scholar 

  • Liu X, Wang CC (2001) Disulfide-dependent folding and export of Escherichia coli DsbC. J Biol Chem 276(2):1146–1151

    PubMed  CAS  Google Scholar 

  • Lobel LI, Pollak S, Klein J, Lustbader JW (2001) High-level bacterial expression of a natively folded, soluble extracellular domain fusion protein of the human luteinizing hormone/chorionic gonadotropin receptor in the cytoplasm of Escherichia coli. Endocr 14(2):205–212

    CAS  Google Scholar 

  • Locker JK, Griffiths G (1999) An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell Biol 144(2):267–279

    PubMed  CAS  Google Scholar 

  • Lu Q, Burns MC, McDevitt PJ, Graham TL, Sukman AJ, Fornwald JA, Tang X, Gallagher KT, Hunsberger GE, Foley JJ, Schmidt DB, Kerrigan JJ, Lewis TS, Ames RS, Johanson KO (2009) Optimized procedures for producing biologically active chemokines. Protein Expr Purif 65(2):251–260

    PubMed  CAS  Google Scholar 

  • Lundstrom J, Krause G, Holmgren A (1992) A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease. J Biol Chem 267(13):9047–9052

    PubMed  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538

    PubMed  CAS  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5(1–2):75–86

    PubMed  CAS  Google Scholar 

  • Malik A, Jenzsch M, Lubbert A, Rudolph R, Sohling B (2007) Periplasmic production of native human proinsulin as a fusion to E.coli ecotin. Protein Expr Purif 55(1):100–111

    PubMed  CAS  Google Scholar 

  • Malik A, Rudolph R, Sohling B (2006) A novel fusion protein system for the production of native human pepsinogen in the bacterial periplasm. Protein Expr Purif 47(2):662–671

    PubMed  CAS  Google Scholar 

  • Mao X, Cao Z, Yin S, Ma Y, Wu Y, Li W (2007) Cloning and characterization of Bmk86, a novel k+-channel blocker from scorpion venom. Biochem Biophys Res Commun 360(4):728–734

    PubMed  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin – a fold for all reasons. Structure 3(3):245–250

    PubMed  CAS  Google Scholar 

  • Martin JL, Bardwell JC, Kuriyan J (1993) Crystal structure of the dsba protein required for disulphide bond formation in vivo. Nature 365(6445):464–468

    PubMed  CAS  Google Scholar 

  • Maskos K, Huber-Wunderlich M, Glockshuber R (2003) DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo. J Mol Biol 325(3):495–513

    PubMed  CAS  Google Scholar 

  • Mavrangelos C, Thiel M, Adamson PJ, Millard DJ, Nobbs S, Zola H, Nicholson IC (2001) Increased yield and activity of soluble single-chain antibody fragments by combining high-level expression and the skp periplasmic chaperonin. Protein Expr Purif 23(2):289–295

    PubMed  CAS  Google Scholar 

  • Maynard J, Adams EJ, Krogsgaard M, Petersson K, Liu CW, Garcia KC (2005) High-level bacterial secretion of single-chain alphabeta T-cell receptors. J Immunol Methods 306(1–2):51–67

    PubMed  CAS  Google Scholar 

  • McCarthy AA, Haebel PW, Torronen A, Rybin V, Baker EN, Metcalf P (2000) Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7(3):196–199

    PubMed  CAS  Google Scholar 

  • Merk H, Stiege W, Tsumoto K, Kumagai I, Erdmann VA (1999) Cell-free expression of two single-chain monoclonal antibodies against lysozyme: effect of domain arrangement on the expression. J Biochem 125(2):328–333

    PubMed  CAS  Google Scholar 

  • Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282(43):31302–31307

    PubMed  CAS  Google Scholar 

  • Missiakas D, Betton JM, Raina S (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21(4):871–884

    PubMed  CAS  Google Scholar 

  • Missiakas D, Georgopoulos C, Raina S (1994) The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13(8):2013–2020

    PubMed  CAS  Google Scholar 

  • Mureev S, Kovtun O, Nguyen UT, Alexandrov K (2009) Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 27(8):747–752

    PubMed  CAS  Google Scholar 

  • Nakano H, Yamane T (1998) Cell-free protein synthesis systems. Biotechnol Adv 16(2):367–384

    PubMed  CAS  Google Scholar 

  • Natale P, Bruser T, Driessen AJ (2008) Sec- and tat-mediated protein secretion across the bacterial cytoplasmic membrane – distinct translocases and mechanisms. Biochim Biophys Acta 1778(9):1735–1756

    PubMed  CAS  Google Scholar 

  • O’Dwyer R, Razzaque R, Hu X, Hollingshead SK, Wall JG (2009) Engineering of cysteine residues leads to improved production of a human dipeptidase enzyme in E.coli. Appl Biochem Biotechnol 159(1):178–190

    PubMed  Google Scholar 

  • Oh IS, Lee JC, Lee MS, Chung JH, Kim DM (2010) Cell-free production of functional antibody fragments. Bioprocess Biosyst Eng 33(1):127–132

    PubMed  CAS  Google Scholar 

  • Ostermeier M, De Sutter K, Georgiou G (1996) Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem 271(18):10616–10622

    PubMed  CAS  Google Scholar 

  • Outchkourov NS, Roeffen W, Kaan A, Jansen J, Luty A, Schuiffel D, van Gemert GJ, van de Vegte-Bolmer M, Sauerwein RW, Stunnenberg HG (2008) Correctly folded pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proc Natl Acad Sci USA 105(11):4301–4305

    PubMed  CAS  Google Scholar 

  • Padiolleau-Lefevre S, Debat H, Phichith D, Thomas D, Friboulet A, Avalle B (2006) Expression of a functional scFv fragment of an anti-idiotypic antibody with a beta-lactam hydrolytic activity. Immunol Lett 103(1):39–44

    PubMed  CAS  Google Scholar 

  • Pan JL, Sliskovic I, Bardwell JC (2008) Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway. J Mol Biol 377(5):1433–1442

    PubMed  CAS  Google Scholar 

  • Pavlou AK, Reichert JM (2004) Recombinant protein therapeutics – success rates, market trends and values to 2010. Nat Biotechnol 22(12):1513–1519

    PubMed  CAS  Google Scholar 

  • Peisley AA, Gooley PR (2007) High-level expression of a soluble and functional fibronectin type II domain from mmp-2 in the Escherichia coli cytoplasm for solution NMR studies. Protein Expr Purif 53(1):124–131

    PubMed  CAS  Google Scholar 

  • Pirneskoski A, Klappa P, Lobell M, Williamson RA, Byrne L, Alanen HI, Salo KE, Kivirikko KI, Freedman RB, Ruddock LW (2004) Molecular characterization of the principal substrate ­binding site of the ubiquitous folding catalyst protein disulfide isomerase. J Biol Chem 279(11):10374–10381

    PubMed  CAS  Google Scholar 

  • Ponniah K, Loo TS, Edwards PJ, Pascal SM, Jameson GB, Norris GE (2010) The production of soluble and correctly folded recombinant bovine beta-lactoglobulin variants a and b in Escherichia coli for NMR studies. Protein Expr Purif 70(2):283–289

    PubMed  CAS  Google Scholar 

  • Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272(25):15661–15667

    PubMed  CAS  Google Scholar 

  • Proba K, Worn A, Honegger A, Pluckthun A (1998) Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol 275(2):245–253

    PubMed  CAS  Google Scholar 

  • Puertas JM, Betton JM (2009) Engineering an efficient secretion of leech carboxypeptidase inhibitor in Escherichia coli. Microb Cell Fact 8:57

    PubMed  Google Scholar 

  • Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22(7):877–882

    PubMed  CAS  Google Scholar 

  • Qiu J, Swartz JR, Georgiou G (1998) Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl Environ Microbiol 64(12):4891–4896

    PubMed  CAS  Google Scholar 

  • Ramm K, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J Biol Chem 275(22):17106–17113

    PubMed  CAS  Google Scholar 

  • Rathnayaka T, Tawa M, Sohya S, Yohda M, Kuroda Y (2010) Biophysical characterization of highly active recombinant Gaussia luciferase expressed in Escherichia coli. Biochim Biophys Acta 1804(9):1902–1907

    PubMed  CAS  Google Scholar 

  • Reilly DE, Yansura DG (2010) Production of monoclonal antibodies in E.coli. In: Shire SJ, Gombot W, Bechtold-Peters K, Andya J (eds) Current trends in monoclonal antibody development and manufacturing, vol XI. Biotechnology: Pharmaceutical aspects. Springer, New York, pp 295–308

    Google Scholar 

  • Ren G, Stephan D, Xu Z, Zheng Y, Tang D, Harrison RS, Kurz M, Jarrott R, Shouldice SR, Hiniker A, Martin JL, Heras B, Bardwell JC (2009) Properties of the thioredoxin-fold superfamily are modulated by a single amino acid residue. J Biol Chem 284(15):10150–10159

    PubMed  CAS  Google Scholar 

  • Ribnicky B, Van Blarcom T, Georgiou G (2007) A scFv antibody mutant isolated in a genetic screen for improved export via the twin arginine transporter pathway exhibits faster folding. J Mol Biol 369(3):631–639

    PubMed  CAS  Google Scholar 

  • Rietsch A, Bessette P, Georgiou G, Beckwith J (1997) Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179(21):6602–6608

    PubMed  CAS  Google Scholar 

  • Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48

    PubMed  CAS  Google Scholar 

  • Ritz D, Lim J, Reynolds CM, Poole LB, Beckwith J (2001) Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Science 294(5540):158–160

    PubMed  CAS  Google Scholar 

  • Rozhkova A, Stirnimann CU, Frei P, Grauschopf U, Brunisholz R, Grutter MG, Capitani G, Glockshuber R (2004) Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO J 23(8):1709–1719

    PubMed  CAS  Google Scholar 

  • Ryabova LA, Desplancq D, Spirin AS, Pluckthun A (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15(1):79–84

    PubMed  CAS  Google Scholar 

  • Saul FA, Arie JP, Vulliez-le Normand B, Kahn R, Betton JM, Bentley GA (2004) Structural and functional studies of FkpA from escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J Mol Biol 335(2):595–608

    PubMed  CAS  Google Scholar 

  • Schafer U, Beck K, Muller M (1999) Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 274(35):24567–24574

    PubMed  CAS  Google Scholar 

  • Schaffner J, Winter J, Rudolph R, Schwarz E (2001) Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl Environ Microbiol 67(9):3994–4000

    PubMed  CAS  Google Scholar 

  • Schein CH (1989) Production of soluble recombinant proteins in bacteria. Biotechnology (N Y) 7:1141–1149

    CAS  Google Scholar 

  • Schlapschy M, Grimm S, Skerra A (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng Des Sel 19(8):385–390

    PubMed  CAS  Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363–372

    PubMed  CAS  Google Scholar 

  • Schneider EL, Thomas JG, Bassuk JA, Sage EH, Baneyx F (1997) Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nat Biotechnol 15(6):581–585

    PubMed  CAS  Google Scholar 

  • Schwaller M, Wilkinson B, Gilbert HF (2003) Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. J Biol Chem 278(9):7154–7159

    PubMed  CAS  Google Scholar 

  • Segatori L, Murphy L, Arredondo S, Kadokura H, Gilbert H, Beckwith J, Georgiou G (2006) Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB. J Biol Chem 281(8):4911–4919

    PubMed  CAS  Google Scholar 

  • Segatori L, Paukstelis PJ, Gilbert HF, Georgiou G (2004) Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: reconciling two competing pathways. Proc Natl Acad Sci USA 101(27):10018–10023

    PubMed  CAS  Google Scholar 

  • Seo MJ, Jeong KJ, Leysath CE, Ellington AD, Iverson BL, Georgiou G (2009) Engineering antibody fragments to fold in the absence of disulfide bonds. Protein Sci 18(2):259–267

    PubMed  CAS  Google Scholar 

  • Shao F, Bader MW, Jakob U, Bardwell JC (2000) DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem 275(18):13349–13352

    PubMed  CAS  Google Scholar 

  • Shevchik VE, Condemine G, Robert-Baudouy J (1994) Characterization of DsbC, a periplasmic protein of erwinia chrysanthemi and escherichia coli with disulfide isomerase activity. EMBO J 13(8):2007–2012

    PubMed  CAS  Google Scholar 

  • Shouldice SR, Cho SH, Boyd D, Heras B, Eser M, Beckwith J, Riggs P, Martin JL, Berkmen M (2010) In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling. Mol Microbiol 75(1):13–28

    PubMed  CAS  Google Scholar 

  • Sitaraman K, Chatterjee DK (2009) High-throughput protein expression using cell-free system. Methods Mol Biol 498:229–244

    PubMed  CAS  Google Scholar 

  • Soanes KH, Ewart KV, Mattatall NR (2008) Recombinant production and characterization of the carbohydrate recognition domain from Atlantic salmon C-type lectin receptor C (SCLRC). Protein Expr Purif 59(1):38–46

    PubMed  CAS  Google Scholar 

  • Song JA, Han KY, Park JS, Seo HS, Ahn KY, Lee J (2009) Human G-CSF synthesis using stress-responsive bacterial proteins. FEMS Microbiol Lett 296(1):60–66

    PubMed  CAS  Google Scholar 

  • Stafford SJ, Lund PA (2000) Mutagenic studies on human protein disulfide isomerase by complementation of escherichia coli dsbA and dsbC mutants. FEBS Lett 466(2–3):317–322

    PubMed  CAS  Google Scholar 

  • Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17(19):5543–5550

    PubMed  CAS  Google Scholar 

  • Sun M (1980) Insulin wars: new advances may throw market into turbulence. Science 210(4475):1225–1228

    PubMed  CAS  Google Scholar 

  • Sun XX, Wang CC (2000) The N-terminal sequence (residues 1–65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J Biol Chem 275(30):22743–22749

    PubMed  CAS  Google Scholar 

  • Swartz JR (2001) Advances in escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201

    PubMed  CAS  Google Scholar 

  • Swartz JR, Jewett MC, Woodrow KA (2004) Cell-free protein synthesis with prokaryotic combined transcription-translation. Methods Mol Biol 267:169–182

    PubMed  CAS  Google Scholar 

  • Tan S, Wu W, Liu J, Kong Y, Pu Y, Yuan R (2002) Efficient expression and secretion of recombinant hirudin III in E.coli using the l-asparaginase II signal sequence. Protein Expr Purif 25(3):430–436

    PubMed  CAS  Google Scholar 

  • Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124(1):61–73

    PubMed  CAS  Google Scholar 

  • Tran T, Buscher P, Vandenbussche G, Wyns L, Messens J, De Greve H (2008) Heterologous expression, purification and characterisation of the extracellular domain of trypanosome invariant surface glycoprotein ISG75. J Biotechnol 135(3):247–254

    PubMed  CAS  Google Scholar 

  • Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, Collet JF (2008) The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol 67(2):336–349

    PubMed  CAS  Google Scholar 

  • Vlamis-Gardikas A (2008) The multiple functions of the thiol-based electron flow pathways of Escherichia coli: eternal concepts revisited. Biochim Biophys Acta 1780(11):1170–1200

    PubMed  CAS  Google Scholar 

  • Voronova A, Kazantseva J, Tuuling M, Sokolova N, Sillard R, Palumaa P (2007) Cox17, a copper chaperone for cytochrome c oxidase: expression, purification, and formation of mixed disulphide adducts with thiol reagents. Protein Expr Purif 53(1):138–144

    PubMed  CAS  Google Scholar 

  • Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23(6):316–320

    PubMed  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699(1–2):35–44

    PubMed  CAS  Google Scholar 

  • Winter J, Neubauer P, Glockshuber R, Rudolph R (2001) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol 84(2):175–185

    PubMed  CAS  Google Scholar 

  • Wulfing C, Pluckthun A (1994) Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. J Mol Biol 242(5):655–669

    PubMed  CAS  Google Scholar 

  • Xiao R, Solovyov A, Gilbert HF, Holmgren A, Lundstrom-Ljung J (2001) Combinations of protein-disulfide isomerase domains show that there is little correlation between isomerase activity and wild-type growth. J Biol Chem 276(30):27975–27980

    PubMed  CAS  Google Scholar 

  • Xu Y, Lewis D, Chou CP (2008a) Effect of folding factors in rescuing unstable heterologous lipase b to enhance its overexpression in the periplasm of Escherichia coli. Appl Microbiol Biotechnol 79(6):1035–1044

    PubMed  CAS  Google Scholar 

  • Xu Y, Yasin A, Tang R, Scharer JM, Moo-Young M, Chou CP (2008b) Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation. Appl Microbiol Biotechnol 81(1):79–87

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Ritz D, Planson AG, Jonsson TJ, Faulkner MJ, Boyd D, Beckwith J, Poole LB (2008) Mutant AhpC peroxiredoxins suppress thiol-disulfide redox deficiencies and acquire deglutathionylating activity. Mol Cell 29(1):36–45

    PubMed  CAS  Google Scholar 

  • Yan WK, Goette M, Hofmann G, Zaror I, Sim J (2010) High-level soluble expression, purification and characterization of active human midkine from Escherichia coli. Protein Expr Purif 70(2):270–276

    PubMed  Google Scholar 

  • Yang J, Kanter G, Voloshin A, Michel-Reydellet N, Velkeen H, Levy R, Swartz JR (2005) Rapid expression of vaccine proteins for B-cell lymphoma in a cell-free system. Biotechnol Bioeng 89(5):503–511

    PubMed  CAS  Google Scholar 

  • Yeh SM, Koon N, Squire C, Metcalf P (2007) Structures of the dimerization domains of the Escherichia coli disulfide-bond isomerase enzymes DsbC and DsbG. Acta Crystallogr D Biol Crystallogr 63(Pt 4):465–471

    PubMed  Google Scholar 

  • Yin G, Swartz JR (2004) Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol Bioeng 86(2):188–195

    PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5(10):781–791

    PubMed  CAS  Google Scholar 

  • Yuan S, Duan H, Liu C, Liu X, Liu T, Tao H, Zhang Z (2004) The role of thioredoxin and disulfide isomerase in the expression of the snake venom thrombin-like enzyme calobin in Escherichia coli bl21 (de3). Protein Expr Purif 38(1):51–60

    PubMed  CAS  Google Scholar 

  • Zander H, Hettich E, Greiff K, Chatwell L, Skerra A (2007) Biochemical characterization of the recombinant human Nogo-A ectodomain. FEBS J 274(10):2603–2613

    PubMed  CAS  Google Scholar 

  • Zapun A, Bardwell JC, Creighton TE (1993) The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32(19):5083–5092

    PubMed  CAS  Google Scholar 

  • Zapun A, Missiakas D, Raina S, Creighton TE (1995) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34(15):5075–5089

    PubMed  CAS  Google Scholar 

  • Zhan X, Schwaller M, Gilbert HF, Georgiou G (1999) Facilitating the formation of disulfide bonds in the Escherichia coli periplasm via coexpression of yeast protein disulfide isomerase. Biotechnol Prog 15(6):1033–1038

    PubMed  CAS  Google Scholar 

  • Zhang ST, Shi J, Zhao J, Qi YF, Guo AG (2006) Expression of soluble and functional snake venom fibrinolytic enzyme fibrolase via the co-expression of DsbC in Escherichia coli. Protein Pept Lett 13(6):559–563

    PubMed  CAS  Google Scholar 

  • Zhang Y, Olsen DR, Nguyen KB, Olson PS, Rhodes ET, Mascarenhas D (1998) Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr Purif 12(2):159–165

    PubMed  CAS  Google Scholar 

  • Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL (2002) Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 26(2):218–228

    PubMed  CAS  Google Scholar 

  • Zhang Z, Song LP, Fang M, Wang F, He D, Zhao R, Liu J, Zhou ZY, Yin CC, Lin Q, Huang HL (2003) Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA. Biotechniques 35(5):1032–1038, 1041–1032

    PubMed  CAS  Google Scholar 

  • Zhao Z, Peng Y, Hao SF, Zeng ZH, Wang CC (2003) Dimerization by domain hybridization bestows chaperone and isomerase activities. J Biol Chem 278(44):43292–43298

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arredondo, S.A., Georgiou, G. (2011). The Problem of Expression of Multidisulfide Bonded Recombinant Proteins in E. coli . In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_9

Download citation

Publish with us

Policies and ethics