Skip to main content

Protein Disulfide Isomerase and the Catalysis of Oxidative Protein Folding

  • Chapter
  • First Online:
  • 1102 Accesses

Part of the book series: Protein Reviews ((PRON,volume 14))

Abstract

For proteins that are processed in the eukaryotic endoplasmic reticulum and destined for the cell surface, the correct formation of protein disulfides is critical to their folding and function. Protein disulfide isomerase (PDI) is a resident of the endoplasmic reticulum that catalyzes disulfide formation and also provides mechanisms to correct folding mistakes. The protein consists of multiple thioredoxin domains with one or more active sites, generally in the sequence CGHC. The active site cycles between an oxidized (disulfide) state which can catalyze disulfide formation and a reduced (dithiol) state that can break disulfides that are incorrectly paired. During the folding of disulfide-containing proteins, the folding process must allow the proper cysteines to closely approach each other while allowing steric access to oxidants. Early in folding, disulfide formation is error-prone and a mechanism is required to break incorrect disulfides. In addition to catalyzing disulfide formation, PDI provides this critical proof-reading function as well. In this chapter, we consider the structural organization of PDIs, their chemical and catalytic properties, the factors that may affect specificity, and their role in the eukaryotic cell.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aslund F, Berndt KD, Holmgren A (1997) Redox potentials of glutaredoxins and other thiol-­disulfide oxidoreductase of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem 272:20780–30786

    Google Scholar 

  • Bergman LW, Kuehl WM (1979) Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J Biol Chem 254:8869–8876

    PubMed  CAS  Google Scholar 

  • Bjornberg OI, Ostergaard H, Winther JR (2006) Measuring intracellular redox conditions using GFP-based sensors. Antioxid Redox Signal 8:354–361

    Article  PubMed  Google Scholar 

  • Cabibbo A, Pagani M, Fabbri M, Rocchi M, Farmery MR, Bulleid NJ, Sitia R (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 275:4827–4833

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y (1994) Controlling the speed of hirudin folding. Biochem J 300:643–650

    PubMed  CAS  Google Scholar 

  • Chang J-Y (2008) Diversity of folding pathways and folding models of disulfide proteins. Antioxid Redox Signal 10:171–177

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE, Goldenberg DP (1984) Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J Mol Biol 179:497–526

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1986) Disulfide bonds as probes of protein folding pathways. Meth Enzymol 131:83–106

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1992) The disulfide folding pathway of BPTI. Science 256:111–114

    Article  PubMed  CAS  Google Scholar 

  • Cuozzo JW, Kaiser CA (1999) Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1:130–135

    Article  PubMed  CAS  Google Scholar 

  • Darby NJ, Creighton TE (1995) Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase. Biochemistry 34:16770–16780

    Article  PubMed  CAS  Google Scholar 

  • Darby NJ, Penka E, Vincentelli R (1998) The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J Mol Biol 276:239–247

    Article  PubMed  CAS  Google Scholar 

  • Dias-Gunasekara S, Gubbens J, van Lith M, Dunne C, Williams JA, Kataky R, Scoones D, Lapthorn A, Bulleid NJ, Benham AM (2005) Tissue-specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1beta. J Biol Chem 280:33066–33075

    Article  PubMed  CAS  Google Scholar 

  • Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293

    Article  PubMed  CAS  Google Scholar 

  • Edman JC, Ellis L, Blancher RW, Roth RA, Rutter WJ (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32

    Article  PubMed  CAS  Google Scholar 

  • Frand AR, Kaiser CA (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  PubMed  CAS  Google Scholar 

  • Frand AR, Kaiser CA (1999) Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 4:469–477

    Article  PubMed  CAS  Google Scholar 

  • Fuchs S, De Lorenzo F, Anfinsen CB (1967) Studies on the mechanism of the enzymic catalysis of disulfide interchange in proteins. J Biol Chem 242:398–402

    PubMed  CAS  Google Scholar 

  • Gahl RF, Scheraga HA (2009) Oxidative folding pathway of onconase, a ribonuclease homologue: insight into oxidative folding mechanisms from a study of two homologues. Biochemistry 48:2740–2751

    Article  PubMed  CAS  Google Scholar 

  • Galat A, Creighton TE, Lord RC, Blout ER (1981) Circular dichroism, Raman spectroscopy, and gel filtration of trapped folding intermediates of ribonuclease. BiocheCircular dichroism, Raman spectroscopy, and gel filtration of trapped folding intermediates of ribonuclease. Biochemistry 3:594–601

    Article  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol/disulfide exchange. Adv Enzymol 63:69–172

    PubMed  CAS  Google Scholar 

  • Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261

    Article  PubMed  CAS  Google Scholar 

  • Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83:947–955

    Article  PubMed  CAS  Google Scholar 

  • Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C, Fass D (2006) Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA 103:299–304

    Article  PubMed  CAS  Google Scholar 

  • Gross E, Kastner DB, Kaiser CA, Fass D (2004) Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 117:601–610

    Article  PubMed  CAS  Google Scholar 

  • Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11:2807–2850

    Article  PubMed  CAS  Google Scholar 

  • Huth JR, Perini F, Lockridge O, Bedows E, Ruddon RW (1993) Protein folding and assembly in vitro parallel intracellular folding and assembly. Catalysis of folding and assembly of the human chorionic gonadotropin alpha beta dimer by protein disulfide isomerase. J Biol Chem 268:16472–16482

    PubMed  CAS  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  PubMed  CAS  Google Scholar 

  • Jansens A, van Duijn E, Braakman I (2002) Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298:2401–2403

    Article  PubMed  CAS  Google Scholar 

  • Jensen KS, Hansen RE, Winther JR (2009) Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Antioxid Redox Signal 11:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Zhao Y, Pan X, He X, Gilbert HF (2009) The unfolded protein response is necessary but not sufficient to compensate for defects in disulfide isomerization. J Biol Chem 284:10400–10408

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Hosoda Y, Sato Y, Kitamura Y, Ikeda T, Horibe T, Kikuchi M (2005) Interactions among yeast protein-disulfide isomerase proteins and endoplasmic reticulum chaperone proteins influence their activities. J Biol Chem 280:31438–31441

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Ruddock LW, Darby NJ, Freedman RB (1998) The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17:927–935

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Darby NJ, Creighton TE (1996) Electrostatic interactions in the active site of the N-terminal thioredoxin like domain of protein disulfide isomerase. Biochemistry 35:14503–14511

    Article  PubMed  CAS  Google Scholar 

  • Kulp MS, Frickel E-M, Ellgaard L, Weissman JS (2006) Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation. J Biol Chem 281:876–884

    Article  PubMed  CAS  Google Scholar 

  • Lin TY, Kim PS (1989) Urea dependence of thiol-disulfide equilibria in thioredoxin: confirmation of the linkage relationship and a sensitive assay for structure. Biochemistry 13:5282–5287

    Article  Google Scholar 

  • Lin CJ, Chang J-Y (2007) Pathway of oxidative folding of bovine alpha-interferon: predominance of native disulfide bonded folding intermediates. Biochemistry 46:3925–3932

    Article  PubMed  CAS  Google Scholar 

  • Lundstrom J, Holmgren A (1993) Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry 32:6649–6655

    Article  PubMed  CAS  Google Scholar 

  • Lyles MM, Gilbert HF (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: Dependence of the rate on the composition of the redox buffer. Biochemistry 30:613–619

    Article  PubMed  CAS  Google Scholar 

  • Lyles MM, Gilbert HF (1994) Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional non-equivalence of the N- and C-terminal domains. J Biol Chem 269:30946–30952

    PubMed  CAS  Google Scholar 

  • McCarthy AA, Haebel PW, Törrönen A, Rybin V, Baker EN, Metcalf P (2000) Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7:196–199

    Article  PubMed  CAS  Google Scholar 

  • Merksamer PI, Trusina A, Papa FR (2008) Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135:933–947

    Article  PubMed  CAS  Google Scholar 

  • Molteni SN, Fassio A, Ciriolo MR, Filomeni G, Pasqualetto E, Fagioli C, Sitia R (2004) Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum. J Biol Chem 279:32667–32673

    Article  PubMed  CAS  Google Scholar 

  • Morjana NA, Gilbert HF (1991) Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase. Biochemistry 30:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Bardwell JC (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1783:520–529

    Google Scholar 

  • Nguyen VD, Wallis K, Howard MJ, Happalainen AM, Salo KEH, Saaranen MJ, Sidhu A, Wierenga RK, Freedman RB, Ruddock LW, Williamson RA (2008) Alternative conformations of the x region of human protein disulphide isomerase modulate exposure of the substrate binding b′ domain. J Mol Biol 383:1144–1155

    Article  PubMed  CAS  Google Scholar 

  • Norgaard P, Winther JR (2001) Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity. Biochem J 358:269–274

    Article  PubMed  CAS  Google Scholar 

  • Norgaard P, Westphal V, Tachibana C, Alsoe L, Holst B, Winther JR (2001) Functional differences in yeast protein disulfide isomerases. J Cell Biol 152:553–562

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275:23685–23692

    Article  PubMed  CAS  Google Scholar 

  • Pirneskoski A, Klappa P, Lobell M, Williamson RA, Byrne L, Alanen HI, Salo KE, Kivirikko KI, Freedman RB, Ruddock LW (2004) Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J Biol Chem 279:10374–10381

    Article  PubMed  CAS  Google Scholar 

  • Pollard MG, Travers KJ, Weissman JS (1998) ERO1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–182

    Article  PubMed  CAS  Google Scholar 

  • Rothwarf DM, Li Y-J, Scheraga HA (1998) Regeneration of bovine pancreatic ribonuclease a: detailed kinetic analysis of two independent folding pathways. Biochemistry 37:3767–3776

    Article  PubMed  CAS  Google Scholar 

  • Ruddock LW, Freedman RB, Klappa P (2000) Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancrease-specific protein disulfide isomerase PDIp. Protein Sci 9:758–764

    Article  PubMed  CAS  Google Scholar 

  • Russell SJ, Ruddock LW, Salo KE, Oliver JD, Roebuck OP, Llewellyn DH, Roderick HL, Koivunen P, Myllyharju J, High S (2004) The primary substrate binding site in the b0 domain of ERp57 is adapted for endoplasmic reticulum lectin association. J Biol Chem 279:18861–18869

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Welker E, Scheraga HA (2001) Folding of a disulfide-bonded protein species with free thiol(s): competition between conformational folding and disulfide reshuffling in an intermediate of bovine pancreatic ribonuclease A. Biochemistry 40:15002–15008

    Article  PubMed  CAS  Google Scholar 

  • Schwaller MF, Wilkinson B, Gilbert HF (2003) Reduction/reoxidation cycles contribute to catalysis of disulfide isomerization by protein disulfide isomerase. J Biol Chem 278:7154–7159

    Article  PubMed  CAS  Google Scholar 

  • Sevier CS, Kaiser CA (2006) Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1. Mol Biol Cell 17:2256–2266

    Article  PubMed  CAS  Google Scholar 

  • Shin HC, Scheraga HA (2000) Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. J Mol Biol 300:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Solovyov A, Xiao R, Gilbert HF (2004) Sulfhydryl oxidation, not disulfide isomerization, is the principal function of protein disulfide isomerase in yeast Saccharomyces cerevisiae. J Biol Chem 279:34095–34100

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Kober F-X, Lewandrowski U, Sickmann A, Lennarz WJ, Schindelin H (2008) The catalytic activity of protein disulfide isomerase requires a conformationally flexible molecule. J Biol Chem 283:33630–33640

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73

    Article  PubMed  CAS  Google Scholar 

  • Walker KW, Gilbert HF (1997) Scanning and escape scanning and escape during protein disulfide isomerase-assisted protein folding. J Biol Chem 272:8845–8848

    Article  PubMed  CAS  Google Scholar 

  • Walker KW, Gilbert HF (1995) Oxidation of kinetically trapped thiols by protein disulfide isomerase. Biochemistry 34:13642–13650

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1991) Re-examination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1993) Efficient catalysis of disulfphide bond rearrangements by protein disulphide isomerase. Nature 365:185–188

    Article  PubMed  CAS  Google Scholar 

  • Westphal V, Spetzler JC, Meldal M, Christensen U, Winther JR (1998) Kinetic analysis of the mechanism and specificity of protein-disulfide isomerase using fluorescence-quenched peptides. J Biol Chem 273:24992–24999

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson B, Xiao R, Gilbert HF (2005) A structural disulfide of yeast protein disulfide isomerase destabilizes the active site disulfide of the N-terminal thioredoxin domain. J Biol Chem 280:11483–11487

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Solovyov A, Gilbert HF, Holmgren A, Lundström-Ljung J (2001) Combinations of protein-disulfide isomerase domains show that there is little correlation between isomerase activity and wild-type growth. J Biol Chem 276:27975–27980

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Wilkinson B, Solovyov A, Lundstron-Ljung J, Winther JR, Holmgren A, Gilbert HF (2004) Protein disulfide isomerase is an oxidase and isomerase in the S. cerevisiae endoplasmic reticulum. J Biol Chem 279:49780–49786

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kozlov G, Pocanschi CL, Brockmeier U, Ireland BS, Maattanen P, Howe C, Elliott T, Gehring K, Williams DB (2009) ERp57 does not require interactions with calnexin and calreticulin to promote assembly of class I histocompatibility molecules, and it enhances peptide loading independently of its redox activity. J Biol Chem 284:10160–10173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiram F. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gilbert, H.F. (2011). Protein Disulfide Isomerase and the Catalysis of Oxidative Protein Folding. In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_7

Download citation

Publish with us

Policies and ethics