Skip to main content

Epithelial-to-Mesenchymal Transition and Cellular Membrane Receptors in Ovarian Cancer: Moving Forward in the Era of Molecularly Targeted Therapy

  • Chapter
  • First Online:
Book cover Emerging Therapeutic Targets in Ovarian Cancer

Abstract

Treatment of epithelial ovarian cancer continues to advance, and molecularly targeted therapies that have been successful in treating other types of malignant disease have had varying levels of success in the treatment of patients with ovarian cancer. This chapter will discuss in depth the following cell membrane receptors and proteins: integrins, the EGFR/HER family of receptors, IGF receptors, c-Met, and will mention cadherins and the transforming growth factor receptor β pathway. The role of these membrane receptors in epithelial cell plasticity in the context of epithelial-to-mesenchymal transition as well as invasiveness and resistance to apoptosis will be explored. We will examine the mechanisms of inhibition of these membrane receptors, reviewing data on what has been tested to date, as well as upcoming trials and future strategies for membrane inhibition through combinations of agents that may be effective in treating patients with ovarian carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Wever O, Pauwels P, De Craene B, et al. (2008). Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochem Cell Biol 130(3):481–94.

    PubMed  Google Scholar 

  2. Larue L, Bellacosa A (2005). Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3 kinase//AKT pathways. Oncogene 24(50):7443–54.

    PubMed  CAS  Google Scholar 

  3. Aristidis M, Carl-Henrik H (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–20.

    Google Scholar 

  4. Thiery JP, Sleeman JP (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–42.

    PubMed  CAS  Google Scholar 

  5. Brabletz T, Hlubek F, Spaderna S, et al. (2005). Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2):56–65.

    PubMed  CAS  Google Scholar 

  6. Vincan E, Brabletz T, Faux MC, Ramsay RG (2007). A human three-dimensional cell line model allows the study of dynamic and reversible epithelial–mesenchymal and mesenchymal–epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs 185(1–3):20–28.

    PubMed  Google Scholar 

  7. Wells A, Yates C, Shepard CR (2008). E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 25(6):621–28.

    PubMed  CAS  Google Scholar 

  8. Harris RC, Chung E, Coffey RJ (2003). EGF receptor ligands. Exp Cell Res 284(1):2–13.

    PubMed  CAS  Google Scholar 

  9. Garrett TP, McKern NM, Lou M, et al. (2003). The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11(2):495–505.

    PubMed  CAS  Google Scholar 

  10. Citri A, Skaria KB, Yarden Y (2003). The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284(1):54–65.

    PubMed  CAS  Google Scholar 

  11. Graus-Porta D, Beerli RR, Daly JM, Hynes NE, Erb B- (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16(7):1647–55.

    PubMed  CAS  Google Scholar 

  12. Worthylake R, Opresko LK, Wiley HS (1999). Erb B-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 274(13):8865–74.

    PubMed  CAS  Google Scholar 

  13. Gross ME, Shazer RL, Agus DB (2004). Targeting the HER-kinase axis in cancer. Semin Oncol 31(1 Suppl 3):9–20.

    PubMed  CAS  Google Scholar 

  14. Yarden Y, Sliwkowski MX (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–37.

    PubMed  CAS  Google Scholar 

  15. Burgess AW, Cho HS, Eigenbrot C, et al. (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12(3):541–52.

    PubMed  CAS  Google Scholar 

  16. Campiglio M, Ali S, Knyazev PG, Ullrich A (1999). Characteristics of EGFR family-mediated HRG signals in human ovarian cancer. J Cell Biochem 73(4):522–32.

    PubMed  CAS  Google Scholar 

  17. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284(1):31–53.

    PubMed  CAS  Google Scholar 

  18. Berchuck A, Rodriguez GC, Kamel A, et al. (1991). Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 164(2):669–74.

    PubMed  CAS  Google Scholar 

  19. Maruo T, Ladines-Llave CA, Samoto T, et al. (1993). Expression of epidermal growth factor and its receptor in the human ovary during follicular growth and regression. Endocrinology 132(2):924–31.

    PubMed  CAS  Google Scholar 

  20. Jindal SK, Ishii E, Letarte M, Vera S, Teerds KJ, Dorrington JH (1995). Regulation of transforming growth factor alpha gene expression in an ovarian surface epithelial cell line derived from a human carcinoma. Biol Reprod 52(5):1027–37.

    PubMed  CAS  Google Scholar 

  21. Jindal SK, Snoey DM, Lobb DK, Dorrington JH (1994). Transforming growth factor alpha localization and role in surface epithelium of normal human ovaries and in ovarian carcinoma cells. Gynecol Oncol 53(1):17–23.

    PubMed  CAS  Google Scholar 

  22. Ahmed N, Thompson EW, Quinn MA (2007). Epithelial–mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213(3):581–88.

    PubMed  CAS  Google Scholar 

  23. Lu Z, Jiang G, Blume-Jensen P, Hunter T (2001). Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 21(12):4016–31.

    PubMed  CAS  Google Scholar 

  24. Wells A (2000). Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res 78:31–101.

    Google Scholar 

  25. Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N (2006). Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol 290(6):C1532–C42.

    PubMed  CAS  Google Scholar 

  26. Savagner P (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays 23(10):912–23.

    PubMed  CAS  Google Scholar 

  27. Seiden MV, Burris HA, Matulonis U, et al. (2007). A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 104(3):727–31.

    PubMed  CAS  Google Scholar 

  28. Frederick PJ, Straughn JM Jr., Alvarez RD, Buchsbaum DJ (2009). Preclinical studies and clinical utilization of monoclonal antibodies in epithelial ovarian cancer. Gynecol Oncol 113(3):384–90.

    PubMed  CAS  Google Scholar 

  29. Slamon DJ, Godolphin W, Jones LA, et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–12.

    PubMed  CAS  Google Scholar 

  30. Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR (2003). Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 21(2):283–90.

    PubMed  CAS  Google Scholar 

  31. Agus DB, Gordon MS, Taylor C, et al. (2005). Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 23(11):2534–43.

    PubMed  CAS  Google Scholar 

  32. Gordon MS, Matei D, Aghajanian C, et al. (2006). Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol 24(26):4324–32.

    PubMed  CAS  Google Scholar 

  33. Makhija S, Glenn D, Ueland F, et al. (2007). Results from a phase II randomized, placebo-controlled, double-blind trial suggest improved PFS with the addition of pertuzumab to gemcitabine in patients with platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J Clin Oncol 25(18_suppl):5507.

    Google Scholar 

  34. Fischer-Colbrie J, Witt A, Heinzl H, et al. (1997). EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 17(1B):613–19.

    PubMed  CAS  Google Scholar 

  35. Schilder RJ, Pathak HB, Lokshin AE, et al. (2009). Phase II trial of single agent cetuximab in patients with persistent or recurrent epithelial ovarian or primary peritoneal carcinoma with the potential for dose escalation to rash. Gynecol Oncol 113(1):21–27.

    PubMed  CAS  Google Scholar 

  36. Orditura M, De Vita F, Galizia G, et al. (2009). Correlation between efficacy and skin rash occurrence following treatment with the epidermal growth factor receptor inhibitor cetuximab: a single institution retrospective analysis. Oncol Rep 21(4):1023–28.

    PubMed  CAS  Google Scholar 

  37. Secord AA, Blessing JA, Armstrong DK, et al. (2008). Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group Study. Gynecol Oncol 108(3):493–99.

    PubMed  CAS  Google Scholar 

  38. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA (2005). Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group Study. J Clin Oncol 23(34):8646–54.

    PubMed  Google Scholar 

  39. Saif MW, Shah M (2009). K-ras mutations in colorectal cancer: a practice changing discovery. Clin Adv Hematol Oncol 7(1):45–53, 64

    PubMed  Google Scholar 

  40. Heinemann V, Stintzing S, Kirchner T, Boeck S, Jung A (2009). Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev 35(3):262–71.

    PubMed  CAS  Google Scholar 

  41. Ramos FJ, Macarulla T, Capdevila J, Elez E, Tabernero J (2008). Understanding the predictive role of K-ras for epidermal growth factor receptor-targeted therapies in colorectal cancer. Clin Colorectal Cancer 7(Suppl 2):S52–S57.

    PubMed  CAS  Google Scholar 

  42. Auner V, Kriegshauser G, Tong D, et al. (2009). KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay. BMC Cancer 9:111.

    PubMed  Google Scholar 

  43. Quaye L, Gayther SA, Ramus SJ, et al. (2008). The effects of common genetic variants in oncogenes on ovarian cancer survival. Clin Cancer Res 14(18):5833–39.

    PubMed  CAS  Google Scholar 

  44. Kimball KJ, Numnum TM, Kirby TO, et al. (2008). A phase I study of lapatinib in combination with carboplatin in women with platinum sensitive recurrent ovarian carcinoma. Gynecol Oncol 111(1):95–101.

    PubMed  CAS  Google Scholar 

  45. Vasey PA, Gore M, Wilson R, et al. (2008). A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers. Br J Cancer 98(11):1774–80.

    PubMed  CAS  Google Scholar 

  46. Vasey PA, Jayson GC, Gordon A, et al. (2004). Phase III randomized trial of docetaxel–carboplatin versus paclitaxel–carboplatin as first-line chemotherapy for ovarian carcinoma. J Natl Cancer Inst 96(22):1682–91.

    PubMed  CAS  Google Scholar 

  47. Gordon AN, Finkler N, Edwards RP, et al. (2005). Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer 15(5):785–92.

    PubMed  CAS  Google Scholar 

  48. Schilder RJ, Sill MW, Chen X, et al. (2005). Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 11(15):5539–48.

    PubMed  CAS  Google Scholar 

  49. Lynch TJ, Bell DW, Sordella R, et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–39.

    PubMed  CAS  Google Scholar 

  50. Paez JG, Janne PA, Lee JC, et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–500.

    PubMed  CAS  Google Scholar 

  51. Posadas EM, Liel MS, Kwitkowski V, et al. (2007). A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer. Cancer 109(7):1323–30.

    PubMed  CAS  Google Scholar 

  52. Seton-Rogers SE, Lu Y, Hines LM, et al. (2004). Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101(5):1257–62.

    PubMed  CAS  Google Scholar 

  53. Thomson S, Buck E, Petti F, et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65(20):9455–62.

    PubMed  CAS  Google Scholar 

  54. Yauch RL, Januario T, Eberhard DA, et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11(24 Pt 1):8686–98.

    PubMed  CAS  Google Scholar 

  55. Jones JI, Clemmons DR (1995). Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34.

    Google Scholar 

  56. Zhou J, Chin E, Bondy C (1991). Cellular pattern of insulin-like growth factor-I (IGF-I) and IGF-I receptor gene expression in the developing and mature ovarian follicle. Endocrinology 129(6):3281–88.

    PubMed  CAS  Google Scholar 

  57. Gerard N, Monget P (1998). Intrafollicular insulin-like growth factor-binding protein levels in equine ovarian follicles during preovulatory maturation and regression. Biol Reprod 58(6):1508–14.

    PubMed  CAS  Google Scholar 

  58. Besnard N, Pisselet C, Zapf J, Hornebeck W, Monniaux D, Monget P (1996). Proteolytic activity is involved in changes in intrafollicular insulin-like growth factor-binding protein levels during growth and atresia of ovine ovarian follicles. Endocrinology 137(5):1599–607.

    PubMed  CAS  Google Scholar 

  59. Monget P, Besnard N, Huet C, Pisselet C, Monniaux D (1996). Insulin-like growth factor-binding proteins and ovarian folliculogenesis. Horm Res 45(3-5):211–17.

    PubMed  CAS  Google Scholar 

  60. Schams D, Berisha B, Kosmann M, Einspanier R, Amselgruber WM (1999). Possible role of growth hormone, IGFs, and IGF-binding proteins in the regulation of ovarian function in large farm animals. Domest Anim Endocrinol 17(2-3):279–85.

    PubMed  CAS  Google Scholar 

  61. Silva JR, Figueiredo JR, van den Hurk R (2009). Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology 71(8):1193–208.

    PubMed  CAS  Google Scholar 

  62. Kwintkiewicz J, Giudice LC (2009). The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function. Semin Reprod Med 27(1):43–51.

    PubMed  CAS  Google Scholar 

  63. Ouban A, Muraca P, Yeatman T, Coppola D (2003). Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol 34(8):803–08.

    PubMed  CAS  Google Scholar 

  64. Beck EP, Russo P, Gliozzo B, et al. (1994). Identification of insulin and insulin-like growth factor I (IGF I) receptors in ovarian cancer tissue. Gynecol Oncol 53(2):196–201.

    PubMed  CAS  Google Scholar 

  65. Hirano S, Ito N, Takahashi S, Tamaya T (2004). Clinical implications of insulin-like growth factors through the presence of their binding proteins and receptors expressed in gynecological cancers. Eur J Gynaecol Oncol 25(2):187–91.

    PubMed  CAS  Google Scholar 

  66. Pollack MN (2007). Insulin, insulin-like growth factors, insulin resistance, and neoplasia. Am J Clin Nutr 86(3):s820–s22.

    PubMed  Google Scholar 

  67. Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM (2008). The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14(20):6364–70.

    PubMed  CAS  Google Scholar 

  68. Firth SM, Baxter RC (2002). Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23(6):824–54.

    PubMed  CAS  Google Scholar 

  69. Irie HY, Pearline RV, Grueneberg D, et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol 171(6):1023–34.

    PubMed  CAS  Google Scholar 

  70. Cohen BD, Baker DA, Soderstrom C, et al. (2005). Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11(5):2063–73.

    PubMed  CAS  Google Scholar 

  71. Haluska P, Shaw HM, Batzel GN, et al. (2007). Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res 13(19):5834–40.

    PubMed  CAS  Google Scholar 

  72. de Bono JS, Attard G, Adjei A, et al. (2007). Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin Cancer Res 13(12):3611–16.

    PubMed  Google Scholar 

  73. Lacy MQ, Alsina M, Fonseca R, et al. (2008). Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J Clin Oncol 26(19):3196–203.

    PubMed  CAS  Google Scholar 

  74. Karp DD, Paz-Ares LG, Novello S, et al. (2009). Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer. J Clin Oncol 27(15):2516–22.

    PubMed  CAS  Google Scholar 

  75. Tolcher AW, Rothenberg ML, Rodon J, et al. (2007). A phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors. J Clin Oncol 25(18_suppl): Meeting Abstracts 3002.

    Google Scholar 

  76. Beltran PJ, Mitchell P, Chung Y-A, et al. (2009). AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells 8(5):1095–105.

    Google Scholar 

  77. Lindsay CR, Chan E, Evans TR, et al. (2009). Phase I dose escalation study of continuous oral dosing of OSI-906, an insulin like growth factor-1 receptor (IGF-1R) tyrosine kinase inhibitor, in patients with advanced solid tumors. J Clin Oncol 27(15S): Meeting Abstracts 2559.

    Google Scholar 

  78. Esparis-Ogando A, Rodriguez-Barrueco R, Borges J, Ferreira L, Pandiella A, Ocana A (2007). Insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 is active in breast cancer cells and enhances growth inhibition by herceptin through an increase in cell cycle arrest. J Clin Oncol 25(18_suppl): Meeting Abstracts 21077.

    Google Scholar 

  79. Wiedmann MW, Lorenz J, Mobius C, Mossner J, Wolf S (2008). Tyrosine kinase inhibitor NVP-AEW541 as a new option for the treatment of biliary tract cancer? J Clin Oncol 26(15_suppl): Meeting Abstracts 14622.

    Google Scholar 

  80. Moser M, Legate KR, Zent R, The FR (2009). Tail of integrins, talin, and kindlins. Science 324(5929):895–99.

    PubMed  CAS  Google Scholar 

  81. Playford MP, Schaller MD (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene 23(48):7928–46.

    PubMed  CAS  Google Scholar 

  82. Jeanes A, Gottardi CJ, Yap AS (2008). Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27(55):6920–29.

    Google Scholar 

  83. Veatch AL, Carson LF, Ramakrishnan S (1994). Differential expression of the cell–cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58(3):393–99.

    PubMed  CAS  Google Scholar 

  84. Sawada K, Mitra AK, Radjabi AR, et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via {alpha}5-integrin, which is a therapeutic target. Cancer Res 68(7):2329–39.

    PubMed  CAS  Google Scholar 

  85. Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23(8):1739–48.

    PubMed  CAS  Google Scholar 

  86. Fuchs M, Hutzler P, Brunner I, et al. (2002). Motility enhancement by tumor-derived mutant E-cadherin is sensitive to treatment with epidermal growth factor receptor and phosphatidylinositol 3-kinase inhibitors. Exp Cell Res 276(2):129–41.

    PubMed  CAS  Google Scholar 

  87. Pece S, Gutkind JS (2000). Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell–cell contact formation. J Biol Chem 275(52):41227–33.

    PubMed  CAS  Google Scholar 

  88. Moro L, Dolce L, Cabodi S, et al. (2002). Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277(11):9405–14.

    PubMed  CAS  Google Scholar 

  89. Falcioni R, Antonini A, Nisticò P, et al. (1997). [alpha]6[beta]4 and [alpha]6[beta]1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 236(1):76–85.

    PubMed  CAS  Google Scholar 

  90. Shim WSN, Ho IAW, Wong PEH (2007). Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res 5(7):655–65.

    PubMed  CAS  Google Scholar 

  91. Byzova TV, Goldman CK, Pampori N, et al. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6(4):851–60.

    PubMed  CAS  Google Scholar 

  92. Rosano L, Spinella F, Di Castro V, et al. (2006). Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Mol Cancer Ther 5(4):833–42.

    PubMed  CAS  Google Scholar 

  93. Saegusa J, Yamaji S, Ieguchi K, et al. (2009). The direct binding of insulin-like growth factor-1 (IGF-1) to integrin alphaVbeta3 is involved in IGF-1 signaling. The Journal of biological chemistry 284(36):24106–14.

    Google Scholar 

  94. Ramakrishnan V, Bhaskar V, Law DA, et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol 5(4):273–86.

    PubMed  CAS  Google Scholar 

  95. Serini G, Valdembri D, Bussolino F (2006). Integrins and angiogenesis: a sticky business. Exp Cell Res 312(5):651–58.

    PubMed  CAS  Google Scholar 

  96. Matthews CM, Ho SN, Barve M, et al. A phase 2, single-arm study of volociximab (an anti-α5β1 integrin antibody) monotherapy in patients with platinum-resistant advanced epithelial ovarian cancer or primary peritoneal cancer. Proceedings EORTC-NCI-AACR International Conference of Molecular Targets and Cancer Therapeutics: Discovery, Biology and Clinical Applications (Geneva) 2008;6(229).

    Google Scholar 

  97. Vergote IB, Colombo N, Kutarska E, et al. (2009). Phase II study comparing volociximab (an antiangiogenic antibody) and pegylated liposomal doxorubicin (PLD) with PLD alone in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 27(15S):5560–.

    Google Scholar 

  98. Peruzzi B, Bottaro DP (2006). Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12(12):3657–60.

    PubMed  CAS  Google Scholar 

  99. Di Renzo MF, Narsimhan RP, Olivero M, et al. (1991). Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6(11):1997–2003.

    PubMed  CAS  Google Scholar 

  100. Benvenuti S, Comoglio PM (2007). The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 213(2):316–25.

    PubMed  CAS  Google Scholar 

  101. Comoglio PM (2001). Pathway specificity for Met signalling. Nat Cell Biol 3(7):E.

    Google Scholar 

  102. Di Renzo MF, Olivero M, Katsaros D, et al. (1994). Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58(5):658–62.

    PubMed  CAS  Google Scholar 

  103. Huntsman D, Resau JH, Klineberg E, Auersperg N (1999). Comparison of c-met expression in ovarian epithelial tumors and normal epithelia of the female reproductive tract by quantitative laser scan microscopy. Am J Pathol 155(2):343–48.

    PubMed  CAS  Google Scholar 

  104. Corps AN, Sowter HM, Smith SK (1997). Hepatocyte growth factor stimulates motility, chemotaxis and mitogenesis in ovarian carcinoma cells expressing high levels of c-met. Int J Cancer 73(1):151–55.

    PubMed  CAS  Google Scholar 

  105. Wong AS, Leung PC, Auersperg N (2000). Hepatocyte growth factor promotes in vitro scattering and morphogenesis of human cervical carcinoma cells. Gynecol Oncol 78(2):158–65.

    PubMed  CAS  Google Scholar 

  106. Wong AS, Pelech SL, Woo MM, et al. (2001). Coexpression of hepatocyte growth factor-Met: an early step in ovarian carcinogenesis? Oncogene 20(11):1318–28.

    PubMed  CAS  Google Scholar 

  107. Lamorte L, Royal I, Naujokas M, Park M (2002). Crk adapter proteins promote an epithelial–mesenchymal-like transition and are required for HGF-mediated cell spreading and breakdown of epithelial adherens junctions. Mol Biol Cell 13(5):1449–61.

    PubMed  CAS  Google Scholar 

  108. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990). Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111(5 Pt 1):2097–108.

    PubMed  CAS  Google Scholar 

  109. Weidner KM, Sachs M, The BW (1993). Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol 121(1):145–54.

    PubMed  CAS  Google Scholar 

  110. Rahman S, Patel Y, Murray J, et al. (2005). Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6(1):8.

    PubMed  Google Scholar 

  111. Trusolino L, Bertotti A, Comoglio PM (2001). A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 107(5):643–54.

    PubMed  CAS  Google Scholar 

  112. Xin X, Yang S, Ingle G, et al. (2001). Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 158(3):1111–20.

    PubMed  CAS  Google Scholar 

  113. Engelman JA, Zejnullahu K, Mitsudomi T, et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–43.

    PubMed  CAS  Google Scholar 

  114. Sawada K, Radjabi AR, Shinomiya N, et al. (2007). c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res 67(4):1670–79.

    PubMed  CAS  Google Scholar 

  115. Burgess T, Coxon A, Meyer S, et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 66(3):1721–29.

    PubMed  CAS  Google Scholar 

  116. Cao B, Su Y, Oskarsson M, et al. (2001). Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci USA 98(13):7443–48.

    PubMed  CAS  Google Scholar 

  117. Kim KJ, Wang L, Su YC, et al. (2006). Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin Cancer Res 12(4):1292–98.

    PubMed  CAS  Google Scholar 

  118. Martens T, Schmidt NO, Eckerich C, et al. (2006). A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12(20 Pt 1):6144–52.

    PubMed  CAS  Google Scholar 

  119. Michieli P, Mazzone M, Basilico C, et al. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6(1):61–73.

    PubMed  CAS  Google Scholar 

  120. Jun HT, Sun J, Rex K, et al. (2007). AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 13(22 Pt 1):6735–42.

    PubMed  CAS  Google Scholar 

  121. Evangelista M, Tian H, de Sauvage FJ (2006). The Hedgehog signaling pathway in cancer. Clin Cancer Res 12(20 Pt 1):5924–28.

    PubMed  CAS  Google Scholar 

  122. Ingham PW, McMahon AP (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–87.

    PubMed  CAS  Google Scholar 

  123. Ingham PW, Nystedt S, Nakano Y, et al. (2000). Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Curr Biol 10(20):1315–18.

    PubMed  CAS  Google Scholar 

  124. Johnson RL, Rothman AL, Xie J, et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272(5268):1668–71.

    PubMed  CAS  Google Scholar 

  125. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422(6929):313–17.

    PubMed  CAS  Google Scholar 

  126. Berman DM, Karhadkar SS, Maitra A, et al. (2003). Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425(6960):846–51.

    PubMed  CAS  Google Scholar 

  127. Liao X, Siu MK, Au CW, et al. (2009). Aberrant activation of Hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30(1):131–40.

    PubMed  CAS  Google Scholar 

  128. Bhattacharya R, Kwon J, Ali B, et al. (2008). Role of Hedgehog signaling in ovarian cancer. Clin Cancer Res 14(23):7659–66.

    PubMed  CAS  Google Scholar 

  129. Jiang J, Hui CC (2008). Hedgehog signaling in development and cancer. Dev Cell 15(6):801–12.

    PubMed  CAS  Google Scholar 

  130. Isohata N, Aoyagi K, Mabuchi T, et al. (2009). Hedgehog and epithelial–mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. Int J Cancer 125(5):1212–21.

    PubMed  CAS  Google Scholar 

  131. Lan Y, Jiang R (2009). Sonic Hedgehog signaling regulates reciprocal epithelial–mesenchymal interactions controlling palatal outgrowth. Development 136(8):1387–96.

    PubMed  CAS  Google Scholar 

  132. Ohta H, Aoyagi K, Fukaya M, et al. (2009). Cross talk between Hedgehog and epithelial–mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer 100(2):389–98.

    PubMed  CAS  Google Scholar 

  133. Katoh Y, Katoh M (2008). Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review). Int J Mol Med 22(3):271–75.

    PubMed  CAS  Google Scholar 

  134. Nanba D, Nakanishi Y, Hieda Y (2003). Role of sonic Hedgehog signaling in epithelial and mesenchymal development of hair follicles in an organ culture of embryonic mouse skin. Dev Growth Differ 45(3):231–39.

    PubMed  CAS  Google Scholar 

  135. Narita T, Ishii Y, Nohno T, Noji S, Yasugi S (1998). Sonic Hedgehog expression in developing chicken digestive organs is regulated by epithelial–mesenchymal interactions. Dev Growth Differ 40(1):67–74.

    PubMed  CAS  Google Scholar 

  136. Ren Y, Cowan RG, Harman RM, Quirk SM (2009). Dominant activation of the Hedgehog signaling pathway in the ovary alters theca development and prevents ovulation. Mol Endocrinol 23(5):711–23.

    PubMed  CAS  Google Scholar 

  137. Russell MC, Cowan RG, Harman RM, Walker AL, Quirk SM (2007). The Hedgehog signaling pathway in the mouse ovary. Biol Reprod 77(2):226–36.

    PubMed  CAS  Google Scholar 

  138. Chen X, Horiuchi A, Kikuchi N, et al. (2007). Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: it’s inhibition leads to growth suppression and apoptosis. Cancer Sci 98(1):68–76.

    PubMed  CAS  Google Scholar 

  139. Chen JK, Taipale J, Cooper MK, Beachy PA (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743–48.

    PubMed  CAS  Google Scholar 

  140. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002). Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99(22):14071–76.

    PubMed  CAS  Google Scholar 

  141. Sinha S, Chen JK (2006). Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol 2(1):29–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lainie P. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martin, L.P., Perkins, J.J., Schilder, R.J. (2011). Epithelial-to-Mesenchymal Transition and Cellular Membrane Receptors in Ovarian Cancer: Moving Forward in the Era of Molecularly Targeted Therapy. In: Kaye, S., Brown, R., Gabra, H., Gore, M. (eds) Emerging Therapeutic Targets in Ovarian Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7216-3_8

Download citation

Publish with us

Policies and ethics