Skip to main content

An Integrated Bayesian Framework for Identifying Phosphorylation Networks in Stimulated Cells

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 2844 Accesses

Abstract

One of the primary mechanisms of signal transduction in cells is protein phosphorylation. Upon ligand stimulation a series of phosphorylation events take place which eventually lead to transcription. Different sets of phosphorylation events take place due to different stimulating ligands in different types of cells. Knowledge of these phosphorylation events is essential to understand the underlying signaling mechanisms. We have developed a Bayesian framework to infer phosphorylation networks from time series measurements of phosphosite concentrations upon ligand stimulation. To increase the prediction accuracy we integrated different types of data, e.g., amino acid sequence data, genomic context data (gene fusion, gene neighborhood, and phylogentic profiles), primary experimental evidence (physical protein interactions and gene coexpression), manually curated pathway databases, and automatic literature mining with time series data in our inference framework. We compared our results with data available from public databases and report a high level of prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janes K, Kelly J, Gaudet S, Albeck J, Sorger P, Lauffenburger D (2004) Cue-signal-response analysis of tnf-induced apoptosis by partial least squares regression of dynamic multi-variate signaling network measurements. J Comp Biol (11):544–561

    Article  CAS  Google Scholar 

  2. Woolf P, Prudhomme W, Daheron L, Daley G, Lauffenburger D (2005) Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics (21):741–753

    Article  CAS  PubMed  Google Scholar 

  3. Sachs K, Perez O, Peter D, Lauffenburger D, Nolan G (2005) Causal protein signaling networks derived from multiparameter single-cell data. Science (308):523–529

    Article  CAS  PubMed  Google Scholar 

  4. Locasale J, Yadlin A (2009) Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data. PLoS One (4):e6522

    Google Scholar 

  5. Wagner J, Lauffenburger D (2009) Bayesian network inference of phosphoproteomic signaling networks. In: Seventh Annual Workshop on Bayes Applications, Montreal, Canada

    Google Scholar 

  6. Sachs K, Itani S, Carlisle J, Nolan G, Peer D, Lauffenburge D (2009) Learning signaling network structures with sparsely distributed data. J Comput Biol (16):1–12

    Article  Google Scholar 

  7. Linding R, Jensen LJ, Ostheimer G, Vugt M, Jorgensen C, Miron I, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park J, Samson L, Woodgett J, Russell RB, Bork P, Yaffe M, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell (129):1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hjerrild M, Stensballe A, Rasmussen T, Kofoed C, Blom N, Sicheritz-Pontén T, Larsen M, Brunak S, Jensen O, Gammeltoft S (2004) Gammeltoft, identification of phosphorylation sites in protein kinase a substrates using artificial neural networks and mass spectrometry. J Proteome Res (3):426–433

    Article  CAS  PubMed  Google Scholar 

  9. Obenauer J, Cantley L, Yaffe M (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res (31):3635–3641

    Google Scholar 

  10. Puntervoll P, Linding R, Gemnd C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin D, Ausiello G, Brannetti B, Costantini A, et al. (2003) Elm server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res (31):3625–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaderali L, Dazert E, Zeuge U, Frese M, Bartenschlager R (2009) Reconstructing signaling pathways from rnai data using probabilistic boolean threshold network. Bioinformatics (25):2229–2235

    Article  CAS  PubMed  Google Scholar 

  12. Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T (2007) Large scale statistical inference of signaling pathways from rnai and microarray data. BMC Bioinformatics (8):1–15

    Article  Google Scholar 

  13. Olsen J, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen M, Mann P (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell (127):635–648.

    Article  CAS  PubMed  Google Scholar 

  14. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen L, von Mering, C (2011) The string database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res (39):D561–D568

    Article  CAS  PubMed  Google Scholar 

  15. Fisher RA (1921) On the probable error of a coefficient of correlation deduced from a small sample. Metron (1):03–32

    Google Scholar 

  16. Hand DJ, Yu K (2001) Idiot’s bayes: not so stupid after all? Int Stat Rev (69):385–398

    Google Scholar 

  17. Prasad T, et al. (2009) Human protein reference database – 2009 update. Nucleic Acids Res (37):D767–772

    Article  CAS  Google Scholar 

  18. Gnad F, Ren S, Cox J, Olsen J, Macek B, Oroshi M, Mann M (2007) Phosida (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol (8):R250

    Google Scholar 

  19. Hornbeck P, Chabra I, Kornhauser J, Skrzypek E, Zhang B (2004) Phosphosite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics (4):1551–1561

    Article  CAS  PubMed  Google Scholar 

  20. Dinkel H, Chica C, Via A, Gould C, Jensen L, Gibson T, Diella F (2010) Phospho.elm: a database of phosphorylation sites – update 2011. Nucleic Acids Res (39):D261–D267

    Google Scholar 

  21. Huang H, Lee T, Tzeng S, Horng J (2005) Kinasephos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res (33):W226–W229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang H, Lee T, Tzeng S, Wu L, Horng J et al. (2005) Incorporating hidden Markov models for identifying protein kinase-specific phosphorylation sites. J Comput Chem (26):1032–1041

    Article  CAS  PubMed  Google Scholar 

  23. Senawongse P, Dalby A, Yang Z (2005) Predicting the phosphorylation sites using hidden markov models and machine learning methods. J Chem Inf Model (45):1147–1152

    Article  CAS  PubMed  Google Scholar 

  24. Satyanarayana A (1982) A unified formula for analysis of some network reliability problems. IEEE Trans Reliab (R31):23–31

    Article  Google Scholar 

  25. Satyanarayana A, Prabhakar A (1978) New topological formula and rapid algorithm for reliability analysis of complex networks. IEEE Trans Reliability (R-27):82–100

    Google Scholar 

  26. Satyanarayana A, Chan M (1983) Network reliability and the factoring theorem, Networks (13):107–120

    Article  Google Scholar 

  27. Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat (3):119–131

    Google Scholar 

  28. Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and related properties of random sequences and processes. Springer-Verlag, New York

    Book  Google Scholar 

  29. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin D, Rush J, Lauffenburger D, White F (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteom (4):1240–1250

    Article  CAS  Google Scholar 

  30. Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R (2004) The international protein index: an integrated database for proteomics experiments. Proteomics (4):1985–1988

    Article  CAS  PubMed  Google Scholar 

  31. Lee TY, Hsu J, Chang W, Huang H (2010) Regphos: a system to explore the protein kinase-substrate phosphorylation network in humans. Nucleic Acids Res (39):D777–D787

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics (4):1633–1649

    Article  CAS  PubMed  Google Scholar 

  33. Guoa L, Kozloskya C, Ericssona L, Daniela TO, Cerrettia DP, Johnson R (2003) Studies of ligand-induced site-specific phosphorylation of epidermal growth factor receptor. J Am Soc Mass Spectrom (14):1022–1031

    Article  Google Scholar 

  34. Saito T, Okada S, Ohshima K, Yamada E, Sato M, Uehara Y, Shimizu H, Pessin J, Mori, M (2004) Differential activation of epidermal growth factor (egf) receptor downstream signaling pathways by betacellulin and egf. Endocrinology (145): 4232–4243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapesh Santra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Santra, T., Kholodenko, B., Kolch, W. (2012). An Integrated Bayesian Framework for Identifying Phosphorylation Networks in Stimulated Cells. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_3

Download citation

Publish with us

Policies and ethics