Skip to main content

Receptor Dynamics in Signaling

  • Conference paper
  • First Online:
  • 3050 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

Reliable inter- and intracellular communication is central to both the development and the integrity of multicellular organisms. Key mediators of these processes are cell surface receptors that perceive and convert extracellular cues to trigger intracellular signaling networks and ultimately a phenotypic response. Deregulation of signal transduction leads to a variety of diseases, and aberrations in receptor proteins are very common in various cancer types. Therefore, cell surface receptors have been established as major targets in drug discovery. However, in order to efficiently apply therapeutics, it is crucial to gain knowledge about design principles of receptor signaling. In this chapter, we will discuss signal transduction at the receptor level for examples from different receptor classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    CAS  PubMed  Google Scholar 

  2. Kitano H (2002) Computational systems biology. Nature 420(6912):206–210

    CAS  PubMed  Google Scholar 

  3. Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22(10):1253–1259

    CAS  PubMed  Google Scholar 

  4. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a systems biology disease. Biosystems 83(2–3):81–90

    CAS  PubMed  Google Scholar 

  5. Wiley HS, Cunningham DD (1981) A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell 25(2):433–440

    CAS  PubMed  Google Scholar 

  6. Wiley HS, Shvartsman SY, Lauffenburger DA (2003) Computational modeling of the EGF–receptor system: a paradigm for systems biology. Trends Cell Biol 13(1):43–50

    CAS  PubMed  Google Scholar 

  7. Vilar JM, Jansen R, Sander C (2006) Signal processing in the TGF-beta superfamily ligand-receptor network. PLoS Comput Biol 2(1):e3

    PubMed  PubMed Central  Google Scholar 

  8. Becker V, Schilling M, Bachmann J, Baumann U, Raue A, Maiwald T, Timmer J, Klingmüller U (2010) Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 328(5984):1404–1408

    CAS  PubMed  Google Scholar 

  9. Baker SJ, Rane SG, Reddy EP (2007) Hematopoietic cytokine receptor signaling. Oncogene 26(47):6724–6737

    CAS  PubMed  Google Scholar 

  10. O’Shea JJ, Murray PJ (2008) Cytokine signaling modules in inflammatory responses. Immunity 28(4):477–487

    PubMed  PubMed Central  Google Scholar 

  11. Longmore GD, Lodish HF (1991) An activating mutation in the murine erythropoietin receptor induces erythroleukemia in mice: a cytokine receptor superfamily oncogene. Cell 67(6): 1089–1102

    CAS  PubMed  Google Scholar 

  12. Arcasoy MO, Degar BA, Harris KW, Forget BG (1997) Familial erythrocytosis associated with a short deletion in the erythropoietin receptor gene. Blood 89(12):4628–4635

    CAS  PubMed  Google Scholar 

  13. Forbes LV, Gale RE, Pizzey A, Pouwels K, Nathwani A, Linch DC (2002) An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. Oncogene 21(39):5981–5989

    CAS  PubMed  Google Scholar 

  14. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A, Tsuboi K, Nitta M, Miyazaki H, Iida S, Ueda R (2004) Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 103(11):4198–4200

    CAS  PubMed  Google Scholar 

  15. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148

    CAS  PubMed  Google Scholar 

  16. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L, Ariola C, Fodale V, Clappier E, Paoloni F, Martinelli S, Fragale A, Sanchez M, Tavolaro S, Messina M, Cazzaniga G, Camera A, Pizzolo G, Tornesello A, Vignetti M, Battistini A, Cave H, Gelb BD, Renauld JC, Biondi A, Constantinescu SN, Foa R, Tartaglia M (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 205(4):751–758

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Richmond TD, Chohan M, Barber DL (2005) Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 15(3):146–155

    CAS  PubMed  Google Scholar 

  18. Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83(1):59–67

    CAS  PubMed  Google Scholar 

  19. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283(5404):987–990

    CAS  PubMed  Google Scholar 

  20. Yoshimura A, D’Andrea AD, Lodish HF (1990) Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc Natl Acad Sci USA 87(11):4139–4143

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Neumann D, Wikström L, Watowich SS, Lodish HF (1993) Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes. J Biol Chem 268(18):13639–13649

    CAS  PubMed  Google Scholar 

  22. Hilton DJ, Watowich SS, Murray PJ, Lodish HF (1995) Increased cell surface expression and enhanced folding in the endoplasmic reticulum of a mutant erythropoietin receptor. Proc Natl Acad Sci USA 92(1):190–194

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ketteler R, Heinrich AC, Offe JK, Becker V, Cohen J, Neumann D, Klingmüller U (2002) A functional green fluorescent protein-erythropoietin receptor despite physical separation of JAK2 binding site and tyrosine residues. J Biol Chem 277(29):26547–26552

    CAS  PubMed  Google Scholar 

  24. Becker V, Sengupta D, Ketteler R, Ullmann GM, Smith JC, Klingmüller U (2008) Packing density of the erythropoietin receptor transmembrane domain correlates with amplification of biological responses. Biochemistry 47(45):11771–11782

    CAS  PubMed  Google Scholar 

  25. Walrafen P, Verdier F, Kadri Z, Chretien S, Lacombe C, Mayeux P (2005) Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105(2):600–608

    CAS  PubMed  Google Scholar 

  26. Gross AW, Lodish HF (2006) Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 281(4):2024–2032

    CAS  PubMed  Google Scholar 

  27. Behar M, Hao N, Dohlman HG, Elston TC (2008) Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Comput Biol 4(10):e1000197

    PubMed  PubMed Central  Google Scholar 

  28. Wang X, Lupardus P, Laporte SL, Garcia KC (2009) Structural biology of shared cytokine receptors. Annu Rev Immunol 27:29–60

    PubMed  PubMed Central  Google Scholar 

  29. Shankaran H, Wiley HS, Resat H (2007) Receptor downregulation and desensitization enhance the information processing ability of signalling receptors. BMC Syst Biol 1:48

    PubMed  PubMed Central  Google Scholar 

  30. Shankaran H, Resat H, Wiley HS (2007) Cell surface receptors for signal transduction and ligand transport: a design principles study. PLoS Comput Biol 3(6):e101

    PubMed  PubMed Central  Google Scholar 

  31. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamorte L, Park M (2001) The receptor tyrosine kinases: role in cancer progression. Surg Oncol Clin N Am 10(2):271–288, viii

    CAS  PubMed  Google Scholar 

  33. Grimminger F, Schermuly RT, Ghofrani HA (2010) Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 9(12):956–970

    CAS  PubMed  Google Scholar 

  34. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    CAS  PubMed  Google Scholar 

  35. Holbro T, Hynes NE (2004) ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44:195–217

    CAS  PubMed  Google Scholar 

  36. Wells A, Welsh JB, Lazar CS, Wiley HS, Gill GN, Rosenfeld MG (1990) Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247(4945):962–964

    CAS  PubMed  Google Scholar 

  37. Wiley HS, Herbst JJ, Walsh BJ, Lauffenburger DA, Rosenfeld MG, Gill GN (1991) The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem 266(17):11083–11094

    CAS  PubMed  Google Scholar 

  38. Decker SJ (1990) Epidermal growth factor and transforming growth factor-alpha induce differential processing of the epidermal growth factor receptor. Biochem Biophys Res Commun 166(2):615–621

    CAS  PubMed  Google Scholar 

  39. French AR, Tadaki DK, Niyogi SK, Lauffenburger DA (1995) Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem 270(9):4334–4340

    CAS  PubMed  Google Scholar 

  40. Reddy CC, Wells A, Lauffenburger DA (1998) Comparative mitogenic potencies of EGF and TGF alpha and their dependence on receptor-limitation versus ligand-limitation. Med Biol Eng Comput 36(4):499–507

    CAS  PubMed  Google Scholar 

  41. Reddy CC, Niyogi SK, Wells A, Wiley HS, Lauffenburger DA (1996) Engineering epidermal growth factor for enhanced mitogenic potency. Nat Biotechnol 14(13):1696–1699

    CAS  PubMed  Google Scholar 

  42. Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B, Lauffenburger DA (2002) Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”. Nat Biotechnol 20(9):908–913

    CAS  PubMed  Google Scholar 

  43. Fallon EM, Liparoto SF, Lee KJ, Ciardelli TL, Lauffenburger DA (2000) Increased endosomal sorting of ligand to recycling enhances potency of an interleukin-2 analog. J Biol Chem 275(10):6790–6797

    CAS  PubMed  Google Scholar 

  44. Stoscheck CM, Carpenter G (1984) Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts. J Cell Biol 98(3): 1048–1053

    CAS  PubMed  Google Scholar 

  45. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714

    CAS  PubMed  Google Scholar 

  46. Ikushima H, Miyazono K (2010) TGF-beta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424

    CAS  PubMed  Google Scholar 

  47. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421

    PubMed  Google Scholar 

  48. Mitchell H, Choudhury A, Pagano RE, Leof EB (2004) Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15(9):4166–4178

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zuo W, Chen YG (2009) Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell 20(3):1020–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zi Z, Klipp E (2007) Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway. PLoS One 2(9):e936

    PubMed  PubMed Central  Google Scholar 

  51. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16(4):400–406

    CAS  PubMed  Google Scholar 

  52. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102(8):2760–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rappoport JZ, Simon SM (2009) Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J Cell Sci 122(Pt 9):1301–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J (2008) Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 5(2):79–89

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC (2000) Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 275(12):8806–8811

    CAS  PubMed  Google Scholar 

  56. Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105(2):692–697

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jänne PA, Gray N, Settleman J (2009) Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov 8(9):709–723

    PubMed  Google Scholar 

  58. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10(1):47–60

    CAS  PubMed  Google Scholar 

  59. Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol BioSyst 2(2):97–112

    CAS  PubMed  Google Scholar 

  60. Wang CJ, Levchenko A (2009) Microfluidics technology for systems biology research. Meth Mol Biol 500:203–219

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Helmholtz Alliance on Systems Biology (SBCancer) (VB, JT, UK), the German Federal Ministry of Education and Research (BMBF)-funded MedSys-Network LungSys (JT, UK), and the Excellence Initiative of the German Federal and State Governments (EXC 294) (JT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Becker, V., Timmer, J., Klingmüller, U. (2012). Receptor Dynamics in Signaling. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_18

Download citation

Publish with us

Policies and ethics