Skip to main content

Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications

  • Chapter
  • First Online:

Abstract

In this chapter, we present the basis of spatially resolved electron energy-loss spectroscopy (EELS). We mainly focus on the spectrum-imaging (SPIM) technique. After summarising the information found in an EELS spectrum, the instrumentation and analysis techniques relevant to the SPIM are thoroughly discussed. Finally, applications involving a broad range of energy losses, typically 1–1000 eV, are discussed, in order to illustrate the whole field of scientific domains which is thus opened.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although the terminology is not consistent in the literature, we will call interband transitions arising in the 13.5–100 eV range “semi-core losses”. The distinction with the core losses is blurred somewhat, but one practical difference is that the real part of ɛ is very close to unity for core losses and may depart from it significantly for semi-core losses.

  2. 2.

    When very high current is required, the first condenser can also be strongly excited, resulting in an additional contribution to the spherical aberration Cs, which has to be corrected by the Cs corrector. Note that the Cs corrector could be put after any of the lenses it has to correct, but obviously is put before the OL due to space limitations.

  3. 3.

    In some designs, such as the NION STEM (Krivanek et al. 2008), a coupling module can be added between the spectrometer and the projector system, serving various purposes: adapting the energy dispersion-dependent object point of the spectrometer, changing the camera length while keeping a constant HAADF angle (if the HAADF detector is between the projectors and the coupling module) and correcting third-order aberrations of the spectrometer.

  4. 4.

    To bin is the action of hardware summing different pixels at the time - then gaining readout speed, readout noise, but losing dynamics. In EELS, this is mostly done along the non-dispersing axis.

  5. 5.

    Although the acquisition format is of course non-negative integer, any subsequent treatment is likely to transform the data into real (possibly negative) numbers, so it is advisable to stick to a real number format.

  6. 6.

    We consider for simplicity here that all the inelastic signals are gathered in both types of experiment, which may of course not be the case in real experiments, as discussed at various places in this chapter.

  7. 7.

    It is worth noting the gain in current density available in a C 5-corrected machine, where the incident semi-angle can be as large as 50 mrd while maintaining sub nanometre spatial resolution.

  8. 8.

    With available currents in low-loss experiments increasing, CCD detectors might saturate so quickly that the limitation becomes the readout time rather than the acquisition time.

  9. 9.

    In the case of a planar system, the fact that the energy depends on the momentum is a relativistic effect. However, in other geometries (spheres (Ugarte et al. 1992) and cylinders (Kociak et al. 2000), for example), the energy is also momentum dependent in classical schemes.

  10. 10.

    In an EELS experiment, there is practically no way to distinguish between a gap and an exciton. What is experimentally measured is – at best! – the onset of a peak in the low-loss region. Whether it is a pure electronic gap or an exciton has to be determined through additional theoretical work.

Reference

  • H. Abe, H. Kurata, K. Hojou, Spatially resolved electron energy-loss spectroscopy of the surface excitations on the insulating fine particle of aluminum oxide. J. Phys. Soc. Jpn. 69, 1553–1557 (2000)

    Article  CAS  Google Scholar 

  • J. Aizpurua, A. Howie, F.J.G. De Abajo, Valence-electron energy loss near edges, truncated slabs, and junctions. Phys. Rev. B 60, 11149–11162 (1999)

    Article  CAS  Google Scholar 

  • P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex, Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature 375, 564–567 (1995)

    Article  CAS  Google Scholar 

  • R. Arenal, F. De La Peña, O. Stéphan, M. Walls, M. Tencé, A. Loiseau, C. Colliex, Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. Ultramicroscopy 109, 32–38 (2008).

    Article  CAS  Google Scholar 

  • R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005)

    Article  CAS  Google Scholar 

  • P.E. Batson, Simultaneous STEM imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)

    Article  CAS  Google Scholar 

  • P.E. Batson, Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982)

    Article  CAS  Google Scholar 

  • P.E. Batson, K.L. Kavanagh, J.M. Woodall, J.W. Mayer, Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys. Rev. Lett. 57, 2729–2732 (1986)

    Article  CAS  Google Scholar 

  • J.P.R. Bolton, M. Chen, Electron-energy-loss in multilayered slabs .2. parallel incidence. J. Phys. Condens. Matter 7, 3389–3403 (1995a)

    Article  CAS  Google Scholar 

  • J.P.R. Bolton, M. Chen, Electron energy loss in multilayered slabs. Ultramicroscopy 60, 247–263 (1995b)

    Article  CAS  Google Scholar 

  • N. Bonnet, N. Brun, C. Colliex, Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77, 97–112 (1999)

    Article  CAS  Google Scholar 

  • M. Bosman, V.J. Keast, J.L. Garcia-Munoz, A.J. D’alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)

    Article  CAS  Google Scholar 

  • M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007)

    Article  Google Scholar 

  • N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical-analysis using a scanning-transmission electron-microscope. Nature 366, 143–146 (1993)

    Article  CAS  Google Scholar 

  • J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, J.M. Rickman, Scanning transmission electron microscopy analysis of grain boundaries in creep-resistant yttrium- and lanthanum-doped alumina microstructures. J. Am. Ceram. Soc. 82, 2865–2870 (1999)

    Article  CAS  Google Scholar 

  • L. A. Bursill, P. A. Stadelmann, J. L. Peng, and S. Prawer. Surface plasmon observed for carbon nanotubes. Phys. Rev. B, 49:2882–2887, 1994.

    Article  CAS  Google Scholar 

  • M. Couillard, M. Kociak, O. Stephan, G.A. Botton, C. Colliex, Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies. Phys. Rev. B 76, 165131 (2007)

    Article  Google Scholar 

  • M. Couillard, A. Yurtsever, D.A. Muller, Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks. Phys. Rev. B 77, 085318 (2008)

    Google Scholar 

  • A.J. Craven, M. Mackenzie, A. Cerezo, T. Godfrey, P.H. Clifton, Spectrum imaging and three-dimensional atom probe studies of fine particles in a vanadium micro-alloyed steel. Mater. Sci. Technol. 24, 641–650 (2008)

    Article  CAS  Google Scholar 

  • FJG. De Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in Cherenkov radiation. Phys. Rev. B 69, 155420 (2004)

    Article  Google Scholar 

  • A. Dereux, C. Girard, J.C. Weeber, Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775–7789 (2000)

    Article  CAS  Google Scholar 

  • L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, P. Royer, Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008)

    Article  CAS  Google Scholar 

  • T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008)

    Article  Google Scholar 

  • R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, NY, 1986)

    Google Scholar 

  • S. Enouz, O. Stephan, J.L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7, 1856–1862 (2007)

    Article  CAS  Google Scholar 

  • S. Estrade, J. Arbiol, F. Peiro, I.C. Infante, F. Sanchez, J. Fontcuberta, F. De La Pena, M. Walls, C. Colliex, Cationic and charge segregation in La2/3Ca1/3MnO3 thin films grown on (001) and (110) SrTiO3. Appl. Phys. Lett. 93, 112505 (2008)

    Article  Google Scholar 

  • F. J. GarcÍa De Abajo, J. Aizpurua, Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873–15884 (1997)

    Article  Google Scholar 

  • F.J.G. Garcia de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008)

    Article  CAS  Google Scholar 

  • M.H. Gass, A.J. Papworth, R. Beanland, T.J. Bullough, P.R. Chalker, Mapping the effective mass of electrons in III-V semiconductor quantum confined structures. Phys. Rev. B 73, 035312 (2006)

    Article  Google Scholar 

  • A. Gloter, A. Douiri, M. Tence, C. Colliex, Improving energy resolution of EELS spectra: an alternative to the monochromator solution. Ultramicroscopy 96, 385–400 (2003)

    Article  CAS  Google Scholar 

  • A. Gloter, M. Zbinden, F. Guyot, F. Gaill, C. Colliex, TEM-EELS study of natural ferrihydrite from geological-biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004)

    Article  CAS  Google Scholar 

  • F. Goulhen, A. Gloter, F. Guyot, M. Bruschi, Cr(vi) detoxification by Desulfovibrio vulgaris strain Hildenborough: Microbe-metal interactions studies. Appl. Microbiol. Biotechnol. 71, 892–897 (2006)

    Article  CAS  Google Scholar 

  • J.A. Hunt, D.B. Williams, Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73 (1991)

    Article  CAS  Google Scholar 

  • J.A. Hunt, M.M. Disko, S.K. Behal, R.D. Leapman, Electron-energy-loss chemical imaging of polymer phases. Ultramicroscopy 58, 55–64 (1995)

    Article  CAS  Google Scholar 

  • C. Jeanguillaume, C. Colliex, Spectrum-image - the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252 (1989)

    Article  Google Scholar 

  • I.R. Khan, D. Cunningham, S. Lazar, D. Graham, W.E. Smith, D.W. McComb, A tem and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discuss. 132, 171–178 (2006)

    Article  CAS  Google Scholar 

  • K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)

    Article  CAS  Google Scholar 

  • M. Kociak, L. Henrard, O. Stephan, K. Suenaga, C. Colliex, Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Phys. Rev. B 61, 13936–13944 (2000)

    Article  CAS  Google Scholar 

  • M. Kociak, O. Stephan, L. Henrard, V. Charbois, A. Rothschild, R. Tenne, C. Colliex, Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys. Rev. Lett. 8707, 075501 (2001)

    Article  Google Scholar 

  • K. Imura, H. Okamoto, Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials. Bull. Chem. Soc. Jpn. 81, 659–675 (2008)

    Article  CAS  Google Scholar 

  • L.F. Kourkoutis, Y. Hotta, T. Susaki, H.Y. Hwang, D.A. Muller, Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4. Phys. Rev. Lett. 97, 256803 (2006)

    Google Scholar 

  • O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008)

    Article  CAS  Google Scholar 

  • P. Laquerriere, J. Michel, G. Balossier, and B. Chenais. Light elements quantification in stimulated cells cryosections studied by electron probe microanalysis. Micron, 33, 597–603, 2002.

    Article  CAS  Google Scholar 

  • R.D. Leapman, Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc.-Oxf. 210, 5–15 (2003)

    Article  CAS  Google Scholar 

  • R.D. Leapman, N.W. Rizzo, Towards single atom analysis of biological structures. Ultramicroscopy 78, 251–268 (1999)

    Article  CAS  Google Scholar 

  • R.D. Leapman, R.L. Ornberg, Quantitative electron-energy loss spectroscopy in biology. Ultramicroscopy 24, 251–268 (1988)

    Article  CAS  Google Scholar 

  • A.A. Lucas, J.P. Vigneron, Theory of electron energy loss spectroscopy from surfaces of anisotropic materials. Solid State Commun. 49, 327–330 (1984)

    Article  CAS  Google Scholar 

  • A.A. Lucas, J.P. Vigneron, S.E. Donnelly, J.C. Rife, Theoretical interpretation of the vacuum ultraviolet reflectance of liquid-helium and of the absorption-spectra of helium microbubbles in aluminum. Phys. Rev. B 28, 2485–2496 (1983)

    Google Scholar 

  • M. Mackenzie, A.J. Craven, C.L. Collins, Nanoanalysis of very fine VN precipitates in steel. Scripta Mater. 54, 1–5 (2006)

    Article  CAS  Google Scholar 

  • T. Manoubi, M. Tence, M.G. Walls, C. Colliex, Curve fitting methods for quantitative-analysis in electron-energy loss spectroscopy. Microsc. Microanal. Microstruct. 1, 23–39 (1990)

    Article  CAS  Google Scholar 

  • J.L. Maurice, D. Imhoff, J.P. Contoury, C. Colliex, Interfaces in 100 epitaxial heterostructures of perovskite oxides. Philos. Mag. 86, 2127–2146 (2006)

    Article  CAS  Google Scholar 

  • A.J. McGibbon, Inst. Phys. Conf. Ser. 119, 109 (1991)

    CAS  Google Scholar 

  • F. Morales, F.M.F. De Groot, O.L.J. Gijzeman, A. Mens, O. Stephan, B.M. Weckhuysen, Mn promotion effects in CO/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J. Catal. 230, 301–308 (2005)

    Article  CAS  Google Scholar 

  • P. Moreau, N. Brun, C.A. Walsh, C. Colliex, A. Howie, Relativistic effects in electron-energy-loss-spectroscopy observations of the Si/SiO2 interface plasmon peak. Phys. Rev. B 56, 6774–6781 (1997)

    Article  CAS  Google Scholar 

  • D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman, Atomic scale observations of metal-induced gap states at 222MgO/Cu interfaces. Phys. Rev. Lett. 80, 4741–4744 (1998)

    Article  CAS  Google Scholar 

  • D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)

    Article  CAS  Google Scholar 

  • D.A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)

    Article  CAS  Google Scholar 

  • D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp(2) and sp(3) states of carbon at subnanometer spatial-resolution. Nature 366, 725–727 (1993)

    Article  CAS  Google Scholar 

  • J. Nelayah, M. Kociak, O. Stephan, F.J.G. De Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)

    Article  CAS  Google Scholar 

  • F. Ouyang, P.E. Batson, M. Isaacson, Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992)

    Article  CAS  Google Scholar 

  • M.P. Oxley, E.C. Cosgriff, L.J. Allen, Nonlocality in imaging. Phys. Rev. Lett. 94, 203906 (2005)

    Article  CAS  Google Scholar 

  • B. Rafferty, L.M. Brown, Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B 58, 10326–10337 (1998)

    Article  CAS  Google Scholar 

  • A. Rivacoba, N. Zabala, J. Aizpurua, Image potential in scanning transmission electron microscopy. Prog. Surf. Sci. 65, 1–64 (2000)

    Article  CAS  Google Scholar 

  • L. Samet, D. Imhoff, J.L. Maurice, J.P. Contour, A. Gloter, T. Manoubi, A. Fert, C. Colliex, Eels study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions. Eur. Phys. J. B 34, 179–192 (2003)

    Article  CAS  Google Scholar 

  • B. Schaffer, G. Kothleitner, W. Grogger, EFTEM spectrum imaging at high-energy resolution. Ultramicroscopy 106, 1129–1138 (2006)

    Article  CAS  Google Scholar 

  • S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tence, C. Colliex, Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS. Ultramicroscopy 108, 346–357 (2008)

    Article  CAS  Google Scholar 

  • S. Schamm, G. Zanchi, Study of the dielectric properties near the band gap by VEELS: Gap measurement in bulk materials. Ultramicroscopy 96, 559–564 (2003)

    Article  CAS  Google Scholar 

  • J. Scott, P.J. Thomas, M. Mackenzie, S. McFadzean, J. Wilbrink, A.J. Craven, W.A.P. Nicholson, Ultramicroscopy 108, 1586 (2008)

    Article  CAS  Google Scholar 

  • A. Seepujak, U. Bangert, A.J. Harvey, P.M.F.J. Costa, M.L.H. Green, Redshift and optical anisotropy of collective pi-volume modes in multiwalled carbon nanotubes. Phys. Rev. B 74, 075402 (2006)

    Google Scholar 

  • L.J. Sherry, R.C. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006)

    Article  CAS  Google Scholar 

  • S.-Y. Chen, A. Gloter, A. Zobelli, L. Wang, C.-H. Chen, C. Colliex, Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process. Phys. Rev. B 79, 104103 (2009)

    Article  Google Scholar 

  • O. Stephan, D. Taverna, M. Kociak, K. Suenaga, L. Henrard, C. Colliex, Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: from multiwalled to single-walled nanotubes. Phys. Rev. B 66, 155422 (2002)

    Article  Google Scholar 

  • O. Stephan, M. Kociak, L. Henrard, K. Suenaga, A. Gloter, M. Tence, E. Sandre, C. Colliex, Electron energy-loss spectroscopy on individual nanotubes. J. Electron Spectrosc. Relat. Phenom. 114, 209–217 (2001)

    Article  Google Scholar 

  • O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994)

    Article  CAS  Google Scholar 

  • T. Stockli, J.M. Bonard, A. Chatelain, Z.L. Wang, P. Stadelmann, Interference and interactions in multiwall nanotubes. Physica-B 280, 4844–4847 (2000)

    Google Scholar 

  • K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)

    Article  CAS  Google Scholar 

  • D. Taverna, M. Kociak, O. Stephan, A. Fabre, E. Finot, B. Decamps, C. Colliex. Probing physical properties of confined fluids within individual nanobubbles. Phys. Rev. Lett. 1, 035301 (2008)

    Article  Google Scholar 

  • D. Taverna, M. Kociak, V. Charbois, L. Henrard, Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Phys. Rev. B 66, 235419 (2002)

    Article  Google Scholar 

  • D. Taverna, M. Kociak, V. Charbois, L. Henrard, O. Stephan, C. Colliex, Simulations of electron energy-loss spectra of an electron passing near a locally anisotropic nanotube. J. Electron Spectrosc. Relat. Phenom. 129, 293–298 (2003)

    Article  CAS  Google Scholar 

  • M. Tencé, H. Pinna, T. Birou, L. Guiraud, A. Mayet, C. Pertel, V. Serin, C. Colliex, in Proceedings of IMC 16, H. Ichinose, T. Sasaki, ed. (2006) (Publication Committee of IMC16) pp. 824–825

    Google Scholar 

  • M. Tence, M. Quartuccio, C. Colliex, PEELS compositional profiling and mapping at nanometer spatial-resolution. Ultramicroscopy 58, 42–54 (1995)

    Article  CAS  Google Scholar 

  • D. Ugarte, C. Colliex, P. Trebbia, Surface-plasmon and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992)

    Article  Google Scholar 

  • M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)

    Article  CAS  Google Scholar 

  • J. Verbeeck, S. Van Aert, Model based quantification of EELS spectra. Ultramicroscopy 101, 207–224 (2004)

    Article  CAS  Google Scholar 

  • C.A. Walsh, J. Yuan, L.M. Brown, A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy. Philos. Mag. A 80, 1507–1543 (2000)

    Article  CAS  Google Scholar 

  • Z.L. Wang, Valence electron excitations and plasmon oscillations in thin films, surfaces, interfaces and small particles (vol 27, p 265, 1996). Micron 28, 505–506 (1997)

    Article  Google Scholar 

  • S. Yakovlev, M. Libera, Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Micron 39, 734–740 (2008)

    Article  CAS  Google Scholar 

  • N. Yamamoto, K. Araya, F.J.G. De Abajo, Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 6420, 205419 (2001)

    Article  Google Scholar 

  • N. Zabala, A. Rivacoba, P.M. Echenique, Coupling effects in the excitations by an external electron beam near close particles. Phys. Rev. B 56, 7623–7635 (1997)

    Article  CAS  Google Scholar 

  • N. Zabala, A. Rivacoba, P.M. Echenique, Energy loss of electrons travelling through cylindrical holes. Surf. Sci. 209, 465–480 (1989)

    Article  CAS  Google Scholar 

  • Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973–975 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank J. Nelayah and M. Couillard for providing us with the raw data needed for some figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kociak, M., Stéphan, O., Walls, M.G., Tencé, M., Colliex, C. (2011). Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications. In: Pennycook, S., Nellist, P. (eds) Scanning Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7200-2_4

Download citation

Publish with us

Policies and ethics