Skip to main content

The Principles of STEM Imaging

  • Chapter
  • First Online:
Book cover Scanning Transmission Electron Microscopy

Abstract

The principles underlying imaging in the scanning transmission electron microscope are described. Particular focus is made on bright-field and annular dark-field imaging modes to illustrate the difference between coherent and incoherent imaging. In the case of annular dark-field imaging, the effects of dynamical diffraction and thermal diffuse scattering are discussed. The extension to three-dimensional imaging by optical sectioning is included, with particular reference to resolution limits and the bounds of transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G. Ade, On the incoherent imaging in the scanning transmission electron microscope. Optik 49, 113–116 (1977)

    Google Scholar 

  • L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003)

    Article  CAS  Google Scholar 

  • A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997)

    CAS  Google Scholar 

  • G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist, Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos. Trans. R. Soc. Lond. A 367, 3825–3844 (2009)

    Article  CAS  Google Scholar 

  • A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. 103, 3044–3048 (2006)

    Article  CAS  Google Scholar 

  • N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993)

    Article  CAS  Google Scholar 

  • E.C. Cosgriff, A.J. D’Alfonso, L.J. Allen, S.D. Findlay, A.I. Kirkland, P.D. Nellist, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part I: Elastic scattering. Ultramicroscopy 108, 1558–1566 (2008)

    Article  CAS  Google Scholar 

  • J.M. Cowley, Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969)

    Article  Google Scholar 

  • J.M. Cowley, Coherent interference in convergent-beam electron diffraction & shadow imaging. Ultramicroscopy 4, 435–450 (1979)

    Article  CAS  Google Scholar 

  • J.M. Cowley, Coherent interference effects in SIEM and CBED. Ultramicroscopy 7, 19–26 (1981)

    Article  CAS  Google Scholar 

  • A.V. Crewe, The physics of the high-resolution STEM. Rep. Progr. Phys. 43, 621–639 (1980)

    Article  CAS  Google Scholar 

  • A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, Electron gun using a field emission source. Rev. Sci. Instrum. 39, 576–583 (1968)

    Article  Google Scholar 

  • A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393 (1970)

    Article  CAS  Google Scholar 

  • A.J. D’Alfonso, E.C. Cosgriff, S.D. Findlay, G. Behan, A.I. Kirkland, P.D. Nellist, L.J. Allen, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part II: Inelastic scattering. Ultramicroscopy 108, 1567–1578 (2008)

    Article  Google Scholar 

  • N. de Jonge, R. Sougrat, B.M. Northan, S.J. Pennycook, Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16, 54–63 (2010)

    Article  Google Scholar 

  • N.H. Dekkers, H. de Lang, Differential phase contrast in a STEM. Optik 41, 452–456 (1974)

    Google Scholar 

  • C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electron excitations. Ultramicroscopy 60, 49–70 (1995)

    Article  CAS  Google Scholar 

  • A.M. Donald, A.J. Craven, A study of grain boundary segregation in Cu–Bi alloys using STEM. Philos. Mag. A 39, 1–11 (1979)

    Article  CAS  Google Scholar 

  • C. Dwyer, J. Etheridge, Scattering of Å-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)

    Article  CAS  Google Scholar 

  • H.M.L. Faulkner, J.M. Rodenburg, Moveable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004)

    Article  CAS  Google Scholar 

  • S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)

    Article  CAS  Google Scholar 

  • B.R. Frieden, Optical transfer of the three-dimensional object. J. Opt. Soc. Am. 57, 36–41 (1967)

    Google Scholar 

  • S.J. Haigh, H. Sawada, A.I. Kirkland, Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys. Rev. Lett. 103, 126101 (2009)

    Article  Google Scholar 

  • P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)

    Article  CAS  Google Scholar 

  • A. Howie, Image contrast and localised signal selection techniques. J. Microsc. 117, 11–23 (1979)

    Article  Google Scholar 

  • C.J. Humphreys, E.G. Bithell, in Electron Diffraction Techniques, vol. 1, ed. by J.M. Cowley (OUP, New York, NY, 1992), pp. 75–151

    Google Scholar 

  • D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. (Lond.) Ser. A 441, 261–281 (1993)

    Article  Google Scholar 

  • D.E. Jesson, S.J. Pennycook, Incoherent imaging of crystals using thermally scattered electrons. Proc. Roy. Soc. (Lond.) Ser. A 449, 273–293 (1995)

    Article  CAS  Google Scholar 

  • E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)

    Article  Google Scholar 

  • R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr. A 47, 267–278 (1991)

    Article  Google Scholar 

  • R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)

    Article  Google Scholar 

  • K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya, New scheme for calculation of annular dark-field STEM image including both elastically diffracted and TDS wave. J. Electron Microsc. 50, 157–162 (2001)

    Article  CAS  Google Scholar 

  • D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)

    Article  CAS  Google Scholar 

  • P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)

    Article  Google Scholar 

  • P.D. Nellist, B.C. McCallum, J.M. Rodenburg, Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995)

    Article  CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, Accurate structure determination from image reconstruction in ADF STEM. J. Microsc. 190, 159–170 (1998)

    Article  CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, Subangstrom resolution by underfocussed incoherent transmission electron microscopy. Phys. Rev. Lett. 81, 4156–4159 (1998)

    Article  CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)

    Article  CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imag. Electron Phys. 113, 148–203 (2000)

    Google Scholar 

  • P.D. Nellist, J.M. Rodenburg, Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)

    Article  Google Scholar 

  • S.J. Pennycook, Z-contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989)

    Article  Google Scholar 

  • S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)

    Article  CAS  Google Scholar 

  • D.D. Perovic, C.J. Rossouw, A. Howie, Imaging elastic strain in high-angle annular dark-field scanning transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993)

    Article  CAS  Google Scholar 

  • Lord Rayleigh, On the theory of optical images with special reference to the microscope. Philos. Mag. 42(5), 167–195 (1896)

    Google Scholar 

  • J.M. Rodenburg, R.H.T. Bates, The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. Lond. A 339, 521–553 (1992)

    Article  Google Scholar 

  • H. Rose, Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436 (1974)

    Google Scholar 

  • J.C.H. Spence, Experimental High-Resolution Electron Microscopy (OUP, New York, NY, 1988)

    Google Scholar 

  • J.C.H. Spence, Convergent-beam nanodiffraction, in-line holography and coherent shadow imaging. Optik 92, 57–68 (1992)

    Google Scholar 

  • J.C.H. Spence, J.M. Cowley, Lattice imaging in STEM. Optik 50, 129–142 (1978)

    CAS  Google Scholar 

  • M.M.J. Treacy, J.M. Gibson, Atomic contrast transfer in annular dark-field images. J. Microsc. 180, 2–11 (1995)

    Article  Google Scholar 

  • M.M.J. Treacy, A. Howie, C.J. Wilson, Z contrast imaging of platinum and palladium catalysts. Philos. Mag. A 38, 569–585 (1978)

    Article  CAS  Google Scholar 

  • K. Van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)

    Article  Google Scholar 

  • P. Wang, G. Behan, M. Takeguchi, A. Hashimoto, K. Mitsuishi, M. Shimojo, A.I. Kirkland, P.D. Nellist, Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys. Rev. Lett. 104, 200801 (2010)

    Google Scholar 

  • Z. Yu, D.A. Muller, J. Silcox, Study of strain fields at a-Si/c-Si interface. J. Appl. Phys. 95, 3362–3371 (2004)

    Article  CAS  Google Scholar 

  • E. Zeitler, M.G.R. Thomson, Scanning transmission electron microscopy. Optik 31, 258–280 and 359–366 (1970)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the many colleagues and collaborators that have been involved in furthering our understanding of STEM imaging. P.D.N. acknowledges support from the Leverhulme Trust (F/08749/B), Intel Ireland, and the Engineering and Physical Sciences Research Council (EP/F048009/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Nellist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nellist, P.D. (2011). The Principles of STEM Imaging. In: Pennycook, S., Nellist, P. (eds) Scanning Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7200-2_2

Download citation

Publish with us

Policies and ethics