Skip to main content

Protein Expression Profile of Alzheimer’s Disease Mouse Model Generated by Difference Gel Electrophoresis (DIGE) Approach

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

Abstract

Alzheimer’s disease (AD) is a well-described neurological disorder characterized by the presence of a number of biological processes. Deposition of β-amyloid plaques in brain, one of the main features of AD pathology, was ­successfully modeled in the middle of the 1990s by a generation of the β-amyloid precursor protein (APP) transgenic mouse lines. The Thy1-APP751SL transgenic line, one of this “new generation” AD animal models, reproduces several ­characteristic features of Alzheimer`s disease such as Aβ peptide deposition, dystrophic neurite formation, and progressive neuronal death. A recently developed technique named difference gel electrophoresis (DIGE) made identification of qualitative and quantitative differences in protein expression between two biological samples considerably more sensitive, straightforward and reliable. Application of DIGE allows the study of the AD-related proteome to progress with a new level of confidence. Here, we describe application of a novel DIGE technique coupled with MS protein identification to the generation of a distinct AD-related protein expression profile using cortices of 14-month-old ­Thy1-APP751SL transgenic mice. Using this approach, we identified 15 ­different proteins which are significantly regulated in AD pathology. Resulting AD-related proteome comprises a number of proteins that were already known to be ­implicated in AD and neurodegeneration, as well as several proteins for which relationship with AD had not been shown before. Identified proteins were grouped according to their key biological pathways. Acquired data are discussed in the view of existing literature on the AD proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afagh, A., Cummings, B. J., Cribbs, D. H., Cotman, C. W., & Tenner, A. J. (1996). Localization and cell association of C1q in Alzheimer’s disease brain. Experimental Neurology, 138, 22–32.

    Article  PubMed  CAS  Google Scholar 

  • Baker, H., Grillo, M., & Margolis, F. L. (1989). Biochemical and immunocytochemical ­characterization of olfactory marker protein in the rodent central nervous system. The Journal of Comparative Neurology, 285, 246–261.

    Article  PubMed  CAS  Google Scholar 

  • Bales, K. R., Dodart, J. C., DeMattos, R. B., Holtzman, D. M., & Paul, S. M. (2002). Apolipoprotein E, amyloid, and Alzheimer disease. Molecular Interventions, 2, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., et al. (1999). Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 96, 15233–15238.

    Article  PubMed  CAS  Google Scholar 

  • Bigl, M., Bruckner, M. K., Arendt, T., Bigl, V., & Eschrich, K. (1999). Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. Journal of Neural Transmission, 106, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, V., Moussaoui, S., Czech, C., Touchet, N., Bonici, B., Planche, M., et al. (2003). Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Experimental Neurology, 184, 247–263.

    Article  PubMed  CAS  Google Scholar 

  • Boyett, K. W., DiCarlo, G., Jantzen, P. T., Jackson, J., O’Leary, C., Wilcock, D., et al. (2003). Increased fibrillar beta-amyloid in response to human clq injections into hippocampus and cortex of APP+PS1 transgenic mice. Neurochemical Research, 28, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Buiakova, O. I., Baker, H., Scott, J. W., Farbman, A., Kream, R., Grillo, M., et al. (1996). Olfactory marker protein (OMP) gene deletion causes altered physiological activity of ­olfactory sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 93, 9858–9863.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-­peptide-associated free radical oxidative stress. Free Radical Biology & Medicine, 32, 1050–1060.

    Article  CAS  Google Scholar 

  • Buxbaum, J. N., & Tagoe, C. E. (2000). The genetics of the amyloidoses. Annual Review of Medicine, 51, 543–569.

    Article  PubMed  CAS  Google Scholar 

  • Casserly, I., & Topol, E. (2004). Convergence of atherosclerosis and Alzheimer’s disease: Inflammation, cholesterol, and misfolded proteins. Lancet, 363, 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  • Castano, E. M., Roher, A. E., Esh, C. L., Kokjohn, T. A., & Beach, T. (2006). Comparative ­proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurological Research, 28, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., et al. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology & Medicine, 33, 562–571.

    Article  CAS  Google Scholar 

  • Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., et al. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. Journal of Neurochemistry, 82, 1524–1532.

    Article  PubMed  CAS  Google Scholar 

  • Chang, T. Y., Chang, C. C., Lin, S., Yu, C., Li, B. L., & Miyazaki, A. (2001). Roles of acyl-­coenzyme A: Cholesterol acyltransferase-1 and -2. Current Opinion in Lipidology, 12, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Charrier, E., Reibel, S., Rogemond, V., Aguera, M., Thomasset, N., & Honnorat, J. (2003). Collapsin response mediator proteins (CRMPs): Involvement in nervous system development and adult neurodegenerative disorders. Molecular Neurobiology, 28, 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. W., Dodia, C., Feinstein, S. I., Jain, M. K., & Fisher, A. B. (2000). 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. The Journal of Biological Chemistry, 275, 28421–28427.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, D. F., Nicoletti, V. G., Barresi, V., Conticello, S. G., Caruso, A., Tendi, E. A., et al. (1999). Structural features of rat GFAP gene and identification of a novel alternative transcript. Journal of Neuroscience Research, 56, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Cottrell, B. A., Galvan, V., Banwait, S., Gorostiza, O., Lombardo, C. R., Williams, T., et al. (2005). A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Annals of Neurology, 58, 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Dickey, C. A., Loring, J. F., Montgomery, J., Gordon, M. N., Eastman, P. S., & Morgan, D. (2003). Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. The Journal of Neuroscience, 23, 5219–5226.

    PubMed  CAS  Google Scholar 

  • Farrar, G., Altmann, P., Welch, S., Wychrij, O., Ghose, B., Lejeune, J., et al. (1990). Defective gallium-transferrin binding in Alzheimer disease and Down syndrome: Possible mechanism for accumulation of aluminium in brain. Lancet, 335, 747–750.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca, M. I., Zhou, J., Botto, M., & Tenner, A. J. (2004). Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. The Journal of Neuroscience, 24, 6457–6465.

    Article  PubMed  CAS  Google Scholar 

  • Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Galasko, D. (2005). Biomarkers for Alzheimer’s disease – clinical needs and application. Journal of Alzheimer’s Disease, 8, 339–346.

    PubMed  CAS  Google Scholar 

  • Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H., & Trojanowski, J. Q. (2000). Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons. Annals of Neurology, 48, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Glowinski, J., & Iversen, L. L. (1966). Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. Journal of Neurochemistry, 13, 655–669.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y., Hamajima, N., & Ihara, Y. (2000). Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry, 39, 4267–4275.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., & Hyman, B. T. (1997). APPSw ­transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no ­neuronal loss in CA1. Journal of Neuropathology and Experimental Neurology, 56, 965–973.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry, M. C., Soriano, F., McNamara, M., Page, K. J., Schenk, D., Games, D., et al. (1997). Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. The Journal of Neuroscience, 17, 7053–7059.

    PubMed  CAS  Google Scholar 

  • Kanninen, K., Goldsteins, G., Auriola, S., Alafuzoff, I., & Koistinaho, J. (2004). Glycosylation changes in Alzheimer’s disease as revealed by a proteomic approach. Neuroscience Letters, 367, 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A., Thiemann, M., Grabenbauer, M., Yoon, Y., McNiven, M. A., & Schrader, M. (2003). Dynamin-like protein 1 is involved in peroxisomal fission. The Journal of Biological Chemistry, 278, 8597–8605.

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Singh, S., Pirici, D., McGowan, E., Serneels, S., Ceuterick, C., Hardy, J., et al. (2005). Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. The American Journal of Pathology, 167, 527–543.

    Article  PubMed  CAS  Google Scholar 

  • Liao, L., Cheng, D., Wang, J., Duong, D. M., Losik, T. G., Gearing, M., et al. (2004). Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. The Journal of Biological Chemistry, 279, 37061–37068.

    Article  PubMed  CAS  Google Scholar 

  • Lubec, G., Krapfenbauer, K., & Fountoulakis, M. (2003). Proteomics in brain research: Potentials and limitations. Progress in Neurobiology, 69, 193.

    Article  PubMed  CAS  Google Scholar 

  • Lubec, G., Nonaka, M., Krapfenbauer, K., Gratzer, M., Cairns, N., & Fountoulakis, M. (1999). Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer’s disease brain is downregulated at the mRNA and dysregulated at the protein level. Journal of Neural Transmission. Supplementum, 57, 161–177.

    PubMed  CAS  Google Scholar 

  • Manevich, Y., Sweitzer, T., Pak, J. H., Feinstein, S. I., Muzykantov, V., & Fisher, A. B. (2002). 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proceedings of the National Academy of Sciences of the United States of America, 99, 11599–11604.

    Article  PubMed  CAS  Google Scholar 

  • Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D ­fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry, 382, 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, Y., Picciano, M., Malester, B., LaFrancois, J., Zehr, C., Daeschner, J. M., et al. (2001). Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. The American Journal of Pathology, 158, 1345–1354.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, W. H., & Yates, J. R. (2002). Shotgun proteomics and biomarker discovery. Disease Markers, 18, 99–105.

    PubMed  CAS  Google Scholar 

  • Messing, A., & Brenner, M. (2003). GFAP: Functional implications gleaned from studies of genetically engineered mice. Glia, 43, 87–90.

    Article  PubMed  Google Scholar 

  • Namekata, K., Imagawa, M., Terashi, A., Ohta, S., Oyama, F., & Ihara, Y. (1997). Association of transferrin C2 allele with late-onset Alzheimer’s disease. Human Genetics, 101, 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Orange, P., Hawkins, E., Story, C., & Fowler, S. (2000). Fluorescence 2-D difference gel electrophoresis. Life Science News, 5, 1–4.

    Google Scholar 

  • Piot-Grosjean, O., Cudennec, C. L., Dhenain, M., Delay-Goyet, P., & Delatour, B. (2004). 9th international conference on Alzheimer’s disease and related disorders. Philadelphia, USA, personal communication.

    Google Scholar 

  • Poduslo, J. F., Curran, G. L., Wengenack, T. M., Malester, B., Duff, K. (2001) Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 8, 555–567.

    Google Scholar 

  • Price, D. L., & Sisodia, S. S. (1994). Cellular and molecular biology of Alzheimer’s disease and animal models. Annual Review of Medicine, 45, 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L. A., Berezovska, O., Hyman, B. T., et al. (2001). Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nature Cell Biology, 3, 905–912.

    Article  PubMed  CAS  Google Scholar 

  • Ross, G. W., O’Callaghan, J. P., Sharp, D. S., Petrovitch, H., Miller, D. B., Abbott, R. D., et al. (2003). Quantification of regional glial fibrillary acidic protein levels in Alzheimer’s disease. Acta Neurologica Scandinavica, 107, 318–323.

    Article  PubMed  CAS  Google Scholar 

  • Schonberger, S. J., Edgar, P. F., Kydd, R., Faull, R. L., & Cooper, G. J. (2001). Proteomic analysis of the brain in Alzheimer’s disease: Molecular phenotype of a complex disease process. Proteomics, 1, 1519–1528.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., & Meri, S. (2003). Yin and Yang: Complement activation and regulation in Alzheimer’s disease. Progress in Neurobiology, 70, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Shin, S. J., Lee, S. E., Boo, J. H., Kim, M., Yoon, Y. D., Kim, S. I., et al. (2004). Profiling proteins related to amyloid deposited brain of Tg2576 mice. Proteomics, 4, 3359–3368.

    Article  PubMed  CAS  Google Scholar 

  • Sizova, D., Charbaut, E., Delalande, F., Poirier, F., High, A., Parker, F., et al. (2007). Proteomic analysis of brain tissue from an Alzheimer’s disease mouse model by two-dimensional difference gel electrophoresis. Neurobiology of Aging, 28, 357–570.

    Article  PubMed  CAS  Google Scholar 

  • Tabernero, A., Medina, A., Sanchez-Abarca, L. I., Lavado, E., & Medina, J. M. (1999). The effect of albumin on astrocyte energy metabolism is not brought about through the control of cytosolic Ca2+ concentrations but by free-fatty acid sequestration. Glia, 25, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Teunissen, C. E., Vente, J., Steinbusch, H. W., & Bruijn, C. D. (2002). Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiology of Aging, 23, 485–508.

    Article  PubMed  CAS  Google Scholar 

  • Todorich, B. M., & Connor, J. R. (2004). Redox metals in Alzheimer’s disease. Annals of the New York Academy of Sciences, 1012, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, T., Shiozaki, A., Kohno, R., Yoshizato, K., & Shimohama, S. (2002). Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochemical Research, 27, 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  • Ujiie, M., Dickstein, D. L., Carlow, D. A., & Jefferies, W. A. (2003). Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation, 10, 463–470.

    PubMed  CAS  Google Scholar 

  • van Beek, J., Elward, K., Gasque, P. (2003). Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann. NY Acad. Sci. 992, 56–71.

    Google Scholar 

  • Vercauteren, F. G., Clerens, S., Roy, L., Hamel, N., Arckens, L., Vandesande, F., et al. (2004). Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer’s disease-linked mutations in amyloid precursor protein and presenilin 1. Molecular Brain Research, 132, 241–259.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Phelan, S. A., Forsman-Semb, K., Taylor, E. F., Petros, C., Brown, A., et al. (2003). Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. The Journal of Biological Chemistry, 278, 25179–25190.

    Article  PubMed  CAS  Google Scholar 

  • Webster, S., Glabe, C., & Rogers, J. (1995). Multivalent binding of complement protein C1Q to the amyloid beta-peptide (A beta) promotes the nucleation phase of A beta aggregation. Biochemical and Biophysical Research Communications, 217, 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H. M., Vorbrodt, A. W., & Wegiel, J. (1997). Amyloid angiopathy and blood-brain barrier changes in Alzheimer’s disease. Annals of the New York Academy of Sciences, 826, 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, M. S. (2002). Therapeutic strategies for Alzheimer’s disease. Nature Reviews. Drug Discovery, 1, 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin, B., Brown, J., Theisler, C., & Silberman, S. (2004). The cellular biochemistry of ­cholesterol and statins: Insights into the pathophysiology and therapy of Alzheimer’s disease. CNS Drug Reviews, 10, 127–146.

    Article  PubMed  CAS  Google Scholar 

  • Yao, P. J., Zhu, M., Pyun, E. I., Brooks, A. I., Therianos, S., Meyers, V. E., et al. (2003). Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiology of Disease, 12, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Yasojima, K., Schwab, C., McGeer, E. G., & McGeer, P. L. (1999). Up-regulated production and activation of the complement system in Alzheimer’s disease brain. The American Journal of Pathology, 154, 927–936.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Anita Diu-Hercend for indispensable participation in all steps of this work, for fruitful discussions, for continuous help and encouragement, and for critical reading of the present manuscript. I am very grateful to Dr. Elodie Charbaut for her help in data treatment, evaluation, and representation. The author also sincerely acknowledges Dr. Veronique Blanchard and Dr. Philippe Delay-Goyet (AD mouse model), Emmanuelle Deretz, Sophie Bouvier, Dr. Fabienne Parker and Dr. Marc Duchesne (proteomics), and Dr. Francois Delalande, Dr. Anthony High, Dr. Florence Poirier, and Dr. Alain Van Dorsselaer (mass spectroscopy) for their contribution to the generation of experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Sizova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sizova, D. (2011). Protein Expression Profile of Alzheimer’s Disease Mouse Model Generated by Difference Gel Electrophoresis (DIGE) Approach. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_19

Download citation

Publish with us

Policies and ethics