Skip to main content

Genetic Studies of Schizophrenia

  • Chapter
  • First Online:
Book cover Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

Abstract

Both genetic and non-genetic risk factors are thought to contribute to liability for, and the development of, schizophrenia. Genetic epidemiology consistently supports the involvement of genes in liability. Molecular genetic studies have made slow progress in identifying specific liability genes, but recent progress suggests that a number of specific genes contributing to risk have been identified. These collective results are complex and inconsistent with a single common DNA variant in any gene influencing risk across human populations. No specific genetic variant influencing risk has yet been unambiguously identified. Contemporary approaches hold great promise to further elucidate liability genes and their potential inter-relationship. In order to understand why researchers have come to these conclusions, we will review what is known about the genetic epidemiology and molecular genetics of schizophrenia in some detail. We will also consider how this field of study informs our understanding of the potential structure of non-genetic risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addington, A. M., Gornick, M., Sporn, A. L., Gogtay, N., Greenstein, D., Lenane, M., et al. (2004). Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biological Psychiatry, 55, 976–980.

    Article  CAS  PubMed  Google Scholar 

  • Allen, N. C., Bagade, S., McQueen, M. B., Ioannidis, J. P., Kavvoura, F. K., Khoury, M. J., et al. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: The SzGene database. Nature Genetics, 40, 827–834.

    Article  CAS  PubMed  Google Scholar 

  • Altshuler, D., & Daly, M. (2007). Guilt beyond a reasonable doubt. Nature Genetics, 39, 813–815.

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis, S. E., Blouin, J. L., Curran, M., Luebbert, H., Kazazian, H. H., Dombroski, B. A., et al. (1996). Linkage and sib-pair analysis reveal a potential schizophrenia susceptibility gene on chromosome 13q32. American Journal of Human Genetics, 59, A210.

    Google Scholar 

  • Badner, J. A., & Gershon, E. S. (2002). Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Molecular Psychiatry, 7, 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, J. A., & Eichler, E. E. (2006). Primate segmental duplications: Crucibles of evolution, diversity and disease. Nature Reviews. Genetics, 7, 552–564.

    Article  CAS  PubMed  Google Scholar 

  • Bajestan, S. N., Sabouri, A. H., Nakamura, M., Takashima, H., Keikhaee, M. R., Behdani, F., et al. (2006). Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 383–386.

    Article  CAS  Google Scholar 

  • Bakker, S. C., Hoogendoorn, M. L., Hendriks, J., Verzijlbergen, K., Caron, S., Verduijn, W., et al. (2007). The PIP5K2A and RGS4 genes are differentially associated with deficit and non-deficit schizophrenia. Genes, Brain, and Behavior, 6, 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, S. C., Hoogendoorn, M. L., Selten, J. P., Verduijn, W., Pearson, P. L., Sinke, R. J., et al. (2004). Neuregulin 1: Genetic support for schizophrenia subtypes. Molecular Psychiatry, 9, 1061–1063.

    Article  CAS  PubMed  Google Scholar 

  • Baron, M. (1996). Linkage results in schizophrenia. American Journal of Medical Genetics, 67, 121–123.

    Article  CAS  PubMed  Google Scholar 

  • Benson, M. A., Newey, S. E., Martin-Rendon, E., Hawkes, R., & Blake, D. J. (2001). Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. The Journal of Biological Chemistry, 276, 24232–24241.

    Article  CAS  PubMed  Google Scholar 

  • Benzel, I., Bansal, A., Browning, B. L., Galwey, N. W., Maycox, P. R., McGinnis, R., et al. (2007). Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behavioral and Brain Functions, 3, 31.

    Article  PubMed  CAS  Google Scholar 

  • Breen, G., Prata, D., Osborne, S., Munro, J., Sinclair, M., Li, T., et al. (2006). Association of the dysbindin gene with bipolar affective disorder. The American Journal of Psychiatry, 163, 1636–1638.

    Article  PubMed  Google Scholar 

  • Brzustowicz, L. M., Hodgkinson, K. A., Chow, E. W. C., Honer, W. G., & Bassett, A. S. (2000). Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science, 288, 678–682.

    Article  CAS  PubMed  Google Scholar 

  • Brzustowicz, L. M., Honer, W. G., Chow, E. W. C., Little, D., Hodgkinson, K., & Bassett, A. (1999). Linkage of familial schizophrenia to chromosome 13q32. American Journal of Human Genetics, 65, 1096–1103.

    Article  CAS  PubMed  Google Scholar 

  • Budel, S., Shim, S. O., Feng, Z., Zhao, H., Hisama, F., & Strittmatter, S. M. (2008). No association between schizophrenia and polymorphisms of the PlexinA2 gene in Chinese Han Trios. Schizophrenia Research, 99, 365–366.

    Article  PubMed  Google Scholar 

  • Busfield, F., Duffy, D. L., Kesting, J. B., Walker, S. M., Lovelock, P., Good, D., et al. (2002). A genomewide search for type 2 diabetes-susceptibility genes in indigenous Australians. American Journal of Human Genetics, 70, 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Callicott, J. H., Straub, R. E., Pezawas, L., Egan, M. F., Mattay, V. S., Hariri, A. R., et al. (2005). Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 102, 8627–8632.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, T. D., Hennah, W., van Erp, T. G., Thompson, P. M., Lonnqvist, J., Huttunen, M., et al. (2005). Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Archives of General Psychiatry, 62, 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  • Cardno, A. G., & Gottesman, I. I. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to Star Wars Mx and functional genomics. American Journal of Medical Genetics, 97, 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Cardno, A. G., Marshall, E. J., Coid, B., Macdonald, A. M., Ribchester, T. R., Davies, N. J., et al. (1999). Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Archives of General Psychiatry, 56, 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.

    Article  CAS  PubMed  Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. S., Akula, N., Tera-Wadleigh, S. D., Schulze, T. G., Thomas, J., Potash, J. B., et al. (2004). Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Molecular Psychiatry, 9, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q. Y., Chen, Q., Feng, G. Y., Lindpaintner, K., Wang, L. J., Chen, Z. X., et al. (2007). Case-control association study of disrupted-in-schizophrenia-1 (DISC1) gene and schizophrenia in the Chinese population. Journal of Psychiatric Research, 41, 428–434.

    Article  PubMed  Google Scholar 

  • Chen, X., Dunham, C., Kendler, S., Wang, X., O’Neill, F. A., Walsh, D., et al. (2004). Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. American Journal of Medical Genetics, 129B, 23–26.

    Article  PubMed  Google Scholar 

  • Chen, X., Wang, X., Hossain, S., O’Neill, F. A., Walsh, D., van den Oord, E., et al. (2007). Interleukin 3 and schizophrenia: The impact of sex and family history. Molecular Psychiatry, 12, 273–282.

    CAS  PubMed  Google Scholar 

  • Chowdari, K. V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 11, 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  • Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., et al. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 13675–13680.

    Article  CAS  PubMed  Google Scholar 

  • Coon, H., Holik, J., Hoff, M., Reimherr, F., Wender, P., Myles-Worsley, M., et al. (1994). Analysis of chromosome 22 markers in nine schizophrenia pedigrees. American Journal of Medical Genetics, 54, 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Coraddu, F., Sawcer, S., D’Alfonso, S., Lai, M., Hensiek, A., Solla, E., et al. (2001). A genome screen for multiple sclerosis in Sardinian multiplex families. European Journal of Human Genetics, 9, 621–626.

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro, Q., Talkowski, M. E., Chowdari, K. V., Wood, J., Nimgaonkar, V., & Vallada, H. (2005). Association and linkage analysis of RGS4 polymorphisms with schizophrenia and bipolar disorder in Brazil. Genes, Brain, and Behavior, 4, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Corvin, A., McGhee, K. A., Murphy, K., Donohoe, G., Nangle, J. M., Schwaiger, S., et al. (2007). Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 949–953.

    Article  CAS  Google Scholar 

  • Corvin, A. P., Morris, D. W., McGhee, K., Schwaiger, S., Scully, P., Quinn, J., et al. (2004). Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs. 97362, as a potential susceptibility gene at the Neuregulin-1 locus. Molecular Psychiatry, 9, 208–213.

    Article  CAS  PubMed  Google Scholar 

  • Datta, S. R., McQuillin, A., Puri, V., Choudhury, K., Thirumalai, S., Lawrence, J., et al. (2007). Failure to confirm allelic and haplotypic association between markers at the chromosome 6p22.3 dystrobrevin-binding protein 1 (DTNBP1) locus and schizophrenia. Behavioural and Brain Functions, 3, 50.

    Article  CAS  Google Scholar 

  • DeLuca, V., Voineskos, D., Shinkai, T., Wong, G., & Kennedy, J. L. (2005). Untranslated region haplotype in dysbindin gene: Analysis in schizophrenia. Journal of Neural Transmission, 112, 1263–1267.

    Article  CAS  Google Scholar 

  • DeRosse, P., Hodgkinson, C. A., Lencz, T., Burdick, K. E., Kane, J. M., Goldman, D., et al. (2007). Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biological Psychiatry, 61, 1208–1210.

    Article  CAS  PubMed  Google Scholar 

  • Detera-Wadleigh, S. D., & McMahon, F. J. (2006). G72/G30 in schizophrenia and bipolar disorder: Review and meta-analysis. Biological Psychiatry, 60, 106–114.

    Article  CAS  PubMed  Google Scholar 

  • Duan, S., Du, J., Xu, Y., Xing, Q., Wang, H., Wu, S., et al. (2005). Failure to find association between TRAR4 and schizophrenia in the Chinese Han population. Journal of Neural Transmission, 113, 5.

    Google Scholar 

  • Duan, J., Martinez, M., Sanders, A. R., Hou, C., Burrell, G. J., Krasner, A. J., et al. (2007). DTNBP1 (dystrobrevin binding protein 1) and schizophrenia: Association evidence in the 3′ end of the gene. Human Heredity, 64, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Duan, J., Martinez, M., Sanders, A. R., Hou, C., Krasner, A. J., Schwartz, D. B., et al. (2005). Neuregulin 1 (NRG1) and schizophrenia: Analysis of a US family sample and the evidence in the balance. Psychological Medicine, 35, 1599–1610.

    Article  PubMed  Google Scholar 

  • Duan, J., Martinez, M., Sanders, A. R., Hou, C., Saitou, N., Kitano, T., et al. (2004). Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. American Journal of Human Genetics, 75, 624–638.

    Article  CAS  PubMed  Google Scholar 

  • Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 6917–6922.

    Article  CAS  PubMed  Google Scholar 

  • Ekelund, J., Hovatta, I., Parker, A., Paunio, T., Varilo, T., Martin, R., et al. (2001). Chromosome 1 loci in Finnish schizophrenia families. Human Molecular Genetics, 10, 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  • Ekelund, J., Lichtermann, D., Hovatta, I., Ellonen, P., Suvisaari, J., Terwilliger, J. D., et al. (2000). Genome-wide scan for schizophrenia in the Finnish population: Evidence for a locus on chromosome 7q22. Human Molecular Genetics, 9, 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  • Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nature Genetics, 36, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Fallin, M. D., Lasseter, V. K., Avramopoulos, D., Nicodemus, K. K., Wolyniec, P. S., McGrath, J. A., et al. (2005). Bipolar I disorder and schizophrenia: A 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. American Journal of Human Genetics, 77, 918–936.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, A. E., McGuffin, P., & Gottesman, I. I. (1987). Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Archives of General Psychiatry, 44, 634–640.

    Article  CAS  PubMed  Google Scholar 

  • Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738–744.

    Article  CAS  PubMed  Google Scholar 

  • Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.

    Article  CAS  PubMed  Google Scholar 

  • Freedman, R., Coon, H., Myles-Worsley, M., Orr-Urtreger, A., Olincy, A., Davis, A., et al. (1997). Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proceedings of the National Academy of Sciences of the United States of America, 94, 587–592.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, T., Iijima, Y., Kondo, H., Shizuno, T., Hori, H., Nakabayashi, T., et al. (2007). Failure to confirm an association between the PLXNA2 gene and schizophrenia in a Japanese population. Progress in Neuropsychopharmacology & Biological Psychiatry, 31, 873–877.

    Article  CAS  Google Scholar 

  • Fukui, N., Muratake, T., Kaneko, N., Amagane, H., & Someya, T. (2006). Supportive evidence for neuregulin 1 as a susceptibility gene for schizophrenia in a Japanese population. Neuroscience Letters, 396, 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Funke, B., Finn, C. T., Plocik, A. M., Lake, S., DeRosse, P., Kane, J. M., et al. (2004). Association of the DTNBP1 locus with schizophrenia in a U.S. population. American Journal of Human Genetics, 75, 891–898.

    Article  CAS  PubMed  Google Scholar 

  • Gejman, P. V., Sanders, A. R., Badner, J. A., Cao, Q., & Zhang, J. (2001). Linkage analysis of schizophrenia to chromosome 15. American Journal of Medical Genetics, 105, 789–793.

    Article  CAS  PubMed  Google Scholar 

  • Georgieva, L., Dimitrova, A., Ivanov, D., Nikolov, I., Williams, N. M., Grozeva, D., et al. (2008). Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biological Psychiatry, 64, 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, D. J., Hall, D., Miyakawa, T., Demars, S., Gogos, J. A., Karayiorgou, M., et al. (2003). Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proceedings of the National Academy of Sciences of the United States of America, 100, 8993–8998.

    Article  CAS  PubMed  Google Scholar 

  • Gill, M., Vallada, H., Collier, D., Sham, P., Holmans, P., Murray, R., et al. (1996). A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. American Journal of Medical Genetics, 67, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, T. E., Straub, R. E., Callicott, J. H., Hariri, A., Mattay, V. S., Bigelow, L., et al. (2006). The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology, 31, 2022–2032.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., et al. (2005). The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science, 307, 1434–1440.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, I. I. (1991). Schizophrenia genesis. New York: W H Freeman.

    Google Scholar 

  • Gottesman, I. I., & Shields, J. (1982). Schizophrenia: The epigenetic puzzle. Cambridge: Cambridge University Press.

    Google Scholar 

  • Green, E. K., Raybould, R., Macgregor, S., Gordon-Smith, K., Heron, J., Hyde, S., et al. (2005). Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Archives of General Psychiatry, 62, 642–648.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., Tang, W., Shi, Y., Huang, K., Xi, Z., Xu, Y., et al. (2006). RGS4 polymorphisms and risk of schizophrenia: An association study in Han Chinese plus meta-analysis. Neuroscience Letters, 406, 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., et al. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Natural Medicines, 12, 824–828.

    Article  CAS  Google Scholar 

  • Hall, D., Gogos, J. A., & Karayiorgou, M. (2004). The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes, Brain, and Behavior, 3, 240–248.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., et al. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 1477–1478.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. J., & Owen, M. J. (2003). Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet, 361, 417–419.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, L., Habita, C., Beressi, J. P., Delepine, M., Besse, C., Cambon-Thomsen, A., et al. (1994). Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature, 371, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, E., Liu, C., Badner, J. A., Bonner, T. I., Christian, S. L., Maheshwari, M., et al. (2003). Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. American Journal of Human Genetics, 72, 1131–1140.

    Article  CAS  PubMed  Google Scholar 

  • He, Z., Li, Z., Shi, Y., Tang, W., Huang, K., Ma, G., et al. (2007). The PIP5K2A gene and schizophrenia in the Chinese population – A case-control study. Schizophrenia Research, 94, 359–365.

    Article  PubMed  Google Scholar 

  • Hennah, W., Thomson, P., McQuillin, A., Bass, N., Loukola, A., Anjorin, A., et al. (2009). DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Molecular Psychiatry, 14, 865–873.

    Article  CAS  PubMed  Google Scholar 

  • Hennah, W., Varilo, T., Kestila, M., Paunio, T., Arajarvi, R., Haukka, J., et al. (2003). Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Human Molecular Genetics, 12, 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  • Heston, L. L. (1966). Psychiatric disorders in foster home reared children of schizophrenic mothers. The British Journal of Psychiatry, 112, 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkinson, C. A., Goldman, D., Jaeger, J., Persaud, S., Kane, J. M., Lipsky, R. H., et al. (2004). Disrupted in schizophrenia 1 (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. American Journal of Human Genetics, 75, 862–872.

    Article  CAS  PubMed  Google Scholar 

  • Holliday, E. G., Handoko, H. Y., James, M. R., McGrath, J. J., Nertney, D. A., Tirupati, S., et al. (2006). Association study of the dystrobrevin-binding gene with schizophrenia in Australian and Indian samples. Twin Research and Human Genetics, 9, 531–539.

    Article  PubMed  Google Scholar 

  • Hong, C. J., Hou, S. J., Yen, F. C., Liou, Y. J., & Tsai, S. J. (2006). Family-based association study between G72/G30 genetic polymorphism and schizophrenia. NeuroReport, 17, 1067–1069.

    Article  CAS  PubMed  Google Scholar 

  • Hovatta, I., Varilo, T., Suvisaari, J., Terwilliger, J. D., Olikainen, V., Arajärvi, R., et al. (1999). A genome-wide screen for schizophrenia genes in an isolated Finnish subpopulation suggesting multiple susceptibility loci. American Journal of Human Genetics, 65, 1114–1124.

    Article  CAS  PubMed  Google Scholar 

  • Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599–603.

    Article  CAS  PubMed  Google Scholar 

  • Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36, 949–951.

    Article  CAS  PubMed  Google Scholar 

  • Ide, M., Ohnishi, T., Murayama, M., Matsumoto, I., Yamada, K., Iwayama, Y., et al. (2006). Failure to support a genetic contribution of AKT1 polymorphisms and altered AKT signaling in schizophrenia. Journal of Neurochemistry, 99, 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., et al. (2004). Association of AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry, 56, 698–700.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., et al. (2005). No association of haplotype-tagging SNPs in TRAR4 with schizophrenia in Japanese patients. Schizophrenia Research, 78, 127–130.

    Article  PubMed  Google Scholar 

  • Ikeda, M., Takahashi, N., Saito, S., Aleksic, B., Watanabe, Y., Nunokawa, A., et al. (2008). Failure to replicate the association between NRG1 and schizophrenia using Japanese large sample. Schizophrenia Research, 101, 1–8.

    Article  PubMed  Google Scholar 

  • Ingason, A., Soeby, K., Timm, S., Wang, A. G., Jakobsen, K. D., Fink-Jensen, A., et al. (2006). No significant association of the 5′ end of neuregulin 1 and schizophrenia in a large Danish sample. Schizophrenia Research, 83, 1–5.

    Article  PubMed  Google Scholar 

  • International Schizophrenia Consortium. (2008). Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 237–241.

    Article  CAS  Google Scholar 

  • Ishiguro, H., Horiuchi, Y., Koga, M., Inada, T., Iwata, N., Ozaki, N., et al. (2007). RGS4 is not a susceptibility gene for schizophrenia in Japanese: Association study in a large case-control population. Schizophrenia Research, 89, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Iwata, N., Suzuki, T., Ikeda, M., Kitajima, T., Yamanouchi, Y., Inada, T., et al. (2004). No association with the neuregulin 1 haplotype to Japanese schizophrenia. Molecular Psychiatry, 9, 126–127.

    Article  CAS  PubMed  Google Scholar 

  • Jamra, R. A., Klein, K., Villela, A. W., Becker, T., Schulze, T. G., Schmael, C., et al. (2006). Association study between genetic variants at the PIP5K2A gene locus and schizophrenia and bipolar affective disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 663–665.

    Article  CAS  Google Scholar 

  • Joo, E. J., Lee, K. Y., Jeong, S. H., Ahn, Y. M., Koo, Y. J., & Kim, Y. S. (2006). The dysbindin gene (DTNBP1) and schizophrenia: No support for an association in the Korean population. Neuroscience Letters, 407, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Joo, E. J., Lee, K. Y., Jeong, S. H., Chang, J. S., Ahn, Y. M., Koo, Y. J., et al. (2007). Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neuroscience Letters, 418, 272–275.

    Article  CAS  PubMed  Google Scholar 

  • Kallmann, F. J. (1938). The genetics of schizophrenia. New York: Augustin.

    Google Scholar 

  • Kalsi, G., Chen, C. H., Smyth, C., Brynjolfsson, J., Sigmundson, T., Curtis, D., et al. (1996). Genetic linkage analysis in an Icelandic/British sample fails to exclude the putative chromosome 13q14.1-q32 schizophrenia susceptibility locus. American Journal of Human Genetics, 59, A388.

    Google Scholar 

  • Karayiorgou, M., Morris, M. A., Morrow, B., Shprintzen, R. J., Goldberg, R., Borrow, J., et al. (1995). Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proceedings of the National Academy of Sciences of the United States of America, 92, 7612–7616.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., & Diehl, S. R. (1993). The genetics of schizophrenia: A current, genetic-epidemiologic perspective. Schizophrenia Bulletin, 19, 261–285.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., Gruenberg, A. M., & Tsuang, M. T. (1986). A DSM-III family study of the nonschizophrenic psychotic disorders. The American Journal of Psychiatry, 143, 1098–1105.

    CAS  PubMed  Google Scholar 

  • Kendler, K. S., Kuhn, J. W., Prescott, C. A., Vittum, J., & Riley, B. (2005). The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: A replication. Archives of General Psychiatry, 62, 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., McGuire, M., Gruenberg, A. M., Spellman, M., O’Hare, A., & Walsh, D. (1993). The Roscommon family study: II. The risk of nonschizophrenic nonaffective psychoses in relatives. Archives of General Psychiatry, 50, 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., Straub, R. E., MacLean, C. J., & Walsh, D. (1996). Reflections on the evidence for a vulnerability locus for schizophrenia on chromosome 6p24-22. American Journal of Medical Genetics, 67, 124–126.

    Article  CAS  PubMed  Google Scholar 

  • Kety, S. S., Rosenthal, D., Wender, P. H., Schulsinger, F., & Jacobsen, B. (1968). The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. Journal of Psychiatric Research, 6, 345–362.

    Article  Google Scholar 

  • Kety, S. S., Wender, P. H., Jacobsen, B., Ingraham, L. J., Jansson, L., Faber, B., et al. (1994). Mental illness in the biological and adoptive relatives of schizophrenic adoptees: Replication of the Copenhagen study in the rest of Denmark. Archives of General Psychiatry, 51, 442–455.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. J., Park, H. J., Jung, K. H., Ban, J. Y., Ra, J., Kim, J. W., et al. (2008). Association study of polymorphisms between DISC1 and schizophrenia in a Korean population. Neuroscience Letters, 430, 60–63.

    Article  CAS  PubMed  Google Scholar 

  • Kirov, G., Ivanov, D., Williams, N. M., Preece, A., Nikolov, I., Milev, R., et al. (2004). Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biological Psychiatry, 55, 971–975.

    Article  CAS  PubMed  Google Scholar 

  • Kockelkorn, T. T., Arai, M., Matsumoto, H., Fukuda, N., Yamada, K., Minabe, Y., et al. (2004). Association study of polymorphisms in the 5′ upstream region of human DISC1 gene with schizophrenia. Neuroscience Letters, 368, 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Korostishevsky, M., Kaganovich, M., Cholostoy, A., Ashkenazi, M., Ratner, Y., Dahary, D., et al. (2004). Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biological Psychiatry, 56, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Korostishevsky, M., Kremer, I., Kaganovich, M., Cholostoy, A., Murad, I., Muhaheed, M., et al. (2006). Transmission disequilibrium and haplotype analyses of the G72/G30 locus: Suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 91–95.

    Article  CAS  Google Scholar 

  • Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. (1996). Parametric and nonparametric linkage analysis: A unified multipoint approach. American Journal of Human Genetics, 58, 1347–1363.

    CAS  PubMed  Google Scholar 

  • Laird, N. M., Horvath, S., & Xu, X. (2000). Implementing a unified approach to family-based tests of association. Genetic Epidemiology, 19(suppl 1), S36–S42.

    Article  PubMed  Google Scholar 

  • Laitinen, T., Daly, M. J., Rioux, J. D., Kauppi, P., Laprise, C., Petays, T., et al. (2001). A susceptibility locus for asthma-related traits on chromosome 7 revealed by genome-wide scan in a founder population. Nature Genetics, 28, 87–91.

    CAS  PubMed  Google Scholar 

  • Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Law, A. J., Kleinman, J. E., Weinberger, D. R., & Weickert, C. S. (2007). Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Human Molecular Genetics, 16, 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Lencz, T., Morgan, T. V., Athanasiou, M., Dain, B., Reed, C. R., Kane, J. M., et al. (2007). Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Molecular Psychiatry, 12, 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Levinson, D. F., Holmans, P. A., Laurent, C., Riley, B., Pulver, A. E., Gejman, P. V., et al. (2002). No major schizophrenia locus detected on chromosome 1q in a large multicenter sample. Science, 296, 739–741.

    Article  CAS  PubMed  Google Scholar 

  • Levinson, D. F., Wildenauer, D. B., Schwab, S. G., Albus, M., Hallmayer, J., Lerer, B., et al. (1996). Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. American Journal of Medical Genetics, 67, 580–594.

    Article  Google Scholar 

  • Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, I., et al. (2003). Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. American Journal of Human Genetics, 73, 34–48.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., & He, L. (2006). Association study of the G-protein signaling 4 (RGS4) and proline dehydrogenase (PRODH) genes with schizophrenia: A meta-analysis. European Journal of Human Genetics, 14, 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., & He, L. (2007). G72/G30 genes and schizophrenia: A systematic meta-analysis of association studies. Genetics, 175, 917–922.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Stefansson, H., Gudfinnsson, E., Cai, G., Liu, X., Murray, R. M., et al. (2004). Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Molecular Psychiatry, 9, 698–704.

    CAS  PubMed  Google Scholar 

  • Li, T., Zhang, F., Liu, X., Sun, X., Sham, P. C., Crombie, C., et al. (2005). Identifying potential risk haplotypes for schizophrenia at the DTNBP1 locus in Han Chinese and Scottish populations. Molecular Psychiatry, 10, 1037–1044.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England Journal of Medicine, 353, 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  • Lin, M. W., Curtis, D., Williams, N., Arranz, M., Nanko, S., Collier, D., et al. (1995). Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32. Psychiatric Genetics, 5, 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Lin, M. W., Sham, P., Hwu, H. G., Collier, D., Murray, R., & Powell, J. F. (1997). Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations. Human Genetics, 99, 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Lindholm, E., Ekholm, B., Balciuniene, J., Johansson, G., Castensson, A., Koisti, M., et al. (1999). Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. American Journal of Medical Genetics, 88, 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. L., Fann, C. S., Liu, C. M., Chang, C. C., Wu, J. Y., Hung, S. I., et al. (2006a). No association of G72 and D-amino acid oxidase genes with schizophrenia. Schizophrenia Research, 87, 15–20.

    Article  PubMed  Google Scholar 

  • Liu, Y. L., Fann, C. S., Liu, C. M., Chen, W. J., Wu, J. Y., Hung, S. I., et al. (2006b). A single nucleotide polymorphism fine mapping study of chromosome 1q42.1 reveals the vulnerability genes for schizophrenia, GNPAT and DISC1: Association with impairment of sustained attention. Biological Psychiatry, 60, 554–562.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. L., Fann, C. S., Liu, C. M., Wu, J. Y., Hung, S. I., Chan, H. Y., et al. (2006c). Absence of significant associations between four AKT1 SNP markers and schizophrenia in the Taiwanese population. Psychiatric Genetics, 16, 39–41.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., He, G., Wang, X., Chen, Q., Qian, X., Lin, W., et al. (2004). Association of DAAO with schizophrenia in the Chinese population. Neuroscience Letters, 369, 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Heath, S. C., Sobin, C., Roos, J. L., Galke, B. L., Blundell, M. L., et al. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 3717–3722.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. M., Hwu, H. G., Lin, M. W., Ou-Yang, W. C., Lee, S. F., Fann, C. S., et al. (2001). Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13-14 in Taiwanese families. American Journal of Medical Genetics, 105, 658–661.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. M., Liu, Y. L., Fann, C. S., Yang, W. C., Wu, J. Y., Hung, S. I., et al. (2007). No association evidence between schizophrenia and dystrobrevin-binding protein 1 (DTNBP1) in Taiwanese families. Schizophrenia Research. doi:10.1016/j.schres.2007.02.003.

    Google Scholar 

  • Liu, Y. L., Shen-Jang, F. C., Liu, C. M., Wu, J. Y., Hung, S. I., Chan, H. Y., et al. (2006d). Evaluation of RGS4 as a candidate gene for schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 418–420.

    Article  CAS  Google Scholar 

  • Ma, J., Qin, W., Wang, X. Y., Guo, T. W., Bian, L., Duan, S. W., et al. (2006). Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Molecular Psychiatry, 11, 479–487.

    Article  CAS  PubMed  Google Scholar 

  • Mah, S., Nelson, M. R., DeLisi, L. E., Reneland, R. H., Markward, N., James, M. R., et al. (2006). Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Molecular Psychiatry, 11, 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Martin, E. R., Monks, S. A., Warren, L. L., & Kaplan, N. L. (2000). A test for linkage and association in general pedigrees: The pedigree disequilibrium test. American Journal of Human Genetics, 67, 146–154.

    Article  CAS  PubMed  Google Scholar 

  • Maziade, M., Bissonnette, L., Rouillard, E., Martinez, M., Turgeon, M., Charron, L., et al. (1997). 6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. American Journal of Medical Genetics, 74, 311–318.

    Article  CAS  PubMed  Google Scholar 

  • McClellan, J. M., Susser, E., & King, M. C. (2007). Schizophrenia: A common disease caused by multiple rare alleles. The British Journal of Psychiatry, 190, 194–199.

    Article  PubMed  Google Scholar 

  • McGue, M., Gottesman, I., & Rao, D. C. (1985). Resolving genetic models for the transmission of schizophrenia. Genetic Epidemiology, 2, 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A. M., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  • Mirnics, K., Middleton, F. A., Lewis, D. A., & Levitt, P. (2001). Analysis of complex brain disorders with gene expression microarrays: Schizophrenia as a disease of the synapse. Trends in Neurosciences, 24, 479–486.

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam, B. (2003). Bringing order to the glutamate chaos in schizophrenia. Neuron, 40, 881–884.

    Article  CAS  PubMed  Google Scholar 

  • Moises, H. W., Yang, L., Kristbjarnarson, H., Wiese, C., Byerley, W., Macciardi, F., et al. (1995). An international two-stage genome-wide search for schizophrenia susceptibility genes. Nature Genetics, 11, 321–324.

    Article  CAS  PubMed  Google Scholar 

  • Morris, D. W., McGhee, K. A., Schwaiger, S., Scully, P., Quinn, J., Meagher, D., et al. (2003). No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophrenia Research, 60, 167–172.

    Article  PubMed  Google Scholar 

  • Morris, D. W., Rodgers, A., McGhee, K. A., Schwaiger, S., Scully, P., Quinn, J., et al. (2004). Confirming RGS4 as a susceptibility gene for schizophrenia. American Journal of Medical Genetics, 125B, 50–53.

    Article  PubMed  Google Scholar 

  • Morton, N. E. (1955). Sequential tests for the detection of linkage. American Journal of Human Genetics, 7, 277–318.

    CAS  PubMed  Google Scholar 

  • Mulle, J. G., Chowdari, K. V., Nimgaonkar, V., & Chakravarti, A. (2005). No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families. Molecular Psychiatry, 10, 431–433.

    Article  CAS  PubMed  Google Scholar 

  • Munafo, M. R., Thiselton, D. L., Clark, T. G., & Flint, J. (2006). Association of the NRG1 gene and schizophrenia: A meta-analysis. Molecular Psychiatry, 11, 539–546.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56, 940–945.

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus, K. K., Luna, A., Vakkalanka, R., Goldberg, T., Egan, M., Straub, R. E., et al. (2006). Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Molecular Psychiatry, 11, 1062–1065.

    Article  CAS  PubMed  Google Scholar 

  • Norton, N., Moskvina, V., Morris, D. W., Bray, N. J., Zammit, S., Williams, N. M., et al. (2006). Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 96–101.

    Article  CAS  Google Scholar 

  • Norton, N., Williams, H. J., Dwyer, S., Carroll, L., Peirce, T., Moskvina, V., et al. (2007). Association analysis of AKT1 and schizophrenia in a UK case control sample. Schizophrenia Research, 91, 58–65.

    Article  Google Scholar 

  • Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., et al. (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics, 13, 2699–2708.

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40, 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki, T., Inada, T., & Arinami, T. (2004). Failure to confirm association between AKT1 haplotype and schizophrenia in a Japanese case-control population. Molecular Psychiatry, 9, 981–983.

    Article  CAS  PubMed  Google Scholar 

  • Pae, C. U., Serretti, A., Mandelli, L., Yu, H. S., Patkar, A. A., Lee, C. U., et al. (2007). Effect of 5-haplotype of dysbindin gene (DTNBP1) polymorphisms for the susceptibility to bipolar I disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 701–703.

    Article  CAS  Google Scholar 

  • Pae, C. U., Yu, H. S., Amann, D., Kim, J. J., Lee, C. U., Lee, S. J., et al. (2008). Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample. Journal of Psychiatric Research, 42, 35–40.

    Article  PubMed  Google Scholar 

  • Palo, O. M., Antila, M., Silander, K., Hennah, W., Kilpinen, H., Soronen, P., et al. (2007). Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Human Molecular Genetics, 16, 2517–2528.

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa, E., Ye, K., Nolan, K. A., Morrell, L., Okun, J. M., Persky, A. D., et al. (2007). Positive association of schizophrenia to JARID2 gene. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 45–51.

    Article  CAS  Google Scholar 

  • Perlis, R. H., Purcell, S., Fagerness, J., Kirby, A., Petryshen, T. L., Fan, J., et al. (2008). Family-based association study of lithium-related and other candidate genes in bipolar disorder. Archives of General Psychiatry, 65, 53–61.

    Article  PubMed  Google Scholar 

  • Perry, G. H., Dominy, N. J., Claw, K. G., Lee, A. S., Fiegler, H., Redon, R., et al. (2007). Diet and the evolution of human amylase gene copy number variation. Nature Genetics, 39, 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  • Peters, K., Wiltshire, S., Henders, A. K., Dragovic, M., Badcock, J. C., Chandler, D., et al. (2008). Comprehensive analysis of tagging sequence variants in DTNBP1 shows no association with schizophrenia or with its composite neurocognitive endophenotypes. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B, 1159–1166.

    Article  CAS  Google Scholar 

  • Petretto, E., Liu, E. T., & Aitman, T. J. (2007). A gene harvest revealing the archeology and complexity of human disease. Nature Genetics, 39, 1299–1301.

    Article  CAS  PubMed  Google Scholar 

  • Petryshen, T. L., Middleton, F. A., Kirby, A., Aldinger, K. A., Purcell, S., Tahl, A. R., et al. (2005). Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Molecular Psychiatry, 10(366–374), 328.

    Article  Google Scholar 

  • Polymeropoulos, M. H., Coon, H., Byerley, W., Gershon, E. S., Goldin, L., Crow, T. J., et al. (1994). Search for a schizophrenia susceptibility locus on human chromosome 22. American Journal of Medical Genetics, 54, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Prata, D., Breen, G., Osborne, S., Munro, J., St Clair, D., & Collier, D. (2008). Association of DAO and G72(DAOA)/G30 genes with bipolar affective disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147, 914–917.

    Article  Google Scholar 

  • Prescott, C. A., & Gottesman, I. I. (1993). Genetically mediated vulnerability to schizophrenia. The Psychiatric Clinics of North America, 16, 245–267.

    CAS  PubMed  Google Scholar 

  • Pulver, A. E., Karayiorgou, M., Lasseter, V. K., Wolyniec, P., Kasch, L., Antonarakis, S., et al. (1994). Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. American Journal of Medical Genetics, 54, 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Pulver, A. E., Karayiorgou, M., Wolyniec, P. S., Lasseter, V. K., Kasch, L., Nestadt, G., et al. (1994). Sequential strategy to identify a susceptibility gene for schizophrenia: Report of potential linkage on chromosome 22q12-q13.1: Part 1. American Journal of Medical Genetics, 54, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Pulver, A. E., Lasseter, V. K., Kasch, L., Wolyniec, P., Nestadt, G., Blouin, J. L., et al. (1995). Schizophrenia: A genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. American Journal of Medical Genetics, 60, 252–260.

    Article  CAS  PubMed  Google Scholar 

  • Pulver, A. E., Nestadt, G., Goldberg, R., Shprintzen, R. J., Lamacz, M., Wolyniec, P. S., et al. (1994). Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. The Journal of Nervous and Mental Disease, 182, 476–478.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752.

    CAS  PubMed  Google Scholar 

  • Qu, M., Tang, F., Yue, W., Ruan, Y., Lu, T., Liu, Z., et al. (2007). Positive association of the disrupted-in-Schizophrenia-1 gene (DISC1) with schizophrenia in the Chinese Han population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144, 266–270.

    Article  CAS  Google Scholar 

  • Ray, P. N., Belfall, B., Duff, C., Logan, C., Kean, V., Thompson, M. W., et al. (1985). Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy. Nature, 318, 672–675.

    Article  CAS  PubMed  Google Scholar 

  • Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444, 444–454.

    Article  CAS  PubMed  Google Scholar 

  • Riley, B. P., Makoff, A., Mogudi-Carter, M., Jenkins, T., Williamson, R., Collier, D., et al. (2000). Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in southern African Bantu families. American Journal of Medical Genetics, 96, 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Riley, B. P., & McGuffin, P. (2000). Linkage and associated studies of schizophrenia. American Journal of Medical Genetics, 97, 23–44.

    Article  CAS  PubMed  Google Scholar 

  • Risch, N. (1990). Linkage strategies for genetically complex traits. I. Multilocus models. American Journal of Human Genetics, 46, 222–228.

    CAS  PubMed  Google Scholar 

  • Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  • Rizig, M. A., McQuillin, A., Puri, V., Choudhury, K., Datta, S., Thirumalai, S., et al. (2006). Failure to confirm genetic association between schizophrenia and markers on chromosome 1q23.3 in the region of the gene encoding the regulator of G-protein signaling 4 protein (RGS4). American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 296–300.

    Article  CAS  Google Scholar 

  • Rosa, A., Gardner, M., Cuesta, M. J., Peralta, V., Fatjo-Vilas, M., Miret, S., et al. (2007). Family-based association study of neuregulin-1 gene and psychosis in a Spanish sample. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 954–957.

    Article  CAS  Google Scholar 

  • Rudin, E. (1916). Zur Vererbung und Neuentstehung der Dementia Praecox. Berlin: Springer.

    Google Scholar 

  • Rujescu, D., Ingason, A., Cichon, S., Pietilainen, O. P., Barnes, M. R., Toulopoulou, T., et al. (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics, 18, 988–996.

    CAS  PubMed  Google Scholar 

  • Sachs, N. A., Sawa, A., Holmes, S. E., Ross, C. A., DeLisi, L. E., & Margolis, R. L. (2005). A frameshift mutation in disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Molecular Psychiatry, 10, 758–764.

    Article  CAS  PubMed  Google Scholar 

  • Saggers-Gray, L., Heriani, H., Handoko, H. Y., Irmansyah, I., Kusumawardhani, A. A., Widyawati, I., et al. (2008). Association of PIP5K2A with schizophrenia: A study in an indonesian family sample. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147B, 1310–1313.

    Article  CAS  Google Scholar 

  • Sanders, A. R., Duan, J., Levinson, D. F., Shi, J., He, D., Hou, C., et al. (2008). No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: Implications for psychiatric genetics. The American Journal of Psychiatry, 165, 497–506.

    Article  PubMed  Google Scholar 

  • Sawcer, S., Jones, H. B., Feakes, R., Gray, J., Smaldon, N., Chataway, J., et al. (1996). A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genetics, 13, 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I., Chen, H., et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 316, 1331–1336.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher, J., Jamra, R. A., Freudenberg, J., Becker, T., Ohlraun, S., Otte, A. C., et al. (2004). Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry, 9, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, S. G., Albus, M., Hallmayer, J., Honig, S., Borrmann, M., Lichtermann, D., et al. (1995). Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nature Genetics, 11, 325–327.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, S. G., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., et al. (2005). Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biological Psychiatry, 58, 446–450.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, S. G., Knapp, M., Mondabon, S., Hallmayer, J., Borrmann-Hassenbach, M., Albus, M., et al. (2003). Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. American Journal of Human Genetics, 72, 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, S. G., Knapp, M., Sklar, P., Eckstein, G. N., Sewekow, C., Borrmann-Hassenbach, M., et al. (2006). Evidence for association of DNA sequence variants in the phosphatidylinositol-4-phosphate 5-kinase IIalpha gene (PIP5K2A) with schizophrenia. Molecular Psychiatry, 11, 837–846.

    Article  CAS  PubMed  Google Scholar 

  • Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316, 1341–1345.

    Article  CAS  PubMed  Google Scholar 

  • Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.

    Article  CAS  PubMed  Google Scholar 

  • Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305, 525–528.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, S. H., Kelly, M., Smith, A. B., Shields, G., Hopkins, P. J., Loftus, J., et al. (1998). A genome-wide search for schizophrenia susceptibility genes. American Journal of Medical Genetics, 81, 364–376.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Badner, J. A., Gershon, E. S., & Liu, C. (2008). Allelic association of G72/G30 with schizophrenia and bipolar disorder: A comprehensive meta-analysis. Schizophrenia Research, 98, 89–97.

    Article  PubMed  Google Scholar 

  • Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe’er, I., et al. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460, 753–757.

    CAS  PubMed  Google Scholar 

  • Shifman, S., Bronstein, M., Sternfeld, M., Pisante-Shalom, A., Lev-Lehman, E., Weizman, A., et al. (2002). A highly significant association between a COMT haplotype and schizophrenia. American Journal of Human Genetics, 71, 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Shin, H. D., Park, B. L., Kim, E. M., Lee, S. O., Cheong, H. S., Lee, C. H., et al. (2007). Association analysis of G72/G30 polymorphisms with schizophrenia in the Korean population. Schizophrenia Research, 96, 119–124.

    Article  PubMed  Google Scholar 

  • Shinkai, T., De Luca, V., Hwang, R., Muller, D. J., Lanktree, M., Zai, G., et al. (2007). Association analyses of the DAOA/G30 and D-amino-acid oxidase genes in schizophrenia: Further evidence for a role in schizophrenia. Neuromolecular Medicine, 9, 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., & Navon, R. (2006). The involvement of ErbB4 with schizophrenia: Association and expression studies. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 142–148.

    Article  CAS  Google Scholar 

  • Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881–885.

    Article  CAS  PubMed  Google Scholar 

  • So, H. C., Chen, R. Y., Chen, E. Y., Cheung, E. F., Li, T., & Sham, P. C. (2008). An association study of RGS4 polymorphisms with clinical phenotypes of schizophrenia in a Chinese population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147B, 77–85.

    Article  CAS  Google Scholar 

  • Sobell, J. L., Richard, C., Wirshing, D. A., & Heston, L. L. (2005). Failure to confirm association between RGS4 haplotypes and schizophrenia in Caucasians. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 139, 23–27.

    Article  CAS  Google Scholar 

  • Song, W., Li, W., Feng, J., Heston, L. L., Scaringe, W. A., & Sommer, S. S. (2008). Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia. Biochemical and Biophysical Research Communications, 367, 700–706.

    Article  CAS  PubMed  Google Scholar 

  • Spielman, R. S., & Ewens, W. J. (1996). The TDT and other family-based tests for linkage disequilibrium and association. American Journal of Human Genetics, 59, 983–989.

    CAS  PubMed  Google Scholar 

  • St Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336, 13–16.

    Article  CAS  PubMed  Google Scholar 

  • St Clair, D., Xu, M., Wang, P., Yu, Y., Fang, Y., Zhang, F., et al. (2005). Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA., 294, 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460, 744–747.

    CAS  PubMed  Google Scholar 

  • Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P., Ingason, A., Steinberg, S., et al. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83–87.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877–892.

    Article  PubMed  Google Scholar 

  • Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Jonsdottir, T., Walters, G. B., et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics, 39, 770–775.

    Article  CAS  PubMed  Google Scholar 

  • Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., et al. (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of mouse dysbindin, is associated with schizophrenia. American Journal of Human Genetics, 71, 337–348.

    Article  CAS  PubMed  Google Scholar 

  • Straub, R. E., MacLean, C. J., O’Neill, F. A., Burke, J., Murphy, B., Duke, F., et al. (1995). A potential vulnerability locus for schizophrenia on chromosome 6p24-22: Evidence for genetic heterogeneity. Nature Genetics, 11, 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, P. F. (2005). The genetics of schizophrenia. PLoS Medicine, 2, e212.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60, 1187–1192.

    Article  PubMed  Google Scholar 

  • Sullivan, P. F., Lin, D., Tzeng, J. Y., van den Oord, E., Perkins, D., Stroup, T. S., et al. (2008). Genomewide association for schizophrenia in the CATIE study: Results of stage 1. Molecular Psychiatry, 13, 570–584.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S., Wang, F., Wei, J., Cao, L. Y., Wu, G. Y., Lu, L., et al. (2008). Association between interleukin-3 receptor alpha polymorphism and schizophrenia in the Chinese population. Neuroscience Letters, 440, 35–37.

    Article  CAS  PubMed  Google Scholar 

  • Susser, E. S., & Lin, S. P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Archives of General Psychiatry, 49, 983–988.

    Article  CAS  PubMed  Google Scholar 

  • Szeszko, P. R., Hodgkinson, C. A., Robinson, D. G., DeRosse, P., Bilder, R. M., Lencz, T., et al. (2008). DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biological Psychology, 79, 103–110.

    Article  PubMed  Google Scholar 

  • Takeshita, M., Yamada, K., Hattori, E., Iwayama, Y., Toyota, T., Iwata, Y., et al. (2008). Genetic examination of the PLXNA2 gene in Japanese and Chinese people with schizophrenia. Schizophrenia Research, 99, 359–364.

    Article  PubMed  Google Scholar 

  • Talbot, K., Eidem, W. L., Tinsley, C. L., Benson, M. A., Thompson, E. W., Smith, R. J., et al. (2004). Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. The Journal of Clinical Investigation, 113, 1353–1363.

    CAS  PubMed  Google Scholar 

  • Talkowski, M. E., Seltman, H., Bassett, A. S., Brzustowicz, L. M., Chen, X., Chowdari, K. V., et al. (2006). Evaluation of a susceptibility gene for schizophrenia: Genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. Biological Psychiatry, 60, 152–162.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J. X., Chen, W. Y., He, G., Zhou, J., Gu, N. F., Feng, G. Y., et al. (2004). Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Molecular Psychiatry, 9, 11–12.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J. X., Zhou, J., Fan, J. B., Li, X. W., Shi, Y. Y., Gu, N. F., et al. (2003). Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Molecular Psychiatry, 8, 717–718.

    Article  CAS  PubMed  Google Scholar 

  • Thiselton, D. L., Vladimirov, V. I., Kuo, P. H., McClay, J., Wormley, B., Fanous, A., et al. (2008). AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biological Psychiatry, 63, 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Thiselton, D. L., Webb, B. T., Neale, B. M., Ribble, R. C., O’Neill, F. A., Walsh, D., et al. (2004). No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Molecular Psychiatry, 9, 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, P. A., Christoforou, A., Morris, S. W., Adie, E., Pickard, B. S., Porteous, D. J., et al. (2007). Association of neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Molecular Psychiatry, 12, 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, P. A., Wray, N. R., Millar, J. K., Evans, K. L., Hellard, S. L., Condie, A., et al. (2005). Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Molecular Psychiatry, 10(657–668), 616.

    Article  Google Scholar 

  • Tienari, P. (1991). Interaction between genetic vulnerability and family environment: The Finnish adoptive family study of schizophrenia. Acta Psychiatrica Scandinavica, 84, 460–465.

    Article  CAS  PubMed  Google Scholar 

  • Tienari, P., Wynne, L. C., Sorri, A., Lahti, I., Laksy, K., Moring, J., et al. (2004). Genotype-environment interaction in schizophrenia-spectrum disorder. Long-term follow-up study of Finnish adoptees. British Journal of Psychiatry, 184, 216–222.

    Article  PubMed  Google Scholar 

  • Tochigi, M., Zhang, X., Ohashi, J., Hibino, H., Otowa, T., Rogers, M., et al. (2006). Association study of the dysbindin (DTNBP1) gene in schizophrenia from the Japanese population. Neuroscience Research, 56, 154–158.

    Article  CAS  PubMed  Google Scholar 

  • Tosato, S., Dazzan, P., & Collier, D. (2005). Association between the neuregulin 1 gene and schizophrenia: A systematic review. Schizophrenia Bulletin, 31, 613–617.

    Article  PubMed  Google Scholar 

  • Tosato, S., Ruggeri, M., Bonetto, C., Bertani, M., Marrella, G., Lasalvia, A., et al. (2007). Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 647–659.

    Article  CAS  Google Scholar 

  • Tsuang, D. W., Skol, A. D., Faraone, S. V., Bingham, S., Young, K. A., Prabhudesai, S., et al. (2001). Examination of genetic linkage of chromosome 15 to schizophrenia in a large Veterans Affairs Cooperative Study sample. American Journal of Medical Genetics, 105, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Turunen, J. A., Peltonen, J. O., Pietilainen, O. P., Hennah, W., Loukola, A., Paunio, T., et al. (2007). The role of DTNBP1, NRG1, and AKT1 in the genetics of schizophrenia in Finland. Schizophrenia Research, 91, 27–36.

    Article  PubMed  Google Scholar 

  • Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37, 727–732.

    Article  CAS  PubMed  Google Scholar 

  • Van Den Bogaert, A., Schumacher, J., Schulze, T. G., Otte, A. C., Ohlraun, S., Kovalenko, S., et al. (2003). The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. American Journal of Human Genetics, 73, 1438–1443.

    Article  Google Scholar 

  • van den Oord, E., Sullivan, P. F., Chen, X., Kendler, K. S., & Riley, B. (2003). Identification of a high risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high density schizophrenia families. Molecular Psychiatry, 8, 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Vilella, E., Costas, J., Sanjuan, J., Guitart, M., De, D. Y., Carracedo, A., et al. (2007). Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction. Journal of Psychiatric Research, 42, 278–288. doi:10.1016/j.jpsychires.2007.02.005.

    Article  PubMed  Google Scholar 

  • Vionnet, N., Hani, E., Dupont, S., Gallina, S., Francke, S., Dotte, S., et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French whites: Evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. American Journal of Human Genetics, 67, 1470–1480.

    Article  CAS  PubMed  Google Scholar 

  • Vladimirov, V., Thiselton, D. L., Kuo, P. H., McClay, J., Fanous, A., Wormley, B., et al. (2007). A region of 35 kb containing the trace amine associate receptor 6 (TAAR6) gene is associated with schizophrenia in the Irish study of high-density schizophrenia families. Molecular Psychiatry, 12, 842–853.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320, 539–543.

    Article  CAS  PubMed  Google Scholar 

  • Walss-Bass, C., Raventos, H., Montero, A. P., Armas, R., Dassori, A., Contreras, S., et al. (2006). Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatrica Scandinavica, 113, 314–321.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., He, G., Gu, N., Yang, J., Tang, J., Chen, Q., et al. (2004). Association of G72/G30 with schizophrenia in the Chinese population. Biochemical and Biophysical Research Communications, 319, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  • Weickert, C. S., Straub, R. E., McClintock, B. W., Matsumoto, M., Hashimoto, R., Hyde, T. M., et al. (2004). Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Archives of General Psychiatry, 61, 544–555.

    Article  CAS  PubMed  Google Scholar 

  • Williams, H. J., Owen, M. J., & O’Donovan, M. C. (2007). Is COMT a susceptibility gene for schizophrenia? Schizophrenia Bulletin, 33, 635–641.

    Article  PubMed  Google Scholar 

  • Williams, N. M., Preece, A., Morris, D. W., Spurlock, G., Bray, N. J., Stephens, M., et al. (2004). Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Archives of General Psychiatry, 61, 336–344.

    Article  CAS  PubMed  Google Scholar 

  • Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., McCreadie, R. G., et al. (2004). Support for RGS4 as a susceptibility gene for schizophrenia. Biological Psychiatry, 55, 192–195.

    Article  CAS  PubMed  Google Scholar 

  • Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., Zammit, S., et al. (2003). Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Molecular Psychiatry, 8, 485–487.

    Article  CAS  PubMed  Google Scholar 

  • Wiltshire, S., Hattersley, A. T., Hitman, G. A., Walker, M., Levy, J. C., Sampson, M., et al. (2001). A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): Analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. American Journal of Human Genetics, 69, 553–569.

    Article  CAS  PubMed  Google Scholar 

  • Wood, L. S., Pickering, E. H., & Dechairo, B. M. (2007). Significant support for DAO as a schizophrenia susceptibility locus: Examination of five genes putatively associated with schizophrenia. Biological Psychiatry, 61, 1195–1199.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Pato, M. T., Torre, C. D., Medeiros, H., Carvalho, C., Basile, V. S., et al. (2001). Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. American Journal of Medical Genetics, 105, 669–674.

    Article  CAS  PubMed  Google Scholar 

  • Xu, B., Roos, J. L., Levy, S., van Rensburg, E. J., Gogos, J. A., & Karayiorgou, M. (2008). Strong association of de novo copy number mutations with sporadic schizophrenia. Nature Genetics, 40, 880–885.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M. Q., Xing, Q. H., Zheng, Y. L., Li, S., Gao, J. J., He, G., et al. (2007). Association of AKT1 gene polymorphisms with risk of schizophrenia and with response to antipsychotics in the Chinese population. The Journal of Clinical Psychiatry, 68, 1358–1367.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. Z., Si, T. M., Ruan, Y., Ling, Y. S., Han, Y. H., Wang, X. L., et al. (2003). Association study of neuregulin 1 gene with schizophrenia. Molecular Psychiatry, 8, 706–709.

    Article  CAS  PubMed  Google Scholar 

  • Yue, W., Liu, Z., Kang, G., Yan, J., Tang, F., Ruan, Y., et al. (2006). Association of G72/G30 polymorphisms with early-onset and male schizophrenia. NeuroReport, 17, 1899–1902.

    Article  CAS  PubMed  Google Scholar 

  • Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., et al. (2007). Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science, 316, 1336–1341.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Sarginson, J., Crombie, C., Walker, N., St Clair, D., & Shaw, D. (2006). Genetic association between schizophrenia and the DISC1 gene in the Scottish population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 155–159.

    Article  CAS  Google Scholar 

  • Zhang, F., St Clair, D., Liu, X., Sun, X., Sham, P. C., Crombie, C., et al. (2005). Association analysis of the RGS4 gene in Han Chinese and Scottish populations with schizophrenia. Genes, Brain, and Behavior, 4, 444–448.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Tochigi, M., Ohashi, J., Maeda, K., Kato, T., Okazaki, Y., et al. (2005). Association study of the DISC1/TRAX locus with schizophrenia in a Japanese population. Schizophrenia Research, 79, 175–180.

    Article  PubMed  Google Scholar 

  • Zhao, X., Leotta, A., Kustanovich, V., Lajonchere, C., Geschwind, D. H., Law, K., et al. (2007). A unified genetic theory for sporadic and inherited autism. Proceedings of the National Academy of Sciences of the United States of America, 104, 12831–12836.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Shi, Y., Tang, J., Tang, R., Yu, L., Gu, N., et al. (2004). A case control and family based association study of the neuregulin1 gene and schizophrenia. Journal of Medical Genetics, 41, 31–34.

    Article  CAS  PubMed  Google Scholar 

  • Zou, F., Li, C., Duan, S., Zheng, Y., Gu, N., Feng, G., et al. (2005). A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophrenia Research, 73, 257–261.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brien Riley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Riley, B. (2011). Genetic Studies of Schizophrenia. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_13

Download citation

Publish with us

Policies and ethics