Skip to main content
Book cover

Biofuels pp 223–235Cite as

Genetic Modification of Lignin Biosynthesis for Improved Biofuel Production

  • Chapter
  • First Online:

Abstract

The energy in cellulosic biomass largely resides in plant cell walls. Cellulosic biomass is more difficult than starch to break down into sugars because of the presence of lignin and the complex structure of cell walls. Transgenic down-regulation of major lignin genes led to reduced lignin content, increased dry matter degradability, and improved accessibility of cellulases for cellulose degradation. This review provides background information on lignin biosynthesis and focuses on genetic manipulation of lignin genes in important monocot species as well as the dicot potential biofuel crop alfalfa. Reduction of lignin in biofuel crops by genetic engineering is likely one of the most effective ways of reducing costs associated with pretreatment and hydrolysis of cellulosic feedstocks, although some potential fitness issues should also be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barriere Y. O.; Argiller O. Brown-midrib genes of maize: A review. Agronomie 13: 865–876; 1993. doi:10.1051/agro:19931001.

    Article  Google Scholar 

  • Barriere Y.; Ralph J.; Mechin V.; Guillaumie S.; Grabber J. H.; Argillier O.; Chabbert B.; Lapierre C. Genetic and molecular basis of grass cell wall biosynthesis and degradability: II. Lessons from brown-midrib mutants. C R Biol 327: 847–860; 2004. doi:10.1016/j.crvi.2004.05.010.

    Article  CAS  PubMed  Google Scholar 

  • Baucher M.; Bernard-Vailhe M. A.; Chabbert B.; Besle J. M.; Opsomer C.; Van Montagu M.; Botterman J. Downregulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39: 437–447; 1999. doi:10.1023/A:1006182925584.

    Article  CAS  PubMed  Google Scholar 

  • Baucher M.; Monties B.; Van Montagu M.; Boerjan W. Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17: 125–197; 1998. doi:10.1016/S0735-2689(98)00360-8.

    Article  CAS  Google Scholar 

  • Biswas G.; Ransom C.; Sticklen M. Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize. Plant Sci 171: 617–623; 2006. doi:10.1016/j.plantsci.2006.06.004.

    Article  CAS  Google Scholar 

  • Boudet A. M.; Kajita S.; Grima-Pettenati J.; Goffner D. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8: 576–581; 2003. doi:10.1016/j.tplants.2003.10.001.

    Article  CAS  PubMed  Google Scholar 

  • Bouton J. H. Molecular breeding of switchgrass as a bioenergy crop. Curr Opin Gen Develop 17: 553–558; 2007. doi:10.1016/j.gde.2007.08.012.

    Article  CAS  Google Scholar 

  • Chapple C.; Ladisch M.; Melian R. Loosening lignin’s grip on biofuel production. Nat Biotechnol 25: 746–747; 2007. doi:10.1038/nbt0707-746.

    Article  CAS  PubMed  Google Scholar 

  • Capell T.; Christou P. Progress in plant metabolic engineering. Curr Opin Biotechnol 15: 148–154; 2004. doi:10.1016/j.copbio.2004.01.009.

    Article  CAS  PubMed  Google Scholar 

  • Chen F.; Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759–761; 2007. doi:10.1038/nbt1316.

    Article  CAS  PubMed  Google Scholar 

  • Chen F.; Reddy M. S. S.; Temple S.; Jackson L.; Shadle G.; Dixon R. A. Multi-site genetic ­modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48: 113–124; 2006. doi:10.1111/j.1365-313X.2006.02857.x.

    Article  CAS  PubMed  Google Scholar 

  • Chen L.; Auh C.; Chen F.; Cheng X. F.; Aljoe H.; Dixon R. A.; Wang Z. Y. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50: 5558–5565; 2002. doi:10.1021/jf020516x.

    Article  CAS  PubMed  Google Scholar 

  • Chen L.; Auh C.; Dowling P.; Bell J.; Lehmann D.; Wang Z. Y. Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct Plant Biol 31: 235–245; 2004. doi:10.1071/FP03254.

    Article  CAS  Google Scholar 

  • Chen L.; Auh C. K.; Dowling P.; Bell J.; Chen F.; Hopkins A.; Dixon R. A.; Wang Z. Y. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinamyl alcohol dehydrogenase. Plant Biotechnol J 1: 437–449; 2003. doi:10.1046/j.1467-7652.2003.00040.x.

    Article  CAS  PubMed  Google Scholar 

  • Cherney J. H.; Cherney D. J. R.; Akin D. E.; Axtell J. D. Potential of brown-midrib, low-lignin mutants for improving forage quality. Adv Agron 46: 157–198; 1991. doi:10.1016/S0065-2113(08)60580-5.

    Article  CAS  Google Scholar 

  • Conger, B. V.; Songstad, D. D.; McDaniel, J. K.; Bond, J. Genetic transformation of Dactylis glomerata by microprojectile bombardment. Proc XVII Intl Grasslands Congr. 1034–1036; 1993.

    Google Scholar 

  • Denchev P. D.; Songstad D. D.; McDaniel J. K.; Conger B. V. Transgenic orchardgrass (Dactylis glomerata) plants by direct embryogenesis from microprojectile bombarded leaf cells. Plant Cell Rep 16: 813–819; 1997. doi:10.1007/s002990050326.

    Article  CAS  Google Scholar 

  • Dixon R. A.; Bouton J. H.; Narasimhamoorthy B.; Saha M.; Wang Z. Y.; May G. D. Beyond structural genomics for plant science. Adv. Agron 95: 77–161; 2007. doi:10.1016/S0065-2113(07)95002-6.

    Article  CAS  Google Scholar 

  • Dixon R. A.; Chen F.; Gua D.; Parvathi K. The biosynthesis of monolignols: a “metabolic grid” or independent pathways to guaiacyl and syringyl units? Phytochemistry 57: 1069–1084; 2001. doi:10.1016/S0031-9422(01)00092-9.

    Article  CAS  PubMed  Google Scholar 

  • Ericksson M. E.; Israelsson M.; Olsson O.; Moritiz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18: 784–788; 2000. doi:10.1038/77355.

    Article  Google Scholar 

  • Grand C.; Parmentier P.; Boudet A.; Boudet A. M. Comparison of lignins and of enzymes involved in lignification in normal and brown midrib (bm3) mutant corn seedlings. Physiologie Végétale 23: 905–911; 1985.

    CAS  Google Scholar 

  • Gray K. A.; Zhao L.; Emptage M. Bioethanol Curr Opin Chem Biol 10: 141–146; 2006. doi:10.1016/j.cbpa.2006.02.035.

    Article  CAS  Google Scholar 

  • Gressel J. Transgenics are imperative for biofuel crops. Plant Sci 174: 246–263; 2008. doi:10.1016/j.plantsci.2007.11.009.

    Article  CAS  Google Scholar 

  • Guillaumie S.; Goffner D.; Barbier O.; Martinant J. P.; Pichon M.; Barrière Y. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated and normal maize plants. BMC Plant Biol 8: 71; 2008. doi:10.1186/1471-2229-8-71.

    Article  PubMed  Google Scholar 

  • Guillaumie S.; Pichon M.; Martinant J. P.; Bosio M.; Goffner D.; Barriere Y. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226: 235–250; 2007. doi:10.1007/s00425-006-0468-9.

    Article  CAS  PubMed  Google Scholar 

  • Guo D.; Chen F.; Inoue K.; Blount J. W.; Dixon R. A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13: 73–88; 2001a.

    Article  CAS  PubMed  Google Scholar 

  • Guo D.; Chen F.; Wheeler J.; Winder J.; Selman S.; Peterson M.; Dixon R. A. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10: 457–464; 2001b. doi:10.1023/A:1012278106147.

    Article  CAS  PubMed  Google Scholar 

  • Halpin C.; Holt K.; Chojecki J.; Oliver D.; Chabbert B.; Monties B.; Edwards K.; Barakate A.; Foxon G. A. Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14: 545–553; 1998. doi:10.1046/j.1365-313X.1998.00153.x.

    Article  CAS  PubMed  Google Scholar 

  • He X.; Hall M. B.; Gallo-Meagher M.; Smith R. L. Improvement of forage quality by downregulation of maize O-methyltransferase. Crop Sci 43: 2240–2251; 2003.

    Article  CAS  Google Scholar 

  • Iiyama K.; Lam T. B. T. Structural characteristics of cell walls of forage grasses: their nutritional evaluation for ruminants. Asian-Austr J Anim Sci 14: 862–879; 2001.

    CAS  Google Scholar 

  • Ishida Y.; Saito H.; Ohta S.; Hiei Y.; Komari T.; Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14: 745–750; 1996. doi:10.1038/nbt0696-745.

    Article  CAS  PubMed  Google Scholar 

  • Keating J. D.; Panganiban C.; Mansfield S. D. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93: 1196–1206; 2006. doi:10.1002/bit.20838.

    Article  CAS  PubMed  Google Scholar 

  • Koonin S. E. Getting serious about biofuels. Science 311: 435; 2006. doi:10.1126/science.1124886.

    Article  CAS  PubMed  Google Scholar 

  • Kuc J.; Nelson O. E. The abnormal lignins produced by the brown midrib mutants of maize. I. The brown midrib mutant. Arch Biochem Biophys 105: 103; 1964. doi:10.1016/0003-9861(64)90240-1.

    Article  CAS  PubMed  Google Scholar 

  • Li X.; Weng J. K.; Chapple C. Improvement of biomass through lignin modification. Plant J 54: 569–581; 2008. doi:10.1111/j.1365-313X.2008.03457.x.

    Article  CAS  PubMed  Google Scholar 

  • Li Y.; Kajita S.; Kawai S.; Katayama Y.; Morohoshi N. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res 116: 175–182; 2003. doi:10.1007/s10265-003-0087-5.

    Article  CAS  PubMed  Google Scholar 

  • Lu R.; Martin-Hernandez A. M.; Peart J. R.; Malcuit I.; Baulcombe D. C. Virus-induced gene silencing in plants. Methods 30: 296–303; 2003. doi:10.1016/S1046-2023(03)00037-9.

    Article  CAS  PubMed  Google Scholar 

  • Marita J. M.; Vermerris W.; Ralph J.; Hatfield R. D. Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51: 1313–1321; 2003. doi:10.1021/jf0260592.

    Article  CAS  PubMed  Google Scholar 

  • Miki D.; Itoh R.; Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138: 1903–1913; 2005. doi:10.1104/pp.105.063933.

    Article  CAS  PubMed  Google Scholar 

  • Oraby H.; Venkatesh B.; Dale B.; Ahamd R.; Ransome C.; Oehmke J.; Sticklen M. B. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Trans Res 16: 739–749; 2007. doi:10.1007/s11248-006-9064-9.

    Article  CAS  Google Scholar 

  • Pillonel C.; Mulder M. M.; Boon J. J.; Forster B.; Binder A. Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench Planta 185: 538–544; 1991.

    CAS  Google Scholar 

  • Piquemal J.; Chamayou S.; Nadaud I.; Beckert M.; Barrière Y.; Mila I.; Lapierre C.; Rigau J.; Puigdomenech P.; Jauneau A.; Digonnet C.; Boudet A. M.; Goffner D.; Pichon M. Downregulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130: 1675–1685; 2002. doi:10.1104/pp.012237.

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas A. J.; Williams C. K.; Davison B. H.; Britovsek G.; Cairney J.; Eckert C. A.; Frederick W. J.; Hallett J. P.; Leak D. J.; Liotta C. L.; Mielenz J. R.; Murphy R.; Templer R.; Tschaplinski T. The path forward for biofuels and biomaterials. Science 311: 484–489; 2006. doi:10.1126/science.1114736.

    Article  CAS  PubMed  Google Scholar 

  • Ralph J.; Akiyama T.; Kim H.; Lu F.; Schatz P. F.; Marita J. M.; Ralph S. A.; Reddy M. S. S.; Chen F.; Dixon R. A. Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281: 8843–8853; 2006. doi:10.1074/jbc.M511598200.

    Article  CAS  PubMed  Google Scholar 

  • Ransom C.; Venkatesh B.; Dale B.; Biswas G.; Sticklen M. B. Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Applied Biochem Biotech 140: 137–219; 2007. doi:10.1007/s12010-007-9053-3.

    Google Scholar 

  • Reddy M. S.; Chen F.; Shadle G.; Jackson L.; Aljoe H.; Dixon R. A. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc. Natl Acad. Sci. USA 102: 16573–16578; 2005. doi:10.1073/pnas.0505749102.

    Article  CAS  PubMed  Google Scholar 

  • Rogers L. A.; Campbell M. M. The genetic control of lignin deposition during plant growth and development.. New Phytologist 164: 17–30; 2004. doi:10.1111/j.1469-8137.2004.01143.x.

    Article  CAS  Google Scholar 

  • Rook J. A.; Muller L. D.; Shank D. B. Intake and digestibility of brown-midrib corn silage by lactating dairy cows. J Dairy Sci 60: 1894–1904; 1977.

    Article  CAS  Google Scholar 

  • Rubin E. M. Genomics of cellulosic biofuels. Nature 454: 841–844; 2008. doi:10.1038/nature07190.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez O. J.; Cardona C. A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99: 5270–5295; 2007. doi:10.1016/j.biortech.2007.11.013.

    Article  PubMed  Google Scholar 

  • Schubert C. Can biofuels finally take center stage? Nature Biotechnol 24: 777–784; 2006. doi:10.1038/nbt0706-777.

    Article  CAS  Google Scholar 

  • Shadle G.; Chen F.; Reddy M. S. S.; Jackson L.; Nakashima J.; Dixon R. A. Down-regulation of hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68: 1521–1529; 2007. doi:10.1016/j.phytochem.2007.03.022.

    Article  CAS  PubMed  Google Scholar 

  • Somleva M. N.; Tomaszewski Z.; Conger B. V. Agrobacterium-mediated genetic transformation of switchgrass.. Crop Sci 42: 2080–2087; 2002.

    Article  CAS  Google Scholar 

  • Stewart C. N. J. Biofuels and biocontainment. Nature Biotechnol 25: 283–284; 2007. doi:10.1038/nbt0307-283.

    Article  CAS  Google Scholar 

  • Sticklen M. B. Plant genetic engineering to improve biomass characterization for biofuels. Curr Opin Biotechnol 17: 315–319; 2006. doi:10.1016/j.copbio.2006.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Sticklen M. B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9: 433–443; 2008. doi:10.1038/nrg2336.

    Article  CAS  PubMed  Google Scholar 

  • Vignols F.; Rigau J.; Torres M. A.; Capellades M.; Puigdomenech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7: 407–416; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z. Y.; Ge Y. Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Develop. Biol Plant 42: 1–18; 2006. doi:10.1079/IVP2005726.

    Google Scholar 

  • Weng J. K.; Li X.; Bonawitz N. D.; Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19: 66–172; 2008. doi:10.1016/j.copbio.2008.02.014.

    Article  Google Scholar 

  • Wesley S. V.; Helliwell C. A.; Smith N. A.; Wang M. B.; Rouse D. T.; Liu Q.; Gooding P. S.; Singh S. P.; Abbott D.; Stoutjesdijk P. A.; Robinson S. P.; Gleave A. P.; Green A. G.; Waterhouse P. M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581–590; 2001. doi:10.1046/j.1365-313X.2001.01105.x.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J. S.; Tiller K. H.; Al-Ahmad H.; Stewart N. R.; Stewart N. C. Plants to power: bioenergy to fuel the future. Trends Plant Sci 13: 421–429; 2008. doi:10.1016/j.tplants.2008.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Ziegelhoffer T.; Will J.; Austin-Phillips S. Expression of bacterial cellulase gene in transgenic alfalfa (Medicago sativa L), potato (Solanum tuberosum L) and tobacco (Nicotiana tobacum). Mol Breed 5: 309–318; 1999. doi:10.1023/A:1009646830403.

    Article  CAS  Google Scholar 

  • Zhou J.; Lee C.; Zhong R.; Ye Z. H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: 248–266; 2009. doi:10.1105/tpc.108.063321.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the BioEnergy Science Center and the Samuel Roberts Noble Foundation. The BioEnergy Science Center is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hisano, H., Nandakumar, R., Wang, ZY. (2011). Genetic Modification of Lignin Biosynthesis for Improved Biofuel Production. In: Tomes, D., Lakshmanan, P., Songstad, D. (eds) Biofuels. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7145-6_12

Download citation

Publish with us

Policies and ethics