Skip to main content

Molecular Changes in Fatty Acid Oxidation in the Failing Heart

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

Heart failure is emerging as a leading cause of morbidity and mortality in developed countries and is accompanied by alterations in myocardial fatty acid metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are reciprocally regulated, this dynamic relationship is perturbed in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Depending on the severity/stage of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate (ATP) production can be depressed. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. The alterations in fatty acid β-oxidation and the associated metabolic phenotype of accompany heart failure are described here. Furthermore, as myocardial fatty acid β-oxidation has emerged as a novel therapeutic target to limit the decrements in ventricular function, the rationale for the use of pharmacological agents that optimize fatty acid β-oxidation to improve cardiac function in the setting of heart failure will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  PubMed  CAS  Google Scholar 

  2. Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356:1140–51.

    Article  PubMed  Google Scholar 

  3. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  4. Bing RJ, Siegel A, Ungar I, et al. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med. 1954;16:504–15.

    Article  PubMed  CAS  Google Scholar 

  5. Neely JM, Morgan HE. Relationship between carbohydrate metabolism and energy balance of heart muscle. Ann Rev Physiol. 1974;36:413–59.

    Article  CAS  Google Scholar 

  6. Opie LH. Metabolism of the heart in health and disease. I. Am Heart J. 1968;76:685–98.

    Article  PubMed  CAS  Google Scholar 

  7. Opie LH. Metabolism of the heart in health and disease. II. Am Heart J. 1969;77:100–22.

    Article  PubMed  CAS  Google Scholar 

  8. Messer JV, Neill WA. The oxygen supply of the human heart. Am J Cardiol. 1962;9:384–94.

    Article  PubMed  CAS  Google Scholar 

  9. Messer JV, Wagman RJ, Levine HJ, et al. Patterns of human myocardial oxygen extraction during rest and exercise. J Clin Invest. 1962;41:725–42.

    Article  PubMed  CAS  Google Scholar 

  10. Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356:2388–98.

    Article  PubMed  CAS  Google Scholar 

  11. Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. J Am Coll Cardiol. 2007;50:2128–32.

    Article  PubMed  Google Scholar 

  12. Hunt SA, Abraham WT, Chin MH, et al. Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  13. McMurray JJ, Pfeffer MA. Heart failure. Lancet. 2005;365:1877–89.

    Article  PubMed  Google Scholar 

  14. Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol. 2009;54:1637–46.

    Article  PubMed  CAS  Google Scholar 

  15. Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.

    Article  PubMed  CAS  Google Scholar 

  16. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem. 1991;266:8162–70.

    PubMed  CAS  Google Scholar 

  17. Saddik M, Lopaschuk GD. The fate of arachidonic acid and linoleic acid in isolated working rat hearts containing normal or elevated levels of coenzyme A. Biochim Biophys Acta. 1991;1086:217–24.

    PubMed  CAS  Google Scholar 

  18. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of solated rat hearts subjected to a transient period of global ischemia. J Biol Chem. 1992;267:3825–31.

    PubMed  CAS  Google Scholar 

  19. Eaton RP. Synthesis of plasma triglycerides in endogenous hypertriglyceridemia. J Lipid Res. 1971;12:491–7.

    PubMed  CAS  Google Scholar 

  20. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000;45:279–93.

    Article  PubMed  Google Scholar 

  21. Bonen A, Campbell SE, Benton CR, et al. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc. 2004;63:245–9.

    Article  PubMed  CAS  Google Scholar 

  22. Koonen DP, Glatz JF, Bonen A, et al. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta. 2005;1736:163–80.

    PubMed  CAS  Google Scholar 

  23. Luiken JJ, Coort SL, Koonen DP, et al. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch. 2004;448:1–15.

    Article  PubMed  CAS  Google Scholar 

  24. Murthy MS, Pande SV. Mechanism of carnitine acylcarnitine translocase-catalyzed import of acylcarnitines into mitochondria. J Biol Chem. 1984;259:9082–9.

    PubMed  CAS  Google Scholar 

  25. Murthy MS, Pande SV. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987;248:727–33.

    PubMed  CAS  Google Scholar 

  26. Murthy MS, Pande SV. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA. 1987;84:378–82.

    Article  PubMed  CAS  Google Scholar 

  27. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev. 2002;7:115–30.

    Article  PubMed  CAS  Google Scholar 

  28. Wolff AA, Rotmensch HH, Stanley WC, et al. Metabolic approaches to the treatment of ischemic heart disease: the clinicians’ perspective. Heart Fail Rev. 2002;7:187–203.

    Article  PubMed  CAS  Google Scholar 

  29. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997;244:1–14.

    Article  PubMed  CAS  Google Scholar 

  30. Schulz H. Oxidation of fatty acids in eukaryotes. 5th ed. Amsterdam: Elsevier; 2007.

    Google Scholar 

  31. Dyck JR, Lopaschuk GD. Malonyl CoA control of fatty acid oxidation in the ischemic heart. J Mol Cell Cardiol. 2002;34:1099–109.

    Article  PubMed  CAS  Google Scholar 

  32. Kudo N, Barr AJ, Barr RL, et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995;270:17513–20.

    Article  PubMed  CAS  Google Scholar 

  33. Frayn KN, Arner P, Yki-Jarvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006;42:89–103.

    Article  PubMed  CAS  Google Scholar 

  34. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14:263–83.

    Article  PubMed  CAS  Google Scholar 

  35. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.

    Article  PubMed  CAS  Google Scholar 

  36. Folmes CD, Lopaschuk GD. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovasc Res. 2007;73:278–87.

    Article  PubMed  CAS  Google Scholar 

  37. Ussher JR, Lopaschuk GD. The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovasc Res. 2008;79:259–68.

    Article  PubMed  CAS  Google Scholar 

  38. Ussher JR, Lopaschuk GD. Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. Basic Res Cardiol. 2009;104:203–10.

    Article  PubMed  CAS  Google Scholar 

  39. Paulson DJ, Ward KM, Shug AL. Malonyl CoA inhibition of carnitine palmityltransferase in rat heart mitochondria. FEBS Lett. 1984;176:381–4.

    Article  PubMed  CAS  Google Scholar 

  40. Saggerson ED. Carnitine acyltransferase activities in rat liver and heart measured with palmitoyl-CoA and octanoyl-CoA. Latency, effects of K+, bivalent metal ions and malonyl-CoA. Biochem J. 1982;202:397–405.

    PubMed  CAS  Google Scholar 

  41. McGarry JD, Leatherman GF, Foster DW. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. 1978;253:4128–36.

    PubMed  CAS  Google Scholar 

  42. Reszko AE, Kasumov T, David F, et al. Regulation of malonyl-CoA concentration and turnover in the normal heart. J Biol Chem. 2004;279:34298–342301.

    Article  PubMed  CAS  Google Scholar 

  43. Munday MR. Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans. 2002;30:1059–64.

    Article  PubMed  CAS  Google Scholar 

  44. Comte B, Vincent G, Bouchard B, et al. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. J Biol Chem. 1997;272:26125–31.

    Article  PubMed  CAS  Google Scholar 

  45. Poirier M, Vincent G, Reszko AE, et al. Probing the link between citrate and malonyl-CoA in perfused rat hearts. Am J Physiol Heart Circ Physiol. 2002;283:H1379–86.

    PubMed  CAS  Google Scholar 

  46. Carling D, Aguan K, Woods A, et al. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994;269:11442–8.

    PubMed  CAS  Google Scholar 

  47. Dyck JR, Gao G, Widmer J, et al. Regulation of 5′-AMP-activated protein kinase activity by the ­noncatalytic beta and gamma subunits. J Biol Chem. 1996;271:17798–8803.

    Article  PubMed  CAS  Google Scholar 

  48. Gao J, Waber L, Bennett MJ, et al. Cloning and mutational analysis of human malonyl-coenzyme A decarboxylase. J Lipid Res. 1999;40:178–82.

    PubMed  CAS  Google Scholar 

  49. Hardie DG. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res. 1989;28:117–46.

    Article  PubMed  CAS  Google Scholar 

  50. Hardie DG. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992;1123:231–8.

    PubMed  CAS  Google Scholar 

  51. Hardie DG. An emerging role for protein kinases: the response to nutritional and environmental stress. Cell Signal. 1994;6:813–21.

    Article  PubMed  CAS  Google Scholar 

  52. Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271:27879–87.

    Article  PubMed  CAS  Google Scholar 

  53. Stapleton D, Woollatt E, Mitchelhill KI, et al. AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 1997;409:452–6.

    Article  PubMed  CAS  Google Scholar 

  54. Weekes J, Hawley SA, Corton J, et al. Activation of rat liver AMP-activated protein kinase by kinase kinase in a purified, reconstituted system. Effects of AMP and AMP analogues. Eur J Biochem. 1994;219:751–7.

    Article  PubMed  CAS  Google Scholar 

  55. Wasserman DH, Ayala JE. Interaction of physiological mechanisms in control of muscle glucose uptake. Clin Exp Pharmacol Physiol. 2005;32:319–23.

    Article  PubMed  CAS  Google Scholar 

  56. Becker C, Sevilla L, Tomas E, et al. The endosomal compartment is an insulin-sensitive recruitment site for GLUT4 and GLUT1 glucose transporters in cardiac myocytes. Endocrinol. 2001;142:5267–76.

    Article  CAS  Google Scholar 

  57. Fischer Y, Thomas J, Sevilla L, et al. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem. 1997;272:7085–92.

    Article  PubMed  CAS  Google Scholar 

  58. Schwenk RW, Luiken JJ, Bonen A, et al. Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovasc Res. 2008;79:249–58.

    Article  PubMed  CAS  Google Scholar 

  59. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003;89:3–9.

    Article  PubMed  CAS  Google Scholar 

  60. Zierler K. Whole body glucose metabolism. Am J Physiol. 1999;276:E409–26.

    PubMed  CAS  Google Scholar 

  61. Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993;264:C761–82.

    PubMed  CAS  Google Scholar 

  62. Panchal AR, Comte B, Huang H, et al. Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. Am J Physiol Heart Circ Physiol. 2001;281:H1613–20.

    PubMed  CAS  Google Scholar 

  63. Panchal AR, Comte B, Huang H, et al. Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. Am J Physiol Heart Circ Physiol. 2000;279:H2390–8.

    PubMed  CAS  Google Scholar 

  64. Pound KM, Sorokina N, Ballal K, et al. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res. 2009;104:805–12.

    Article  PubMed  CAS  Google Scholar 

  65. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 2003;284:E855–62.

    PubMed  CAS  Google Scholar 

  66. Kolobova E, Tuganova A, Boulatnikov I, et al. Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J. 2001;358:69–77.

    Article  PubMed  CAS  Google Scholar 

  67. Korotchkina LG, Patel MS. Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem. 2001;276:37223–9.

    Article  PubMed  CAS  Google Scholar 

  68. Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31:1143–51.

    Article  PubMed  CAS  Google Scholar 

  69. Spriet LL, Heigenhauser GJ. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc Sport Sci Rev. 2002;30:91–5.

    Article  PubMed  Google Scholar 

  70. Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991;23:1077–86.

    Article  PubMed  CAS  Google Scholar 

  71. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287:R502–16.

    Article  PubMed  CAS  Google Scholar 

  72. Lysiak W, Toth PP, Suelter CH, et al. Quantitation of the efflux of acylcarnitines from rat heart, brain, and liver mitochondria. J Biol Chem. 1986;261:13698–703.

    PubMed  CAS  Google Scholar 

  73. Bing RJ, Hammond MM, Handelsman JC, et al. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J. 1949;38:1–24.

    Article  PubMed  CAS  Google Scholar 

  74. Suga H. Cardiac energetics: from E(max) to pressure-volume area. Clin Exp Pharmacol Physiol. 2003;30:580–5.

    Article  PubMed  CAS  Google Scholar 

  75. Suga H. Ventricular energetics. Physiol Rev. 1990;70:247–77.

    PubMed  CAS  Google Scholar 

  76. Jaswal JS, Ussher JR, Lopaschuk GD. Myocardial fatty acid utilization as a determinant of cardiac efficiency and function. Future Lipidol. 2009;4:379–89.

    CAS  Google Scholar 

  77. Boudina S, Sena S, O’Neill BT, et al. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–95.

    Article  PubMed  Google Scholar 

  78. Hafstad AD, Khalid AM, How OJ, et al. Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2007;292:E1288–94.

    Article  PubMed  CAS  Google Scholar 

  79. How OJ, Aasum E, Severson DL, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55:466–73.

    Article  PubMed  CAS  Google Scholar 

  80. Boudina S, Sena S, Theobald H, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007;56:2457–66.

    Article  PubMed  CAS  Google Scholar 

  81. Mazumder PK, O’Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53:2366–74.

    Article  PubMed  CAS  Google Scholar 

  82. Huang Y, Hunyor SN, Jiang L, et al. Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural, and cellular responses. Am J Physiol Heart Circ Physiol. 2004;286:H2141–50.

    Article  PubMed  CAS  Google Scholar 

  83. Kameyama T, Chen Z, Bell SP, et al. Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt-sensitive rats. Circulation. 1998;98:2919–29.

    PubMed  CAS  Google Scholar 

  84. Bengel FM, Permanetter B, Ungerer M, et al. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 ­acetate – comparison between the normal and failing human heart. Eur J Nucl Med. 2000;27:319–26.

    Article  PubMed  CAS  Google Scholar 

  85. Morii I, Kihara Y, Inoko M, et al. Myocardial contractile efficiency and oxygen cost of contractility are preserved during transition from compensated hypertrophy to failure in rats with salt-sensitive hypertension. Hypertension. 1998;31:949–60.

    PubMed  CAS  Google Scholar 

  86. Hinkle PC. P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 2005;1706:1–11.

    Article  PubMed  CAS  Google Scholar 

  87. Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 2003;1604:77–94.

    Article  PubMed  CAS  Google Scholar 

  88. Murray AJ, Panagia M, Hauton D, et al. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes. 2005;54:3496–502.

    Article  PubMed  CAS  Google Scholar 

  89. Boehm EA, Jones BE, Radda GK, et al. Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol. 2001;280:H977–83.

    PubMed  CAS  Google Scholar 

  90. Hidaka S, Kakuma T, Yoshimatsu H, et al. Streptozotocin treatment upregulates uncoupling protein 3 expression in the rat heart. Diabetes. 1999;48:430–5.

    Article  PubMed  CAS  Google Scholar 

  91. Bugger H, Boudina S, Hu XX, et al. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes. 2008;57:2924–32.

    Article  PubMed  CAS  Google Scholar 

  92. Murray AJ, Anderson RE, Watson GC, et al. Uncoupling proteins in human heart. Lancet. 2004;364:1786–8.

    Article  PubMed  CAS  Google Scholar 

  93. Murray AJ, Cole MA, Lygate CA, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol. 2008;44:694–700.

    Article  PubMed  CAS  Google Scholar 

  94. Seifert EL, Bezaire V, Estey C, et al. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export. J Biol Chem. 2008;283:25124–31.

    Article  PubMed  CAS  Google Scholar 

  95. Hunt MC, Alexson SE. The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res. 2002;41:99–130.

    Article  PubMed  CAS  Google Scholar 

  96. Burgmaier M, Sen S, Philip F, Wilson CR, et al. Metabolic adaptation follows contractile dysfunction in the heart of obese zucker rats fed a high-fat “Western” diet. Obesity (Silver Spring). 2010;18:1895–901.

    Article  CAS  Google Scholar 

  97. Stavinoha MA, RaySpellicy JW, Essop MF, et al. Evidence for mitochondrial thioesterase 1 as a peroxisome proliferator-activated receptor-alpha-regulated gene in cardiac and skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E888–95.

    Article  PubMed  CAS  Google Scholar 

  98. King KL, Young ME, Kerner J, et al. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart. J Lipid Res. 2007;48:1511–7.

    Article  PubMed  CAS  Google Scholar 

  99. Himms-Hagen J, Harper ME. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood). 2001;226:78–84.

    CAS  Google Scholar 

  100. Myrmel T, Forsdahl K, Larsen TS. Triacylglycerol metabolism in hypoxic, glucose-deprived rat cardiomyocytes. J Mol Cell Cardiol. 1992;24:855–68.

    Article  PubMed  CAS  Google Scholar 

  101. Klocke R, Tian W, Kuhlmann MT, et al. Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res. 2007;74:29–38.

    Article  PubMed  CAS  Google Scholar 

  102. Monnet E, Chachques JC. Animal models of heart failure: what is new? Ann Thorac Surg. 2005;79:1445–53.

    Article  PubMed  Google Scholar 

  103. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–74.

    Article  PubMed  CAS  Google Scholar 

  104. Conway MA, Allis J, Ouwerkerk R, et al. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338:973–6.

    Article  PubMed  CAS  Google Scholar 

  105. Nascimben L, Friedrich J, Liao R, et al. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation. 1995;91:1824–33.

    PubMed  CAS  Google Scholar 

  106. Tian R, Nascimben L, Kaddurah-Daouk R, et al. Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters. J Mol Cell Cardiol. 1996;28:755–65.

    Article  PubMed  CAS  Google Scholar 

  107. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009;81:412–9.

    Article  PubMed  CAS  Google Scholar 

  108. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95:135–45.

    Article  PubMed  CAS  Google Scholar 

  109. Neubauer S, Krahe T, Schindler R, et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation. 1992;86:1810–8.

    PubMed  CAS  Google Scholar 

  110. Degens H, de Brouwer KF, Gilde AJ, et al. Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol. 2006;101:17–26.

    Article  PubMed  CAS  Google Scholar 

  111. de Brouwer KF, Degens H, Aartsen WM, et al. Specific and sustained down-regulation of genes involved in fatty acid metabolism is not a hallmark of progression to cardiac failure in mice. J Mol Cell Cardiol. 2006;40:838–45.

    Article  PubMed  CAS  Google Scholar 

  112. O’Donnell JM, Fields AD, Sorokina N, et al. The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol. 2008;44:315–22.

    Article  PubMed  CAS  Google Scholar 

  113. Chandler MP, Kerner J, Huang H, et al. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol. 2004;287:H1538–43.

    Article  PubMed  CAS  Google Scholar 

  114. Grover-McKay M, Schwaiger M, Krivokapich J, et al. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1989;13:317–24.

    Article  PubMed  CAS  Google Scholar 

  115. Lommi J, Kupari M, Yki-Jarvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol. 1998;81:45–50.

    Article  PubMed  CAS  Google Scholar 

  116. Paolisso G, Gambardella A, Galzerano D, et al. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism. 1994;43:174–9.

    Article  PubMed  CAS  Google Scholar 

  117. Taylor M, Wallhaus TR, Degrado TR, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with (18F)fluoro-6-thia-heptadecanoic acid and (18F)FDG in Patients with Congestive Heart Failure. J Nucl Med. 2001;42:55–62.

    PubMed  CAS  Google Scholar 

  118. Bugger H, Schwarzer M, Chen D. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res. 2010;85(2):376–84.

    Article  PubMed  CAS  Google Scholar 

  119. Doenst T, Pytel G, Schrepper A, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86:461–70.

    Article  PubMed  CAS  Google Scholar 

  120. Lei B, Lionetti V, Young ME, et al. Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol. 2004;36:567–76.

    Article  PubMed  CAS  Google Scholar 

  121. Osorio JC, Stanley WC, Linke A, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation. 2002;106:606–12.

    Article  PubMed  CAS  Google Scholar 

  122. Qanud K, Mamdani M, Pepe M, et al. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am J Physiol Heart Circ Physiol. 2008;295:H2098–105.

    Article  PubMed  CAS  Google Scholar 

  123. Neglia D, De Caterina A, Marraccini P, et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;293:H3270–8.

    Article  PubMed  CAS  Google Scholar 

  124. Tuunanen H, Engblom E, Naum A, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114:2130–7.

    Article  PubMed  CAS  Google Scholar 

  125. Taegtmeyer H. Metabolism – the lost child of cardiology. J Am Coll Cardiol. 2000;36:1386–8.

    Article  PubMed  CAS  Google Scholar 

  126. Dzau VJ, Colucci WS, Hollenberg NK, et al. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation. 1981;63:645–51.

    Article  PubMed  CAS  Google Scholar 

  127. Re RN. Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2004;1:42–7.

    PubMed  CAS  Google Scholar 

  128. Pepper GS, Lee RW. Sympathetic activation in heart failure and its treatment with beta-blockade. Arch Intern Med. 1999;159:225–34.

    Article  PubMed  CAS  Google Scholar 

  129. Morris MJ, Cox HS, Lambert GW, et al. Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans. Hypertension. 1997;29:137–43.

    PubMed  CAS  Google Scholar 

  130. Bohm M, La Rosee K, Schwinger RH, et al. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol. 1995;25:146–53.

    Article  PubMed  CAS  Google Scholar 

  131. Engelhardt S, Bohm M, Erdmann E, et al. Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol. 1996;27:146–54.

    Article  PubMed  CAS  Google Scholar 

  132. Neely JR, Whitmer M, Mochizuki S. Effects of mechanical activity and hormones on myocardial glucose and fatty acid utilization. Circ Res. 1976;38(5 Suppl 1):I22–30.

    PubMed  CAS  Google Scholar 

  133. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43:533–49.

    Article  PubMed  CAS  Google Scholar 

  134. Marangou AG, Alford FP, Ward G, et al. Hormonal effects of norepinephrine on acute glucose disposal in humans: a minimal model analysis. Metabolism. 1988;37:885–91.

    Article  PubMed  CAS  Google Scholar 

  135. Arnlov J, Lind L, Zethelius B, et al. Several factors associated with the insulin resistance syndrome are predictors of left ventricular systolic dysfunction in a male population after 20 years of follow-up. Am Heart J. 2001;142:720–4.

    Article  PubMed  CAS  Google Scholar 

  136. Petersen KF, Dufour S, Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA. 2007;104:12587–94.

    Article  PubMed  CAS  Google Scholar 

  137. Shulman GI, Rothman DL, Jue T, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322:223–8.

    Article  PubMed  CAS  Google Scholar 

  138. Doehner W, von Haehling S, Anker SD. Insulin resistance in chronic heart failure. J Am Coll Cardiol. 2008;52:239. author reply 239–240.

    Article  PubMed  Google Scholar 

  139. Dutka DP, Pitt M, Pagano D, et al. Myocardial ­glucose transport and utilization in patients with type 2 diabetes mellitus, left ventricular dysfunction, and coronary artery disease. J Am Coll Cardiol. 2006;48:2225–31.

    Article  PubMed  CAS  Google Scholar 

  140. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial ­glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.

    Article  PubMed  CAS  Google Scholar 

  141. Nikolaidis LA, Elahi D, Shen YT, et al. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289:H2401–8.

    Article  PubMed  CAS  Google Scholar 

  142. Aasum E, Belke DD, Severson DL, et al. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol. 2002;283:H949–57.

    PubMed  CAS  Google Scholar 

  143. Aasum E, Hafstad AD, Severson DL, et al. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52:434–41.

    Article  PubMed  CAS  Google Scholar 

  144. Aasum E, Khalid AM, Gudbrandsen OA, et al. Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. J Mol Cell Cardiol. 2008;44:201–9.

    Article  PubMed  CAS  Google Scholar 

  145. Buchanan J, Mazumder PK, Hu P, et al. Reduced ­cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–9.

    Article  PubMed  CAS  Google Scholar 

  146. Hafstad AD, Solevag GH, Severson DL, et al. Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am J Physiol Heart Circ Physiol. 2006;290:H1763–9.

    Article  PubMed  CAS  Google Scholar 

  147. How OJ, Aasum E, Kunnathu S, et al. Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts. Am J Physiol Heart Circ Physiol. 2005;288:H2979–85.

    Article  PubMed  CAS  Google Scholar 

  148. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109:2191–6.

    Article  PubMed  Google Scholar 

  149. Ussher JR, Koves TR, Jaswal JS, et al. Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase. Diabetes. 2009;58:1766–75.

    Article  PubMed  CAS  Google Scholar 

  150. Brisse B, Tetsch P, Jacobs W, et al. Beta-adrenoceptor blockade in stress due to oral surgery. Br J Clin Pharmacol. 1982;13 Suppl 2:421S–7.

    PubMed  CAS  Google Scholar 

  151. Newman RJ. Comparison of the antilipolytic effect of metoprolol, acebutolol, and propranolol in man. Br Med J. 1977;2:601–3.

    Article  PubMed  CAS  Google Scholar 

  152. Fellander G, Eleborg L, Bolinder J, et al. Microdialysis of adipose tissue during surgery: effect of local alpha- and beta-adrenoceptor blockade on blood flow and lipolysis. J Clin Endocrinol Metab. 1996;81:2919–24.

    Article  PubMed  CAS  Google Scholar 

  153. Igarashi N, Nozawa T, Fujii N, et al. Influence of beta-adrenoceptor blockade on the myocardial accumulation of fatty acid tracer and its intracellular metabolism in the heart after ischemia-reperfusion injury. Circ J. 2006;70:1509–14.

    Article  PubMed  CAS  Google Scholar 

  154. Wallhaus TR, Taylor M, DeGrado TR, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation. 2001;103:2441–6.

    PubMed  CAS  Google Scholar 

  155. Eichhorn EJ, Bedotto JB, Malloy CR, et al. Effect of beta-adrenergic blockade on myocardial function and energetics in congestive heart failure. Improvements in hemodynamic, contractile, and diastolic performance with bucindolol. Circulation. 1990;82:473–83.

    Article  PubMed  CAS  Google Scholar 

  156. Eichhorn EJ, Heesch CM, Barnett JH, et al. Effect of metoprolol on myocardial function and energetics in patients with nonischemic dilated cardiomyopathy: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 1994;24:1310–20.

    Article  PubMed  CAS  Google Scholar 

  157. Panchal AR, Stanley WC, Kerner J, et al. Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail. 1998;4:121–6.

    Article  PubMed  CAS  Google Scholar 

  158. Podbregar M, Voga G. Effect of selective and nonselective beta-blockers on resting energy production rate and total body substrate utilization in chronic heart failure. J Card Fail. 2002;8:369–78.

    Article  PubMed  CAS  Google Scholar 

  159. Al-Hesayen A, Azevedo ER, Floras JS, et al. Selective versus nonselective beta-adrenergic receptor blockade in chronic heart failure: differential effects on myocardial energy substrate utilization. Eur J Heart Fail. 2005;7:618–23.

    Article  PubMed  CAS  Google Scholar 

  160. Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol. 2008;44:968–75.

    Article  PubMed  CAS  Google Scholar 

  161. Cook WS, Yeldandi AV, Rao MS, et al. Less extrahepatic induction of fatty acid beta-oxidation enzymes by PPAR alpha. Biochem Biophys Res Commun. 2000;278:250–7.

    Article  PubMed  CAS  Google Scholar 

  162. Schoonjans K, Staels B, Grimaldi P, et al. Acyl-CoA synthetase mRNA expression is controlled by fibric-acid derivatives, feeding and liver proliferation. Eur J Biochem. 1993;216:615–22.

    Article  PubMed  CAS  Google Scholar 

  163. Wayman NS, Hattori Y, McDonald MC, et al. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J. 2002;16:1027–40.

    Article  PubMed  CAS  Google Scholar 

  164. Prasad MR, Clement R, Otani H, et al. Improved myocardial performance induced by clofibrate during reperfusion after acute myocardial infarction. Can J Physiol Pharmacol. 1988;66:1518–23.

    Article  PubMed  CAS  Google Scholar 

  165. Cheng L, Ding G, Qin Q, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10:1245–50.

    Article  PubMed  CAS  Google Scholar 

  166. Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92:518–24.

    Article  PubMed  CAS  Google Scholar 

  167. Hondares E, Pineda-Torra I, Iglesias R, et al. PPARdelta, but not PPARalpha, activates PGC-1alpha gene transcription in muscle. Biochem Biophys Res Commun. 2007;354:1021–7.

    Article  PubMed  CAS  Google Scholar 

  168. Pellieux C, Montessuit C, Papageorgiou I, et al. Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha. Cardiovasc Res. 2009;82:341–50.

    Article  PubMed  CAS  Google Scholar 

  169. Planavila A, Laguna JC, Vazquez-Carrera M. Nuclear factor-kappaB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem. 2005;280:17464–71.

    Article  PubMed  CAS  Google Scholar 

  170. Burkart EM, Sambandam N, Han X, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.

    PubMed  CAS  Google Scholar 

  171. Sidell RJ, Cole MA, Draper NJ, et al. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. Diabetes. 2002;51:1110–7.

    Article  PubMed  CAS  Google Scholar 

  172. Zhu P, Lu L, Xu Y, et al. Troglitazone improves recovery of left ventricular function after regional ischemia in pigs. Circulation. 2000;101:1165–71.

    PubMed  CAS  Google Scholar 

  173. Yue TL, Bao W, Gu JL, et al. Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes. 2005;54:554–62.

    Article  PubMed  CAS  Google Scholar 

  174. Okere IC, Chandler MP, McElfresh TA, et al. Carnitine palmitoyl transferase-I inhibition is not associated with cardiac hypertrophy in rats fed a high-fat diet. Clin Exp Pharmacol Physiol. 2007;34:113–9.

    Article  PubMed  CAS  Google Scholar 

  175. Lindenfeld J, Masoudi FA. Fluid retention with thiazolidinediones: does the mechanism influence the outcome? J Am Coll Cardiol. 2007;49:1705–7.

    Article  PubMed  CAS  Google Scholar 

  176. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  PubMed  CAS  Google Scholar 

  177. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  PubMed  CAS  Google Scholar 

  178. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010; in press

    Google Scholar 

  179. Reaven GM, Chang H, Hoffman BB. Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetes. Diabetes. 1988;37:28–32.

    Article  PubMed  CAS  Google Scholar 

  180. Lopaschuk GD, McNeil GF, McVeigh JJ. Glucose oxidation is stimulated in reperfused ischemic hearts with the carnitine palmitoyltransferase 1 inhibitor, Etomoxir. Mol Cell Biochem. 1989;88:175–9.

    Article  PubMed  CAS  Google Scholar 

  181. Lopaschuk GD, Spafford MA, Davies NJ, et al. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res. 1990;66:546–53.

    PubMed  CAS  Google Scholar 

  182. Lopaschuk GD, Wall SR, Olley PM, et al. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988;63:1036–43.

    PubMed  CAS  Google Scholar 

  183. Schmitz FJ, Rosen P, Reinauer H. Improvement of myocardial function and metabolism in diabetic rats by the carnitine palmitoyl transferase inhibitor Etomoxir. Horm Metab Res. 1995;27:515–22.

    Article  PubMed  CAS  Google Scholar 

  184. Wall SR, Lopaschuk GD. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta. 1989;1006:97–103.

    PubMed  CAS  Google Scholar 

  185. Turcani M, Rupp H. Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation. 1997;96:3681–6.

    PubMed  CAS  Google Scholar 

  186. Rupp H, Vetter R. Sarcoplasmic reticulum function and carnitine palmitoyltransferase-1 inhibition during progression of heart failure. Br J Pharmacol. 2000;131:1748–56.

    Article  PubMed  CAS  Google Scholar 

  187. Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond). 2000;99:27–35.

    Article  CAS  Google Scholar 

  188. Holubarsch CJ, Rohrbach M, Karrasch M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond). 2007;113:205–12.

    Article  CAS  Google Scholar 

  189. Lee L, Campbell R, Scheuermann-Freestone M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.

    Article  PubMed  CAS  Google Scholar 

  190. Abozguia K, Elliott P, McKenna W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122:1562–9.

    Article  PubMed  CAS  Google Scholar 

  191. Kantor PF, Lucien A, Kozak R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86:580–8.

    PubMed  CAS  Google Scholar 

  192. Lopaschuk GD, Barr R, Thomas PD, et al. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res. 2003;93:e33–7.

    Article  PubMed  CAS  Google Scholar 

  193. MacInnes A, Fairman DA, Binding P, et al. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2003;93:e26–32.

    Article  PubMed  CAS  Google Scholar 

  194. Fragasso G, Perseghin G, De Cobelli F, et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J. 2006;27:942–8.

    Article  PubMed  CAS  Google Scholar 

  195. Fragasso G, Palloshi A, Puccetti P, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart ­failure. J Am Coll Cardiol. 2006;48:992–8.

    Article  PubMed  CAS  Google Scholar 

  196. Tuunanen H, Engblom E, Naum A, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation. 2008;118:1250–8.

    Article  PubMed  CAS  Google Scholar 

  197. Clarke B, Spedding M, Patmore L, et al. Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvate dehydrogenase. Br J Pharmacol. 1993;109:748–50.

    PubMed  CAS  Google Scholar 

  198. Clarke B, Wyatt KM, McCormack JG. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol. 1996;28:341–50.

    Article  PubMed  CAS  Google Scholar 

  199. McCormack JG, Baracos VE, Barr R, et al. Effects of ranolazine on oxidative substrate preference in epitrochlearis muscle. J Appl Physiol. 1996;81:905–10.

    PubMed  CAS  Google Scholar 

  200. McCormack JG, Barr RL, Wolff AA, et al. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation. 1996;93:135–42.

    PubMed  CAS  Google Scholar 

  201. Wyatt KM, Skene C, Veitch K, Hue L, et al. The antianginal agent ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria. Biochem Pharmacol. 1995;50:1599–606.

    Article  PubMed  CAS  Google Scholar 

  202. Fraser H, Belardinelli L, Wang L, et al. Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J Mol Cell Cardiol. 2006;41:1031–8.

    Article  PubMed  CAS  Google Scholar 

  203. Sossalla S, Wagner S, Rasenack EC, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts – role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45:32–43.

    Article  PubMed  CAS  Google Scholar 

  204. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart. 2006;92 Suppl 4:iv6–14.

    Article  PubMed  CAS  Google Scholar 

  205. Wang P, Fraser H, Lloyd SG, et al. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther. 2007;321:213–20.

    Article  PubMed  CAS  Google Scholar 

  206. Chandler MP, Stanley WC, Morita H, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res. 2002;91:278–80.

    Article  PubMed  CAS  Google Scholar 

  207. Sabbah HN, Chandler MP, Mishima T, et al. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J Card Fail. 2002;8:416–22.

    Article  PubMed  CAS  Google Scholar 

  208. Rastogi S, Sharov VG, Mishra S, et al. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am J Physiol Heart Circ Physiol. 2008;295:H2149–55.

    Article  PubMed  CAS  Google Scholar 

  209. Liu B, Clanachan AS, Schulz R, et al. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res. 1996;79:940–8.

    PubMed  CAS  Google Scholar 

  210. Liu Q, Docherty JC, Rendell JC, et al. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–25.

    Article  PubMed  CAS  Google Scholar 

  211. Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. 2010;3:420–30.

    Article  PubMed  Google Scholar 

  212. Bersin RM, Stacpoole PW. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J. 1997;134:841–55.

    Article  PubMed  CAS  Google Scholar 

  213. Bersin RM, Wolfe C, Kwasman M, et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol. 1994;23:1617–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research to G.D.L. G.D.L. is an Alberta Heritage Foundation for Medical Research (AHFMR) Scientist. W.K. is supported by fellowship awards from the Heart and Stroke Foundation of Canada and AHFMR. W.W. is supported by a fellowship award from AHFMR. J.R.U. is supported by fellowship awards from AHFMR and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Lopaschuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jaswal, J.S., Keung, W., Wang, W., Ussher, J.R., Lopaschuk, G.D. (2011). Molecular Changes in Fatty Acid Oxidation in the Failing Heart. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics