Skip to main content

The Genetics of Brassica oleracea

  • Chapter
  • First Online:
Book cover Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Brassica oleracea is one of the most important species of the Brassicaceae family because the species includes some of the most economically important vegetables in the world. Common heading cabbage and cauliflower are the most widely grown crops of this species, but broccoli is also now emerging rapidly as a world vegetable. The wide center of origin for this species is the Mediterranean Basin, and primitive forebears of our modern B. oleracea crop forms have been cultivated and selected for several millennia. Undoubtedly, the diverse array of wild forms found in this species and other very closely related species played very important roles in stimulating the occurrence of morphological variation within and among the B. oleracea crops as they underwent development. In the years following the rediscovery of Mendel’s work, many scientists studied the underlying genetic factors controlling the divergent morphologies within the species. This was of interest not only from a basic scientific standpoint, but also due to the practical necessity of understanding the complex sets of genes that combine and give rise to a specific crop form like heading cabbage or cauliflower. This knowledge is crucial in moving genes between crops in the process of breeding improved varieties. Secondary plant metabolites have emerged as key components of crops within this species because they appear to contribute added-value to the various crops by conferring intrinsic healthful effects on populations that consume these vegetables. Among the various components believed to confer a chemoprotective effect in B. oleracea, glucosinolates, and isothiocyanates have received the most attention in recent years and are considered in detail herein. The study of B. oleracea genetics has been greatly advanced during the modern era of gene study at the molecular level. Although the species has presented challenges, scientists focused on these crops are now mapping genes to specific chromosomes and the genome is well on its way to being sequenced. As knowledge advances at the molecular level, a fuller understanding of gene sequences and there relations to morphology, disease resistance, phytochemical make-up, and other important traits are being realized in B. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Shebaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Pl Syst Evol 259:89–120

    Google Scholar 

  • Albertin W, Brabant P, Catrice O, Eber F, Jenczewski E, Chèvre AM, Thiellement H (2005) Autopolyploidy in cabbage (Brassica oleracea L) does not alter significantly the proteomics of green tissue. Proteomics 5:2131–2139

    CAS  PubMed  Google Scholar 

  • Allgayer H (1928) Genetic investigations with garden cabbage by crossing trials by Richard Freedenberg. Z Indukt Abstamm Vererbungsl 47:191–260

    Google Scholar 

  • Armstrong ME (1933) Fusarium resistance in Wisconsin Hollander cabbage. J Agric Res 47:639–661

    Google Scholar 

  • Arnison PG, Donaldson P, Jackson A, Semple C, Keller WA (1990) Genotype specific response of cultured broccoli (Brassica oleracea var. italica) anthers to cytokinins. Plant Cell Tissue Organ 20:217–222

    CAS  Google Scholar 

  • Arus P, Orton T (1983) Inheritance and linkage relationships of isozyme loci in Brassica oleracea. J Hered 74:405–412

    CAS  Google Scholar 

  • Babula B, Kaczmarck M, Barakat A, Delseny M, Quiros CF, Sadowski J (2003) Chromosomal mapping of B. oleracea based on Arabidopsis ESTs: complexity of comparative mapping. Mol Gen Genet 268:656–665

    CAS  Google Scholar 

  • Bain DC (1955) Resistance of cabbage to black rot. Phytopathology 45:35–37

    Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    CAS  PubMed  Google Scholar 

  • Bohuon EJ, Keith DJ, Parkin IAP, Sharpe AG, Lydiate DJ (1996) Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor Appl Genet 93:833–839

    CAS  Google Scholar 

  • Boucalt L, Chauvin JE, Margale E, Herve Y (1991) Etude de caracteres morphologiques et iso-enzymatiques sur des plantes issues de culture d’ anthers chezle chou-fleur (Brassica oleracea var botrytis). Agronomie 11:727–736

    Google Scholar 

  • Branca F (2008) Cauliflower and broccoli. In: J Prohens and F Nuez (eds.) Vegetables I, pp 147–182. Springer, New York, NY

    Google Scholar 

  • Burgess B, Mountford H, Hopkins CJ, Love C, Ling AE, Spangenberg GC, Edwards D, Batley J (2006) Identification and characterization of single sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences. Mol Ecol Notes 6:1191–1194

    CAS  Google Scholar 

  • Camargo LEA, Williams PH, Osborn TC (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology 85:1296–1300

    Google Scholar 

  • Carlson DG, Daxenbichler M, VanEtten CH, Kwolek WF, Williams PH (1987) Glucosinolates in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. J Amer Soc Hort Sci 112:173–178

    CAS  Google Scholar 

  • Chen S, et al. (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937

    CAS  PubMed  Google Scholar 

  • Chevre AM, Delourme R, Eber F, Thomas G, Baron F (1989) Etudes cytologiques de choux tetraploids (Brassica oleracea var. acephala) obtenues a partir de lignees diploides apres traitement a la cochicine. Agronomie 9:521–525

    Google Scholar 

  • Chiang MS, Chong C, Landry RS, Crete R (1993) Cabbage Brassica oleracea subsp. capitata L. In: G Kalloo and BO Bergh (ed) Genetic improvement of vegetable crops, pp 113–155. Pergamon Press, Oxford

    Google Scholar 

  • Chiang MS, Crete R (1970) Inheritance of clubroot resistance in cabbage (Brassica oleracea L. var. capitata L.). Can J Genet Cytol 12:253–256

    Google Scholar 

  • Chiang MS, Crete R (1983) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea ssp. Capitata). V. the inheritance of resistance. Euphytica 32:479–483

    Google Scholar 

  • Chiang MS, Frechette S, Kuo CG, Chong C, Delafield SJ (1985) Embryogenesis and haploid plant production from anther culture of cabbage (Brassica oleracea var. capitata L.). Can J Plant Sci 65:1033–1037

    Google Scholar 

  • Chiu L, Prior RL, Wu X, Li L 2005. Toward identification of the candidate gene controlling anthocyanin accumulation in purple cauliflower (brassica oleracea l. var. botrytis).American Society of Plant Biologists Annual Meeting. P 628

    Google Scholar 

  • Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291–304

    CAS  PubMed  Google Scholar 

  • Coelho PS, Monteiro AA (2003) Inheritance of downy mildew in mature broccoli plants. Euphytica 131:65–69

    Google Scholar 

  • Constantinescu O, Fatehi J (2002) Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia 74:291–338

    Google Scholar 

  • Cordewener JHG, Custers JBM, Van Lookeren Campagne MM (1998) Microspore culture: a model for investigating the role of stress in the induction of embryogenesis. In: Chupeau Y, Caboche M and Henry Y (ed) Androgenesis and haploid plants, pp 54–68. Springer, Heidelberg

    Google Scholar 

  • Crisp P, Angell. SM (1985) Genetic control of green colour in cauliflower. Ann Appl Biol 107:601

    Google Scholar 

  • Crisp P, Tapsell CR (1992) Cauliflower. Brassica oleracea L. In: G Kalloo and BO Berg (ed) Genetic improvement of vegetable crops, pp 157–178. Pergamon Press, Oxford

    Google Scholar 

  • de Quiros C, Magrath H,R, McCallum D, Kroymann J, Schnabelrauch D, Mitchell-Olds T, Mithen. R (2000) α-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor Appl Genet 101:429–437

    Google Scholar 

  • Dickson MH, Eckenrode CJ (1975) Variation in Brassica oleracea resistance to cabbage looper and imported cabbage worm in the greenhouse and field. J Econ Entomol 68:757–760

    Google Scholar 

  • Dickson MH, Eckenrode CJ (1980) Breeding for resistance in cabbage and cauliflower to cabbage looper, imported cabbageworm, and diamondback moth. J Am Soc Hort Sci 105:782–785

    Google Scholar 

  • Dickson MD, Hunter JE (1987) Inheritance of resistance in cabbage seedlings to black rot. HortScience 22:108–109

    Google Scholar 

  • Dickson MH, Lee CY, Blamble AE (1988) Orange-curd high carotene cauliflower inbreds, NY 156, NY 163, and NY 165. HortScience 23:778–779

    Google Scholar 

  • Dickson MH, Petzholdt R (1993) Plant age and isolate source affect expression of downy mildew resistance in broccoli. HortScience 28:730–731

    Google Scholar 

  • Dickson MH, Wallace DH (1986) Cabbage breeding. In: MJ Bassett (ed). Breeding vegetable crops, pp 395–432. AVI Publishing Co., Westport, CT

    Google Scholar 

  • Diederichsen A (2001) Cruciferae: Brassica. In: Hanelt, P(ed) Institute of Plant Genetics and Crop Plant Research. Mansfeld’s encyclopedia of agricultural and horticultural crops, pp 1435–1446. Springer, Berlin

    Google Scholar 

  • Dixon GR (1981) Pathogens of crucifer crops. In: Vegetable crop diseases, pp 112–156. Macmillan Publishers LTD, London

    Google Scholar 

  • Duclose DV, Bjorkman T (2008) Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. J Exp Bot 59:421–433

    Google Scholar 

  • Duijs JG, Voorrips RE, Visser DL, Custers JBM (1992) Microspore culture is successful in most crop types of Brassica oleracea L. Eupytica 60:45–55

    Google Scholar 

  • Fabijanski SF, Altosaar I, Arnison PG (1991) Heat shock response during anther culture of broccoli (Brassica oleracea var italica). Plant Cell Tiss Org Cult 26:203–212

    Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci 94:10367–10372

    CAS  PubMed  Google Scholar 

  • Farinho M, Coelho P, Carlier J, Svetleva D, Monteiro A, Leitao J (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. Italica). Theor Appl Genet 109:1392–1398

    CAS  PubMed  Google Scholar 

  • Farnham MW (1998) Doubled-haploid broccoli production using anther culture: effect of anther source and seed set characteristics of derived lines. J Am Soc Hortic Sci 123:73–77

    Google Scholar 

  • Farnham MW, Elsey KD (1995) Recognition of Brassica oleracea L. resistance against the silverleaf whitefly. HortScience 30:343–347

    Google Scholar 

  • Farnham MW, Ruttencutter G, Smith JP, Keinath AP (2005) Hybridizing collard and cabbage may provide a means to develop collard cultivars. HortScience 40:1686–1689

    Google Scholar 

  • Farnham MW, Stephenson KK, Fahey JW (2000) The capacity of broccoli to induce a mammalian chemoprotective enzyme varies among inbred lines. J Amer Soc Hort Sci 125:482–488

    CAS  Google Scholar 

  • Farnham MW, Wang M, Thomas CE (2002) A single dominant gene for downy mildew resistance in broccoli. Euphytica 128:405–407

    CAS  Google Scholar 

  • Figdore SS, Ferreira ME, Slocum MK, Williams PH (1993) Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea L. Euphytica 69:33–44

    CAS  Google Scholar 

  • Finley JW, Davis CD (2001) Selenium (Se) from high-selenium broccoli is utilized differently than selenite, selenate and selenomethionine, but is more effective in inhibiting colon carcinogenesis. Biofactors 14:191–196

    CAS  PubMed  Google Scholar 

  • Fukui K (2003) Brassica and legume chromosomes. In: T Nagata, S Tabata (eds) Biotechnology in Agricultural and Forestry (BAF), 52, 114–141. Springer, Berlin

    Google Scholar 

  • Gao M, Li G, Potter D, McCombie WR, Quiros CF (2005) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and A. thaliana. Plant Cell Rep 25:592–598

    CAS  PubMed  Google Scholar 

  • Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C (2007) High-Density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115:277–287

    CAS  PubMed  Google Scholar 

  • Giamoustaris A, Mithen. R (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93:1006–1010

    CAS  Google Scholar 

  • Giovannellli JL, Farnham MW, Wang M, Strand AE (2002) Development of sequence characterized amplified region markers linked to downy mildew resistance in broccoli. J Amer Soc Hort Sci 127:597–601

    Google Scholar 

  • Gladis Th, Hammer K (2001) Nomenclatural notes on the Brassica oleracea-group. Genet Res Crop Evol 48:7–11

    Google Scholar 

  • Gomez-Campo C, Hinata H (1999) Biology of Brassica coenospecies. developments in plant genetics and breeding, 4. Elsevier, Amsterdam

    Google Scholar 

  • Grandclement C, Thomas G (1996) Detection and analysis of QTLs based on RAPD markers for polygenic resistance to plasmodiophora brassicae Woron in Brassica oleracea L. Theor Appl Genet 93:86–90

    Google Scholar 

  • Gray AR (1982) Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Econ Bot 36:397–410

    Google Scholar 

  • Gray AR (1992) Broccoli. Brassica oleracea L. (Italica group). In: G Kalloo and BO Berg (ed) Genetic improvement of vegetable crops, pp 61–86. Pergamon Press, Oxford

    Google Scholar 

  • Hall JC, Sytsma KJ, Iltis. HH (2001) Phylogeny of capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89:1826–1842

    CAS  Google Scholar 

  • Harberd DJ (1972) A contribution to the cyto-taxonomy of Brassica (Cruciferae) and its allies. Bot J Linn Soc 65:1–23

    Google Scholar 

  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    CAS  Google Scholar 

  • Heneen WK, Brismar K (2001) Maternal and embryonal control of seed colour by different Brassica alboglabra chromosomes. Plant Breed 120:325–329

    Google Scholar 

  • Heneen WK, Jørgensen RB (2001) Cytology, RAPD, and seed colour of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome 44:1007–1021

    CAS  PubMed  Google Scholar 

  • Herve Y (2003) Choux. In: Pitrat M and Foury C, (eds) History de legumes, des origins a l’oree du XXI siecle. INRA, Paris, France

    Google Scholar 

  • Hirai M (2006) Genetic analysis of clubroot resistance in Brassica crops. Breed Sci 56:223–229

    Google Scholar 

  • Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome specific DNA markers of Brassica and the evolution of amphidiploid and n=9 diploid species. Genome 33:131–142

    CAS  Google Scholar 

  • Howell EC, Armstrong SJ, Barker GC, et al (2005) Physical organization of the major duplication on Brassica oleracea chromosome O6 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes. Genome 48:1093–1103

    CAS  PubMed  Google Scholar 

  • Howell BC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong. SJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    CAS  PubMed  Google Scholar 

  • Ignatov A, Kuginuki Y, Hida K (1998) Race-specific reaction to black rot in Brassica oleracea. Eur J Plant Path 104:8221–8827

    Google Scholar 

  • Ignatov A, Kuginuki Y, Hida K (1999) Vascular stem resistance to black rot in Brassica oleracea. Can J Bot 77:442–446

    Google Scholar 

  • Iñiguez-Luy F, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and Brassica oleracea. Theor Appl Genet 120:31–43

    PubMed  Google Scholar 

  • Iñiguez-Luy F, Voort A, Osborn T (2008) Development of a set of public SSR markers derived from genomic sequence of rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985

    PubMed  Google Scholar 

  • Jackson SA, Cheng Z, Wang ML, Goodman HM, Jiang. J (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838

    CAS  PubMed  Google Scholar 

  • Jenczewski E, Eber F, Manzanares-Dauleux MJ, Chevre AM (2002) A strict diploid-like pairing regime is associated with tetrasomic heredity in induced autotetraploids of kale (Brassica oleracea). Plant Breed 121:177–179

    Google Scholar 

  • Jensen BD, Hockenhull J, Munk L (1999a) Seedling and adult plant resistance to downy mildew (Peronospora parasitica) in cauliflower (Brassica oleracea convar. botrytis var. botrytis). Plant Pathol 48:604–612

    Google Scholar 

  • Jensen BD, Vaerbak S, Munk L, Andersen SB (1999b) Characterization and inheritance of partial resistance to downy mildew, Peronospora parasitica, in breeding material of broccoli, Brassica oleracea convar. botrytis var. italica. Plant Breed 118:549–554

    Google Scholar 

  • Jones LR, Gilman JC (1915) The control of cabbage yellows through disease resistance. Wis Agric Exp Stn Res Bull 38

    Google Scholar 

  • Kameya T, Hinata K (1970) Induction of haploid plants from pollen grains of Brassica. Jpn J Breed 20:82–87

    Google Scholar 

  • Karpechenko GD (1927) Polyploid hybrids of Raphanus sativus L. x Brassica oleracea L. Bul Appl Bot Genet Plant Breed 7:305–410

    Google Scholar 

  • Keller WA (1984) Anther culture of Brassica. In: Cell culture and somatic cell genetics of plants, vol 1, pp 302–310. Academic Press, New York, NY

    Google Scholar 

  • Keller WA, Armstrong KC (1981) Production of anther-derived dihaploid plants in autotetraploid marrowstem kale (Brassica oleracea var. acephala). Can J Genet Cytol 23:259–265

    Google Scholar 

  • Kennard WC, Slocum MK, Figdore SS, Osborn TC (1994) Genetic analysis of morphological variation in Brassica oleracea using molecular markers. Theor Appl Genet 87:721–732

    CAS  Google Scholar 

  • Keyes KA, Honma S (1986) Inheritance of lateral suppression and leaf numberin broccoli (Brassica oleracea L. Italica group). Eucarpia Cruciferae Newslett 11:43

    Google Scholar 

  • Kianian SF, Quiros CF (1992) Trait inheritance, fertility and genomic relationships of some n=9 Brassica species. Genet Resour Crop Evol 39:165–175

    Google Scholar 

  • Koike ST, Gladders T, Paulus AO (2007) Vegetable diseases: a colour handbook, p 448. Manson Publishing Ltd, London

    Google Scholar 

  • Kopsell DA, Kopsell. DE (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci 11:499–507

    CAS  PubMed  Google Scholar 

  • Kopsell DA, Kopsell DE, Lefsrud MG, Curran-Celentano J, Dukach LE (2004) Variation in lutein, β-carotene, and chlorophyll concentrations among Brassica oleracea cultigens and seasons. HortScience 39:361–364

    CAS  Google Scholar 

  • Kowalski SP, Lan T-H, Feldmann KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510

    CAS  PubMed  Google Scholar 

  • Kristofferson KB (1924) Contributions to the genetics of brassica oleracea. Hereditas 5:297–364

    Google Scholar 

  • Kushad MM, Brown AF, Kurlich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agr Food Chem 47:1541–1548

    CAS  Google Scholar 

  • Kwan CC (1934) Inheritance of some plant characters in cabbage, Brassica oleracea var. capitata. J Agri Assoc China 126–127:81–127

    Google Scholar 

  • Labate J, Robertson L, Baldo A, Bjorkman T (2006) Inflorescence identity genes alleles are poor predictors of inflorescence type in broccoli and cauliflower. J Amer Soc Hort Sci 1311:667–673

    Google Scholar 

  • Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788

    CAS  PubMed  Google Scholar 

  • Lan TH, Paterson AH (2000) Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor Appl Genet 103:383–397

    Google Scholar 

  • Landry BS, Hubert N, Crete R, Chiang MS, Lincoln SE, Etoh T (1992) A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 35:409–420

    CAS  Google Scholar 

  • Laurens F, Thomas G (1993) Inheritance of resistance to clubroot (Plasmodiophora brassicae Wor.) in kale (Brassica oleracea ssp. acephala). Hereditas 119:253–262

    Google Scholar 

  • Li G, Gao M, Yang B, Quiros CF (2003) Gene to gene alignment between the Brassica and Arabidopsis genomes by transcriptional mapping. Theor App Genet 107:168–180

    CAS  Google Scholar 

  • Li L, Lu S, Cosman KM, Earle ED, Garvin DF, O’Neill J (2006) β-carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry 67:1177–1184

    CAS  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL- ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162:1937–1943

    CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    CAS  PubMed  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Google Scholar 

  • Louran S, Torp AM, Holme ID, Andersen SB, Jensen BD (2007) Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet Resour Crop Evol 54:1717–1725

    Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or Gene encodes a DnaJ Cysteine-rich domain-containing protein that mediates high-levels of β-Carotene accumulation. Plant Cell 18:3594–3605

    CAS  PubMed  Google Scholar 

  • Magrath R, Herron C, Giamoustaris A, Mithen R (1993) The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed 111:55–72

    CAS  Google Scholar 

  • Magrath R, Morgen M, Bano F, Parkin I, Sharpe A, Lister C, Turner J, Dean C, Lydiate D, Mithen R (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72:290–299

    CAS  Google Scholar 

  • Magruder R, Myers CH (1933) The inheritance of some plant colors in cabbage. J Agr Res 47:233–248

    Google Scholar 

  • Mahajan V, Gill HS, More TA (1995) Inheritance of downy mildew resistance in Indian cauliflower (group III). Euphytica 86:1–3

    Google Scholar 

  • McGrath JM, Quiros CF (1990) Generation of alien addition lines from synthetic B. napus: morphology, cytology, fertility, and chromosome transmission. Genome 33:374–383

    Google Scholar 

  • McGrath JM, Quiros CF, Harada JJ, Landry BS (1990) Identification of Brassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication. Mol Gen Genet 223:198–204

    CAS  PubMed  Google Scholar 

  • McNaughton IH (1973) Synthesis and sterility of Raphanobrassica. Euphytica 22:70–88

    Google Scholar 

  • Mithen R, Campos H (1996) Genetic variation of aliphatic glucosinolates in Arabidopsis thaliana and prospects for map based cloning. Entomol Exp Appl 80:202–205

    CAS  Google Scholar 

  • Mithen RF, Clarke J, Lister. C, Dean C (1995) Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74:210–215

    CAS  Google Scholar 

  • Mithen R, Faulner K, Magrath R, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106:727–734

    CAS  PubMed  Google Scholar 

  • Natti JJ, Dickson MH, Atkin JD (1967) Resistance of Brassica oleracea varieties to downy mildew. Phytopathology 57:144–147

    Google Scholar 

  • Ockendon DJ, McClenaghan R (1993) Effect of silver nitrate and 2,4 D on anther culture of Brussels sprouts (Brassica oleracea var. gemmifera). Plant Cell Tiss Org Cult 32:41–46

    CAS  Google Scholar 

  • Okendon DJ (1986) Utilization of anther culture in breeding brussels sprouts. In: Genetic manipulation in plant breeding, pp 265–375. Walter de Gruyter and Co., Berlin

    Google Scholar 

  • Olsson G, Ellestrom S (1980) Polyploid breeding in Europe. In: Hinata K and Gomez-Campo C (ed) Brassica crops and wild allies, pp 167–190. Japan Scientific Soc, Tokyo.

    Google Scholar 

  • Pease MS (1926) Genetic studies in Brassica oleracea. J Genet 16:363–385

    Google Scholar 

  • Pease MS (1927) Genetic studies in Brassica II. The Kohlrabil. J Genet 17:253–267

    Google Scholar 

  • Pelletier G, et al (1988) Use of protoplasts in plant breeding: cytoplasmic aspects. Plant Cell Organ Cult 12:173–180

    Google Scholar 

  • Pelofske PJ, Baggett JR (1979) Inheritance of internode length, plant form, and annual habit in a cross of cabbage and broccoli (Brassica oleracea var. Capitata L. and var. Italica Plenck). Euphytica 28:189–197

    Google Scholar 

  • Prakash S, Chopra. VL (1991) Cytogenetics of crop Brassicas and their allies. In: Tsuchyia T and Gupta PK (ed) Chromosome engineering in plants:genetics, breeding, evolution, pp 161–180. Elsevier Science Publishers, The Netherland

    Google Scholar 

  • Qiu D, Gao M, Li G, Quiros C (2009) Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant Cell Rept 28:649–658

    CAS  Google Scholar 

  • Quiros CF (2001) DNA-based marker Brassica maps. In: Phillips RL and Vasil JK (ed) Advances in cellular and molecular biology of plants, vol 1. DNA based Markers in Plants, pp 201–238. Kluwer Academic Publ, Dordrecht, Boston, MA, London

    Google Scholar 

  • Quiros CF, Ochoa O, Kianian SF, Douches D (1987) Analysis of the Brassica oleracea genome by the generation of B. rapa-oleracea chromosome addition lines: characterization by isozymes and rDNA genes. Theor Appl Genet 74:758–766

    CAS  Google Scholar 

  • Quiros CF, Paterson AH (2004) Gene mapping and analysis. In: Pua EC, Douglas CJ (eds) Biotechnology in agriculture and forestry, Brassica, 54, 31–64. Springer, Berlin

    Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hort Rev 19:99–215

    CAS  Google Scholar 

  • Roulund N, Hansted L, Andersen SB, Farestveit B (1990) Effect of genotype, environment and carbohydrate on anther culture response in head cabbage (Brassica oleracea L. convar. capitata (L.) Alef.). Euphytica 49:237–242

    CAS  Google Scholar 

  • Sampson DR (1967) New light on the complexities of anthocyanin inheritance in Brassica oleracea. Can J Genet Cytol 9:352–358

    Google Scholar 

  • Sauer JD (1993) Historical geography of crop plants: a selective roster. CRC Press, Boca Raton, FL

    Google Scholar 

  • Schrader O, Budahn H, Ahne R (2000) Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus sativus and Brassica napus by double fluorescence in situ hybridization. Theor Appl Genet 100:665–669

    CAS  Google Scholar 

  • Schrijver B (2002) Biotechnology applications in Brassica breeding. Proc of the 13th Crucifer Genetics Workshop. 23–26 March 2002. Davis, CA. p. 73.

    Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2002) An integratedAFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled- haploid mapping populations. Theor Appl Genet 100:75–81

    Google Scholar 

  • Smith LB, King GJ (2002) The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of cauliflower. Mol Breed 6:603–613

    Google Scholar 

  • Snogerup S (1980) The wild forms of the Brassica oleracea group (2n=18) and their possible relations to the cultivated ones. In: Tsonuda S, Hinata K, and Gomez-Campo C (ed) Brassica crops and wild allies: biology and breeding, pp 191–215. Japan Sci Soc Press, Tokyo

    Google Scholar 

  • Snogerup S, Gustafsson M, von Bothmer R (1990) Brassica sect. Brassica (Brassicaceae) 1. Taxonomy and variation. Willdenowia 19:271–365

    Google Scholar 

  • Snowdon RJ, Friedrich T, Friedt W, Köhler W (2002) Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet 104:533–538

    CAS  PubMed  Google Scholar 

  • Sommerburg O, Keune JEE, Bird AC, van Kuijk FJGM (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82:907–910

    CAS  PubMed  Google Scholar 

  • Steinmetz KA, Potter JD (1996) Vegetables, fruit and cancer prevention: A review. J Amer Diet Assoc 96:1027–1039

    CAS  Google Scholar 

  • Stoner KA (1990) Glossy leaf wax and plant resistance to insects in B. oleracea under natural infestation. Environ Entomol 19:730–739

    Google Scholar 

  • Tonguc M, Earle ED, Griffiths PD (2003) Segregation distortion of Brassica carinata derived black rot resistance in Brassica oleracea. Euphytica 134:269–276

    CAS  Google Scholar 

  • Tonguc M, Griffiths PD (2004) Genetic relationships of Brassica vegetables determined using database derived single sequence repeats. Euphytica 137:193–201

    CAS  Google Scholar 

  • USDA (2006) Vegetables 2005 summary. National Agricultural Statistics Service. Vg 1–2 (06)

    Google Scholar 

  • Vallejo F, Tomas-Barveran FA, Garcia-Viguera C (2003) Health-Promoting Compounds in Broccoli as Influenced by Refrigerated Transport and Retail Sale Period. J Sci Food Agric 83:1511–1516

    CAS  Google Scholar 

  • Vicente JG, Taylor JD, Sharpe AG, Parkin IAP, Lydiate DJ, King GJ (2002) Inheritance of race-specific resistance to Xanthomonas campestri pv. campestris in Brassica genomes. Phytopathology 92:1134–1141

    CAS  PubMed  Google Scholar 

  • Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of double haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94:75–82

    CAS  PubMed  Google Scholar 

  • Voorrips RE, Kanne HJ (1997) Genetic analysis of resistance to clubroot (Plasmodiophora brassicae) in Brassica oleracea. I. analysis of symptom grades. Euphytica 93:31–39

    Google Scholar 

  • Vriesenga JD, Honma S (1971) Inheritance of seedling resistance to clubroot in Brassica oleracea L. HortScience 6:395–396

    Google Scholar 

  • Walker JC (1930) Inheritance of Fusarium resistance in cabbage. J Agr Res 40:721–745

    Google Scholar 

  • Walker JC, Hooker WJ (1945) Plant nutrition in relation to disease development. I. cabbage yellows. Am J Bot 32:314–320

    CAS  Google Scholar 

  • Wang M, Farnham MW, Nannes JSP (1999) Ploidy of broccoli regenerated from microspore culture versus anther culture. Plant Breed 118:249–252

    Google Scholar 

  • Wang M, Farnham MW, Thomas CE (2001) Inheritance of true leaf stage downy mildew resistance in broccoli. J Amer Soc Hort Sci 126:727–729

    Google Scholar 

  • Watt LE (1966) Conformation of cauliflower curds. Euphytica 15:111–115

    Google Scholar 

  • Williams PH, Staub T, Sutton JC (1972) Inheritance of resistance in cabbage to black rot. Phytopathology 62:247–252

    Google Scholar 

  • Yang Q, Chauvin JE, Herve Y (1992) A study of factors affecting anther culture of cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss Org Cult 28:289–296

    Google Scholar 

  • Yarnell SH (1956) Cytogenetics of the vegetable crops II. Crucifers. Bot Rev 22:81–166

    Google Scholar 

  • Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–3150

    CAS  PubMed  Google Scholar 

  • Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    CAS  PubMed  Google Scholar 

  • Ziolkowski PA, Sadowski. J (2002) Fish-mapping of rDNA and Arabidopsis BACs on pachytene complements of selected brassicas. Genome 45:189–197

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Graham King for supplying Fig. 9.2., and to J. Erron Haggard for taking the picture used for Fig. 9.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. Quiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Quiros, C.F., Farnham, M.W. (2011). The Genetics of Brassica oleracea . In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_9

Download citation

Publish with us

Policies and ethics