Skip to main content

Resources for Reverse Genetics Approaches in Arabidopsis thaliana

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Having many characteristics of an ideal experimental system, Arabidopsis thaliana became a very important model system for flowering plants. Its completed genome sequence data provided scientists the first fundamental tool towards understanding its genome structure and genes that it possess. There are more than 33,000 predicted genes in Arabidopsis and this number is increasing as novel methods develop and our understanding of genome organization and regulation expands. Reverse genetics that aim to reveal the functions of all Arabidopsis genes and the related resources were next most important tools that plant scientists needed. Numerous consortia were formed to supply scientists with such resources and tools necessary to determine the functions of Arabidopsis genes. Thanks to these international community efforts, now there are around 426,000 independent T-DNA/transposon insertion lines representing near saturation of all genes in Arabidopsis available for the research community. Besides insertion lines, several other sophisticated technologies and resources crucial for large-scale gene function studies in Arabidopsis were also developed. In this chapter, we discuss most of these important reverse genetics resources for gene function analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac/Ds :

Activator/dissociation

AchrDNA:

Agrobacterium chromosomal DNA

AGI:

Arabidopsis genome initiative

AGRICOLA:

Arabidopsis genomic RNAi knock-out line analysis

AMAZE/ZIGIA:

Arabidopsis En-1 transposon insertion lines from Max-Planck-institute for plant breeding, Cologne

amiRNAs:

artificial microRNAs

CaMV:

Cauliflower mosaic virus

BLAST:

Basic local alignment search tool

DHPLC:

High-performance liquid chromatography

dsRNA:

double-stranded RNA

EMS:

Ethylmethanesulfonate

En/Spm :

Enhancer/supressor–mutator

FLAGdb:

Functional analysis of the Arabidopsis genome database, also known as INRA/Versailles lines

FST:

Flanking sequence tag

GABI-Kat:

Genomanalyse im biologischen System Pflanze Arabidopsis T-DNA lines

GFP:

Green fluorescent protein

GUS:

β-glucuronidase

LUC:

Luciferase protein

INDELS:

Insertions/deletions

MASC:

Multinational Arabidopsis steering committee

MIPS:

The Munich Institute for Protein Sequences

miRNAs:

microRNAs

NASC:

Nottingham Arabidopsis stock centre

PCR:

Polymerase chain reaction

SNPs:

Single nucleotide polymorphisms

SLAT:

Sainsbury laboratory Arabidopsis thaliana transposants

SAIL:

Syngenta Arabidopsis insertion library, formerly known as GARLIC (Gilroy Arabidopsis reverse lethal insertion collection)

SALK:

SALK institute T-DNA insertion lines

siRNA:

small interfering RNA

TAIR:

The Arabidopsis information resource

TAIL PCR:

Thermal asymmetric interlaced polymerase chain reaction

TAMARA:

Transposable element-mediated activation tagging mutagenesis in Arabidopsis

taRNAs:

Transacting RNAs

T-DNA:

Transferred DNA

TILLING:

Targeting-Induced Local Lesions In Genomes

tiling arrays:

Arrays that cover the whole genome

Ti plasmid:

Tumour inducing plasmid

TT1:

Arabidopsis transparent testa 1 protein

uidA :

Gene coding for β-glucuronidase

ZFN:

Zinc finger nuclease

References

  • Aarts MG, Corzaan P, Stiekema WJ, Pereira A (1995) A two-element enhancer-inhibitor transposon system in Arabidopsis thaliana. Mol Gen Genet 247:555–564

    CAS  PubMed  Google Scholar 

  • Aboul-Soud MA, Chen X, Kang JG, Yun BW, Raja MU, Malik SI, Loake GJ (2009) Activation tagging of ADR2 conveys a spreading lesion phenotype and resistance to biotrophic pathogens. New Phytol 183(4):1163–1175

    CAS  PubMed  Google Scholar 

  • Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    CAS  PubMed  Google Scholar 

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536

    CAS  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  Google Scholar 

  • Altmann T, Felix G, Jessop A, Kauschmann A, Uwer U, Pena-Cortes H, Willmitzer L (1995) Ac/Ds transposon mutagenesis in Arabidopsis thaliana: mutant spectrum and frequency of Ds insertion mutants. Mol Gen Genet 247:646–652

    CAS  PubMed  Google Scholar 

  • Alvarado MC, Zsigmond LM, Kovacs I, Cseplo A, Koncz C, Szabados LM (2004) Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiol 134:18–27

    CAS  PubMed  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    CAS  PubMed  Google Scholar 

  • Arabidiopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Balzergue S, Dubreucq B, Chauvin S, Le-Clainche I, Le Boulaire F, de Rose R, Samson F, Biaudet V, Lecharny A, Cruaud C et al (2001) Improved PCR-walking for large-scale isolation of plant T-DNA borders. Biotechniques 30:496–498, 502, 504

    CAS  PubMed  Google Scholar 

  • Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226

    CAS  PubMed  Google Scholar 

  • Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biologically-active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:446–449

    CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Birch RG (1997) PLANT TRANSFORMATION: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    CAS  PubMed  Google Scholar 

  • Bolle C, Herrmann RG, Oelmuller R (1996) Intron sequences are involved in the plastid- and light-dependent expression of the spinach PsaD gene. Plant J 10:919–924

    CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    CAS  PubMed  Google Scholar 

  • Bouchez D, Camillieri C, Caboche M (1993a) A binary vector based on Basta resistance for in planta transformation of Arabidopsis thaliana. C R Acad Sci Paris 316:1188–1193

    CAS  Google Scholar 

  • Bouchez D, Camillieri C, Caboche M (1993b) A binary vector based on Basta resistance for in planta transformation of Arabidopsis thaliana. CR Acad Sci Paris 316:1188–1193

    CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    CAS  PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143-150

    CAS  PubMed  Google Scholar 

  • Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999) Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J 17:699–707

    CAS  PubMed  Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    CAS  PubMed  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786

    CAS  PubMed  Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    PubMed  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810

    CAS  PubMed  Google Scholar 

  • Dierking EC, Bilyeu KD (2009) New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol 9:89

    PubMed  Google Scholar 

  • Du G, Yonekubo J, Zeng Y, Osisami M, Frohman MA (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273:5421–5427

    CAS  PubMed  Google Scholar 

  • Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland RE (2005) Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol Biol 58:333–349

    CAS  PubMed  Google Scholar 

  • Eyal Y, Curie C, McCormick S (1995) Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7:373–384

    CAS  PubMed  Google Scholar 

  • Fobert PR, Miki BL, Iyer VN (1991) Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol Biol 17:837–851

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37 table of contents

    CAS  PubMed  Google Scholar 

  • Gelvin SB, Kim SI (2007) Effect of chromatin upon agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769:410–421

    CAS  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    CAS  PubMed  Google Scholar 

  • Gilchrist EJ, O’Neil NJ, Rose AM, Zetka MC, Haughn GW (2006) TILLING is an effective reverse genetics technique for Caenorhabditis elegans. BMC Genomics 7:262

    PubMed  Google Scholar 

  • Gong JM, Waner DA, Horie T, Li SL, Horie R, Abid KB, Schroeder JI (2004) Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:15404–15409

    CAS  PubMed  Google Scholar 

  • Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–680

    CAS  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135:630–636

    CAS  PubMed  Google Scholar 

  • Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B et al (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189

    CAS  PubMed  Google Scholar 

  • Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IA, Haughn GW (2009) Forward and reverse genetics of rapid-cycling Brassica oleracea. Theor Appl Genet 118:953–961

    PubMed  Google Scholar 

  • Honma MA, Baker BJ, Waddell CS (1993) High-frequency germinal transposition of DsALS in Arabidopsis. Proc Natl Acad Sci USA 90:6242–6246

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y, Tsuhara Y, Suzuki K, Ishikawa A, Seki M, Fujita M, Motohashi R, Nagata N, Takagi T, Shinozaki K, Matsui M (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48:974–985

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Iizumi H, Goto Y, Matsui M (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J 36:421–429

    CAS  PubMed  Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H, Seki M, Shinozaki K (2002) A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    CAS  PubMed  Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Noutoshi Y, Seki M, Kamiya A, Mizukado S, Sakurai T, Shinozaki K (2005) A resource of 5,814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5. Plant Cell Physiol 46:1149–1153

    CAS  PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    CAS  PubMed  Google Scholar 

  • Jun JH, Kim CS, Cho DS, Kwak JM, Ha CM, Park YS, Cho BH, Patton DA, Nam HG (2002) Random antisense cDNA mutagenesis as an efficient functional genomic approach in higher plants. Planta 214:668–674

    CAS  PubMed  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    CAS  PubMed  Google Scholar 

  • Kertbundit S, De Greve H, Deboeck F, Van Montagu M, Hernalsteens JP (1991) In vivo random beta-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88: 5212–5216

    CAS  PubMed  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278

    CAS  PubMed  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    CAS  PubMed  Google Scholar 

  • Koornneef M, Dellaert LW, van der Veen JH (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123

    CAS  PubMed  Google Scholar 

  • Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, Sakurai T, Akiyama K, Kamiya A, Ito T, Shinozaki K (2004) A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J 37:897–905

    CAS  PubMed  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    CAS  PubMed  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N, Vuylsteke M, Scholkopf B, Ratsch G, Weigel D (2008) At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 9:R112

    PubMed  Google Scholar 

  • LeClere S, Bartel B (2001) A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol Biol 46:695–703

    CAS  PubMed  Google Scholar 

  • Li X, Lassner M, Zhang Y (2002b) Deleteagene: a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics 3:158–160

    CAS  PubMed  Google Scholar 

  • Li Y, Rosso MG, Ulker B, Weisshaar B (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics 87:645–652

    CAS  PubMed  Google Scholar 

  • Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002a) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213–222

    CAS  PubMed  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    CAS  PubMed  Google Scholar 

  • Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    CAS  PubMed  Google Scholar 

  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci USA 95:2021–2026

    CAS  PubMed  Google Scholar 

  • May BP, Martienssen RA (2003) Transposon mutagenesis in the study of plant development. CRC Crit Rev Plant Sci 22:1–35

    CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    CAS  PubMed  Google Scholar 

  • McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA, Tossberg J, Nickle T, Levin JZ, Law M, Meinke D, Patton D (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159:1751–1763

    CAS  PubMed  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282(662):679–682

    Google Scholar 

  • Meinke D, Scholl R (2003) The preservation of plant genetic resources. Experiences with Arabidopsis. Plant Physiol 133:1046–1050

    CAS  PubMed  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    CAS  PubMed  Google Scholar 

  • Mengiste T, Amedeo P, Paszkowski J (1997) High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 1’ promoter. Plant J 12:945–948

    CAS  PubMed  Google Scholar 

  • Mizoi J, Nakamura M, Nishida I (2006) Defects in CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE affect embryonic and postembryonic development in Arabidopsis. Plant Cell 18:3370–3385

    CAS  PubMed  Google Scholar 

  • Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7:454–459

    CAS  PubMed  Google Scholar 

  • Mun JH, Lee SY, Yu HJ, Jeong YM, Shin MY, Kim H, Lee I, Kim SG (2002) Petunia actin-depolymerizing factor is mainly accumulated in vascular tissue and its gene expression is enhanced by the first intron. Gene 292:233–243

    CAS  PubMed  Google Scholar 

  • Muskett PR, Clissold L, Marocco A, Springer PS, Martienssen R, Dean C (2003) A resource of mapped dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome. Plant Physiol 132:506–516

    CAS  PubMed  Google Scholar 

  • Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, Kawashima M, Suzuki K, Muto S, Matsui M (2003) Activation tagging, a novel tool to dissect the functions of a gene family. Plant J 34:741–750

    CAS  PubMed  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323

    CAS  PubMed  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial micro RNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    CAS  PubMed  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    CAS  PubMed  Google Scholar 

  • Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    CAS  PubMed  Google Scholar 

  • Papdi C, Abraham E, Joseph MP, Popescu C, Koncz C, Szabados L (2008) Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol 147:528–542

    CAS  PubMed  Google Scholar 

  • Parinov S, Sevugan M, Ye D, Yang W-C, Kumaran M, Sundaresan V (1999). Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270

    CAS  PubMed  Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650

    CAS  PubMed  Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume lotus japonicus. Plant Physiol 131:866–871

    CAS  PubMed  Google Scholar 

  • Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93:105–111

    CAS  PubMed  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458–1460

    CAS  PubMed  Google Scholar 

  • Puchta H, Hohn B (2005) Green light for gene targeting in plants. Proc Natl Acad Sci USA 102:11961–11962

    CAS  PubMed  Google Scholar 

  • Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M (2009) TILLING in lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective EMS alleles towards glycine replacements. Plant Physiol 151(3)1281–1291

    CAS  PubMed  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22:3142–3152

    CAS  PubMed  Google Scholar 

  • Rensing SA, Fritzowsky D, Lang D, Reski R (2005) Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics 6:43

    PubMed  Google Scholar 

  • Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    CAS  PubMed  Google Scholar 

  • Robinson SJ, Tang LH, Mooney BA, McKay SJ, Clarke WE, Links MG, Karcz S, Regan S, Wu YY, Gruber MY, Cui D, Yu M, Parkin IA (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol 9:101

    PubMed  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    CAS  PubMed  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    CAS  PubMed  Google Scholar 

  • Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the pto kinase gene cluster. Cell 86:123–133

    CAS  PubMed  Google Scholar 

  • Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, Caboche M, Lecharny A (2002) FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucleic Acids Res 30:94–97

    CAS  PubMed  Google Scholar 

  • Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA (2005) Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct Integr Genomics 5:240–253

    CAS  PubMed  Google Scholar 

  • Schneider A, Kirch T, Gigolashvili T, Mock HP, Sonnewald U, Simon R, Flugge UI, Werr W (2005) A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Lett 579:4622–4628

    CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial micro RNAs in Arabidopsis. Plant Cell 18:1121–1133

    CAS  PubMed  Google Scholar 

  • Seki H, Nishizawa T, Tanaka N, Niwa Y, Yoshida S, Muranaka T (2005) Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol 59:793–807

    CAS  PubMed  Google Scholar 

  • Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 311:1544–1546

    CAS  PubMed  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    CAS  PubMed  Google Scholar 

  • Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527–2537

    CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Smits BM, Mudde J, Plasterk RH, Cuppen E (2004) Target-selected mutagenesis of the rat. Genomics 83:332–334

    CAS  PubMed  Google Scholar 

  • Speulman E, Metz PL, van Arkel G, te Lintel Hekkert B, Stiekema WJ, Pereira A (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11:1853–1866

    CAS  PubMed  Google Scholar 

  • Steinmetz LM, Davis RW (2004) Maximizing the potential of functional genomics. Nat Rev Genet 5:190–201

    CAS  PubMed  Google Scholar 

  • Sun T, Goodman HM, Ausubel FM (1992) Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4:119–128

    CAS  PubMed  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    CAS  PubMed  Google Scholar 

  • Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S (2000) The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol 124:1465–1467

    CAS  PubMed  Google Scholar 

  • Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213–223

    CAS  PubMed  Google Scholar 

  • Talame V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485

    CAS  PubMed  Google Scholar 

  • Teeri TH, Herrera-Estrella L, Depicker A, Van Montagu M, Palva ET (1986) Identification of plant promoters in situ by T-DNA-mediated transcriptional fusions to the npt-II gene. EMBO J 5:1755–1760

    CAS  PubMed  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    CAS  PubMed  Google Scholar 

  • Thomas CM, Jones DA, English JJ, Carroll BJ, Bennetzen JL, Harrison K, Burbidge A, Bishop GJ, Jones JD (1994) Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet 242: 573–585

    CAS  PubMed  Google Scholar 

  • Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Steine MN, Comai L, Henikoff S (2003a) High-throughput TILLING for functional genomics. Methods Mol Biol 236:205–220

    CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    PubMed  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JD (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852

    CAS  PubMed  Google Scholar 

  • Topping JF, Agyeman F, Henricot B, Lindsey K (1994) Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J 5:895–903

    CAS  PubMed  Google Scholar 

  • Topping JF, Wei W, Lindsey K (1991) Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019

    CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    CAS  PubMed  Google Scholar 

  • Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, Hotz-Wagenblatt A, Barrionuevo LS, Lichter P, Mertens D (2008) Off-target effects of siRNA specific for GFP. BMC Mol Biol 9:60

    PubMed  Google Scholar 

  • Ülker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008a) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017

    PubMed  Google Scholar 

  • Ülker B, Peiter E, Dixon DP, Moffat C, Capper R, Bouche N, Edwards R, Sanders D, Knight H,, Knight MR (2008b) Getting the most out of publicly available T-DNA insertion lines. Plant J 56(4):665–677

    PubMed  Google Scholar 

  • van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971–4980

    PubMed  Google Scholar 

  • Van Montagu M (2003) Jeff schell (1935–2003): steering Agrobacterium-mediated plant gene engineering. Trends Plant Sci 8:353–354

    PubMed  Google Scholar 

  • Walden R, Fritze K, Hayashi H, Miklashevichs E, Harling H, Schell J (1994) Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol Biol 26:1521–1528

    CAS  PubMed  Google Scholar 

  • Wang S, Sim TB, Kim YS, Chang YT (2004) Tools for target identification and validation. Curr Opin Chem Biol 8:371–377

    CAS  PubMed  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    CAS  PubMed  Google Scholar 

  • Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    CAS  PubMed  Google Scholar 

  • Wilson K, Long D, Swinburne J, Coupland G (1996) A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659–671

    CAS  PubMed  Google Scholar 

  • Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S, Furthauer M, Kuhrs A, Cobreros L, Brand M, Gonzalez-Gaitan M (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15:718–723

    CAS  PubMed  Google Scholar 

  • Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B (1998) Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci USA 95:12432–12437

    CAS  PubMed  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr., Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    CAS  PubMed  Google Scholar 

  • Wu GZ, Shi QM, Niu Y, Xing MQ, Xue HW (2008) Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Res 36:D1044–D1047

    CAS  PubMed  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    PubMed  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    CAS  PubMed  Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    CAS  PubMed  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    CAS  PubMed  Google Scholar 

  • Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Chen G, Liu H, Han B, Zhang Q, Wu C (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    CAS  PubMed  Google Scholar 

  • Zhang S, Raina S, Li H, Li J, Dec E, Ma H, Huang H, Fedoroff NV (2003) Resources for targeted insertional and deletional mutagenesis in Arabidopsis. Plant Mol Biol 53:133–150

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    CAS  PubMed  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Ülker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ülker, B., Weisshaar, B. (2011). Resources for Reverse Genetics Approaches in Arabidopsis thaliana . In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_19

Download citation

Publish with us

Policies and ethics