Skip to main content

Violin

  • Chapter
  • First Online:
Book cover The Science of String Instruments

Abstract

The first known violins were built in Italy in the early 1500s. While not much is yet known about the instrument’s prior development, European forebears include the rebec and the Renaissance fiddle, which themselves evolved from instruments found in the ancient Eastern world. The violin brought together in a particularly happy way features seen in a variety of earlier stringed instruments. Arched plates increased the stiffness-to-mass ratio of the body, creating a more brilliant sound and helping resist long-term deformation. A pronounced waist gave the bow access to the outermost strings, while the precisely calibrated curves of fingerboard and bridge enabled the strings to be played individually as well as in two-, three-, and even four-part chords. In contrast to the viola da gamba and guitar, the violin’s top and back plates overhung the ribs, allowing easy removal for repairs, thus contributing to the instrument’s fabled longevity. A graceful outline, harmonious proportions, and the minimal use of ornamentation together lent the violin a timeless beauty – explaining in part why it has resisted significant stylistic modification to this day. For a discussion of historical string instruments, see Chap. 17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso Moral J, Jansson E (1982) Input admittance, eigenmodes, and quality of violins. Report STL-QPSR 2-3/1982, pp. 60–75. Speech Transmaission Laboratory, Royal Institute of Technology (KTH), Stockholm.

    Google Scholar 

  • Barlow CY (1997) Materials selection for musical instruments. Proceedings of the Institute of Acoustics, 19, part 5, 69.

    Google Scholar 

  • Bissinger G (2003) Model analysis of a violin octet. J. Acoust. Soc. Am. 113, 2105.

    Article  ADS  Google Scholar 

  • Bissinger G (2004) The role of radiation damping in violin sound. ARLO 5(3), 82.

    Article  Google Scholar 

  • Bissinger G (2006) The violin bridge as filter. J. Acoust. Soc. Am. 120, 482.

    Article  ADS  Google Scholar 

  • Bissinger G (2008) Structural acoustics of good and bad violins. J. Acoust. Soc. Am. 124, 1764.

    Article  ADS  Google Scholar 

  • Bissinger G and Gregorian A (2003) Relating normal mode properties of violins to overall quality signature modes. J. Catgut Acoust. Soc. 4(8), 37.

    Google Scholar 

  • Boutin H, Besnainou C (2008) Physics parameters of the violin bridge changed by active control. Proceedings of the Acoustics 2008, Paris, 4189.

    Google Scholar 

  • Bretos J, Santamaria C, Alonso Moral J (1999) Vibrational patterns and frequency responses of the free plates and box of a violin obtained by finite-element analysis. J. Acoust. Soc. Am. 105, 1942.

    Article  ADS  Google Scholar 

  • Cremer L (1984) The Physics of the Violin. MIT Press, Cambridge, MA.

    Google Scholar 

  • Curtin J (1997) The reciprocal bow as a workshop tool. J. Catgut Acoust. Soc. 3(3), 2d Series, 15.

    Google Scholar 

  • Curtin J (2006) Taptones and weight of Old Italian violin tops. VSA Papers 1(2), 161.

    Google Scholar 

  • Dünnwald H (1991) Deduction of objective quality parameters on old and new violins. J. Catgut Acoust. Soc. 1(7), 2d Series, 1.

    Google Scholar 

  • Farina A, Langhoff A, Tronchin L (1995) Realization of “virtual” musical instruments: measurements of the impulse response of violins using MLS technique. Proceedings of the CIARM95, Ferrara (Italy), 19.

    Google Scholar 

  • Fletcher HA, Sanders LC (1967) Quality of violin vibrato tones. J. Acoust. Soc. Am. 41, 1534.

    Article  ADS  Google Scholar 

  • Friedlander FG (1953) On the oscillations of the bowed string. Proc. Camb. Philol. Soc. 49, 516.

    Article  ADS  MATH  Google Scholar 

  • Fritz C, Cross I, Moore BCJ, Woodhouse J (2007) Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin. J. Acoust. Soc. Am. 122, 3640.

    Article  ADS  Google Scholar 

  • Gorrill S (1975) A viola with electronically synthesized resonances. Catgut Acoust. Soc. Newsletter 24, 1.

    Google Scholar 

  • Güttler K, Askenfelt A (1997) Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks. J. Acoust. Soc. Am. 101, 2903.

    Article  ADS  Google Scholar 

  • Haines DW (1979) On musical instrument wood. Catgut Acoust. Soc. Newsletter 31, 23.

    Google Scholar 

  • Harris N (2005) On graduating the thickness of violin plates to achieve tonal repeatability. VSA Papers 1(1), 111.

    Google Scholar 

  • Hutchins CM (1975) Musical Acoustics, Part I:. Violin Family Components. Dowden, Hutchinson and Ross, Stroudsburg, PA.

    Google Scholar 

  • Hutchins CM (1976) Musical Acoustics, Part II:. Violin Family Functions, Dowden, Hutchinson and Ross, Stroudsburg, PA.

    Google Scholar 

  • Hutchins CM (1991) A rationale for bi-tri octave plate tuning. J. Catgut Acoust. Soc. 1(8), 2d Series, 36.

    Google Scholar 

  • Hutchins CM, Stetson KA, Taylor PA (1971) Clarification of “free plate tap tones” by holographic interferometry. Catgut Acoust. Soc. Newsletter 16, 15.

    Google Scholar 

  • Jansson EV, Molin N-E, Sundin H (1970) Resonances of a violin studied by hologram interferometry and acoustical methods. Phys. Scripta 2, 243.

    Article  ADS  Google Scholar 

  • Jansson EV, Bork I, Meyer J (1986) Investigation into the acoustical properties of the violin, Acustica 62, 1.

    Google Scholar 

  • Jansson EV, Frydén L, Mattsson G (1990) On tuning the violin bridge. J. Catgut Acoust. Soc. 1(6), 2d Series, 11.

    Google Scholar 

  • Keller JB (1953) Bowing of violin strings. Comm. Pure Appl. Math. 6(4), 483.

    Article  MathSciNet  MATH  Google Scholar 

  • Knott G (1987) A modal analysis of the violin using MSC/Nastran and Patran, MS thesis, Naval Postgraduate School, Monterey, CA.

    Google Scholar 

  • Langhoff A (1994) Measurement of acoustic violin spectra and their interpretation using a 3D representation. Acustica 80, 505.

    Google Scholar 

  • Loos U (1995) Investigation of projection of violin tones; reviewed by Martin Schleske (2003) J. Catgut Acoust. Soc. 4(8), 72.

    Google Scholar 

  • Lucchi Elasticity Tester, developed by and available from G. Lucchi & Sons Workshop, Cremona, Italy: http://www.lucchi-n-sons.com

  • Marshall KD (1985) Modal analysis of a violin. J. Acoust. Soc. Am. 77, 695–709.

    Article  ADS  Google Scholar 

  • Mathews MV, Kohut J (1973) Electronic simulation of violin resonances. J. Acoust. Soc. Am. 53, 1620.

    Article  ADS  Google Scholar 

  • McIntyre ME, Woodhouse J (1978) The acoustics of stringed musical instruments. Interdiscip. Sci. Rev. 3, 157.

    Article  Google Scholar 

  • McIntyre ME, Woodhouse J (1981) Aperiodicity in bowed string motion. Acustica 49, 13.

    Google Scholar 

  • Meinel HF (1957) Regarding the sound quality of violins and a scientific basis for violin construction. J. Acoust. Soc. Am. 29, 56.

    Article  Google Scholar 

  • Mellody M, Wakefield G (2000) The time-frequency characteristics of violin vibrato: modal distribution analysis and synthesis. J. Acoust. Soc. Am. 107, 598.

    Article  ADS  Google Scholar 

  • Möckel O (1930) Die kunst des geigenbaues. Verlag von Bernh. Friedr. Voigt, Leipzig.

    Google Scholar 

  • Molin N-E (2007) Optical methods for acoustics and vibration masurements. In: Rossing TD (ed) Springer Handbook of Acoustics. Springer, New York, pp. 1101–1125.

    Chapter  Google Scholar 

  • Moral JA (1984) From properties of free top plates, of free back plates and of ribs to properties of assembled violins. STL-QPSR 25(1), 1.

    MathSciNet  Google Scholar 

  • Müller HA (1979) The function of the violin bridge. Catgut Acoust. Soc. Newsletter 31, 19.

    Google Scholar 

  • Müller HA, Geissler P (1983) Modal analysis applied to instruments of the violin family. SMAC 83, Royal Academy of Music, Stockholm.

    Google Scholar 

  • Müller G, Lauterborn W (1996) The bowed string as a nonlinear dynamical system. Acustica 82, 657.

    Google Scholar 

  • Powell RL, Stetson KA (1965) Interferometric vibration analysis by wavefront reconstruction. J. Opt. Soc. Am. 55, 1593.

    Article  ADS  Google Scholar 

  • Reinecke W (1973) Übertragungseigenschaften des Streichinstrumentenstegs. Catgut Acoust. Soc. Newsletter 13, 21.

    Google Scholar 

  • Reinecke W, Cremer L (1970) Application of holographic interferometry to vibrations of the bodies of string instruments. J. Soc. Am. 48, 988.

    Google Scholar 

  • Richardson MH (1997) Is it a mode shape or an operating deflection shape? Sound Vib 31(1), 54.

    Google Scholar 

  • Roberts M, Rossing TD (1997) Normal modes of vibration in violins. J. Catgut Acoust. Soc. 3(5), 3.

    Google Scholar 

  • Rogers O, Anderson P (2001) Finite-element analysis of a violin corpus. J. Catgut Acoust. Soc. 4(4), 12.

    Google Scholar 

  • Rodgers OE, Masino TR (1990) The effect of wood removal on bridge frequencies. J. Catgut Acoust. Soc. 1(6), 2d Series, 6.

    Google Scholar 

  • Rodgers OE (2005) Tonal tests of prizewinning violins at the 2004 VSA competition. VSA Papers 1(1), 75.

    Google Scholar 

  • Rossing TD (2007a) Modal analysis. In: Rossing TD (ed) Springer Handbook of Acoustics. Springer, New York, pp. 1127–1138.

    Chapter  Google Scholar 

  • Rossing TD (2007b) Observing and labeling resonances of violins, Paper 3-P1-1, Proceedings of ISMA 2007, Barcelona.

    Google Scholar 

  • Rossing TD, Molin N-E, Runnemalm A (2003) Modal analysis of violin bodies viewed as three-dimensional structures. J. Acoust. Soc. Am. 114, 2438.

    Article  ADS  Google Scholar 

  • Runnemalm A, Molin N-E, Jansson EV (2000) On operating deflection shapes of the violin body including in-plane motions. J. Acoust. Soc. Am. 107, 3452.

    Article  ADS  Google Scholar 

  • Saldner HO, Molin N-E, Jansson EV (1996) Vibration modes of the violin forced via the bridge and action of the soundpost. J. Acoust. Soc. Am. 100, 1168.

    Article  ADS  Google Scholar 

  • Schelleng JC (1963) The violin as a circuit. J. Acoust. Soc. Am. 35, 326.

    Article  ADS  Google Scholar 

  • Schleske M (1996) Eigenmodes of vibration in the working process of the violin. J. Catgut Acoust. Soc. 3(1), 2.

    Google Scholar 

  • Schleske M (2002) Empirical tools in contemporary violin making. Part II: Psychoacoustic analysis and use of acoustical tools. J. Catgut Acoust. Soc. 4(5), 2d Series, 43.

    Google Scholar 

  • Schleske M Criteria for rating the sound quality of violins. http://www.schleske.de/en/our-research/handbook-violinacoustics/rating-the-sound-quality.html.

  • Stoel BC, Borman TM (2008) A comparison of wood density between classical Cremonese and modern violins. PLoS One 3(7), e2554. doi:10.1371/journal.pone.0002554.

    Article  ADS  Google Scholar 

  • Weinreich G (1997a) Directional tone color. J. Acoust. Soc. Am. 101, 2338.

    Article  ADS  Google Scholar 

  • Weinreich G (1997b) Personal conversation.

    Google Scholar 

  • Weinreich G, Caussé R (1991) Elementary stability considerations for bowed-string motion. J. Acoust. Soc. Am. 89, 887.

    Article  ADS  Google Scholar 

  • Weinreich G, Holmes C, Mellody M (2000) Air-wood coupling and the Swiss cheese violin. J. Acoust. Soc. Am. 108 (5 Pt 1), 2389.

    Article  ADS  Google Scholar 

  • Woodhouse J (1993) On the playability of the violin. Part II: Minimum bow force and transients. Acustica 78, 137.

    Google Scholar 

  • Woodhouse J (1998) The acoustics of “A 0B 0 mode matching” in the violin. Acustica Acta Acustica 84, 947.

    Google Scholar 

  • Woodhouse J (2002) Body vibration of the violin – What can a maker expect to control? J. Catgut Acoust. Soc. 4(5), 2d Series, 43.

    Google Scholar 

  • Woodhouse J (2005) On the ‘bridge hill’ of the violin. Acustica/Acta Acustica 91, 155.

    Google Scholar 

  • Woodhouse J, Galluzzo PM (2004) The bowed string as we know it today. Acta Acustica/Acustica 90, 579.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Colin Gough, Gabriel Weinreich, and Jim Woodhouse for their many valuable comments, insights, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Rossing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Curtin, J., Rossing, T.D. (2010). Violin. In: Rossing, T. (eds) The Science of String Instruments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7110-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7110-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7109-8

  • Online ISBN: 978-1-4419-7110-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics