Skip to main content

Liver Zonation

  • Chapter
  • First Online:

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

Abstract

Maintenance of liver homeostasis relies on the metabolic ­function of this organ. To carry out these metabolic functions at a maximal possible efficiency, hepatocytes are both quiescent and highly specialized. They specialize as a function based on their position along the porto-central axis of the liver lobule that determines their fate as either “periportal” (PP), or “perivenous” (PV) hepatocytes. This zonation of function mainly affects ammonia detoxification, glucose/energy metabolism, and xenobiotic metabolism. Over the last 30 years, since the initial discovery of liver zonation, the mechanisms by which this zonation is established and maintained have been widely investigated. The Wnt/β(beta)-catenin developmental pathway has been recently shown to play a key role in this functional heterogeneity of mouse hepatocytes. It is activated in perivenous hepatocytes, partly due to the absence, in the perivenous area, of adenomatous polyposis coli (APC), a tumor suppressor gene product. APC is a negative regulator of Wnt signaling, also described as the “zonation-keeper” of the liver lobule. The Wnt pathway induces the PV genetic program and represses the PP genetic program. The ras/mapk/erk pathway acts in a reciprocal manner to counterbalance Wnt signaling and favors a PP genetic program. More recently, a cross-talk between the transcription factor Hnf4α(alpha) and Wnt signaling has been proposed as a potential mechanism of liver zonation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Katz N, Teutsch HF, Jungermann K, Sasse D. Heterogeneous ­reciprocal localization of fructose-1, 6-bisphosphatase and of ­glucokinase in microdissected periportal and perivenous rat liver tissue. FEBS Lett. 1977;83(2):272–6.

    Article  PubMed  CAS  Google Scholar 

  2. Jungermann K, Kietzmann T. Zonation of parenchymal and ­nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203.

    Article  PubMed  CAS  Google Scholar 

  3. Braeuning A, Ittrich C, Kohle C, et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006;273(22):5051–61.

    Article  PubMed  CAS  Google Scholar 

  4. Berkowitz CM, Shen CS, Bilir BM, Guibert E, Gumucio JJ. Different hepatocytes express the cholesterol 7 alpha-hydroxylase gene during its circadian modulation in vivo. Hepatology. 1995;21(6):1658–67.

    PubMed  CAS  Google Scholar 

  5. Gebhardt R, Baldysiak-Figiel A, Krugel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. Prog Histochem Cytochem. 2007;41(4):201–66.

    Article  PubMed  CAS  Google Scholar 

  6. Gebhardt R, Lindros K, Lamers WH, Moorman AF. Hepatocellular heterogeneity in ammonia metabolism: demonstration of limited colocalization of carbamoylphosphate synthetase and glutamine synthetase. Eur J Cell Biol. 1991;56(2):464–7.

    PubMed  CAS  Google Scholar 

  7. Haussinger D, Lamers WH, Moorman AF. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme. 1992;46(1–3):72–93.

    PubMed  CAS  Google Scholar 

  8. Notenboom RG, Moorman AF, Lamers WH. Developmental appearance of ammonia-metabolizing enzymes in prenatal murine liver. Microsc Res Tech. 1997;39(5):413–23.

    Article  PubMed  CAS  Google Scholar 

  9. Bralet MP, Branchereau S, Brechot C, Ferry N. Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol. 1994;144(5):896–905.

    PubMed  CAS  Google Scholar 

  10. Tygstrup N, Winkler K, Mellemgaard K, Andreassen M. Determination of the hepatic arterial blood flow and oxygen supply in man by clamping the hepatic artery during surgery. J Clin Invest. 1962;41:447–54.

    Article  PubMed  CAS  Google Scholar 

  11. Cadoret A, Ovejero C, Terris B, et al. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene. 2002;21(54):8293–301.

    Article  PubMed  CAS  Google Scholar 

  12. Benhamouche S, Decaens T, Godard C, et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell. 2006;10(6):759–70.

    Article  PubMed  CAS  Google Scholar 

  13. Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology. 2006;43(3):407–14.

    Article  PubMed  CAS  Google Scholar 

  14. Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006;43(4):817–25.

    Article  PubMed  CAS  Google Scholar 

  15. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    Article  PubMed  CAS  Google Scholar 

  16. Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10(4):276–86.

    Article  PubMed  CAS  Google Scholar 

  17. Nusse R, Fuerer C, Ching W, et al. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol. 2008;73:59–66.

    Google Scholar 

  18. de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA. 1998;95(15):8847–51.

    Article  Google Scholar 

  19. Audard V, Grimber G, Elie C, et al. Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol. 2007;212(3):345–52.

    Article  PubMed  CAS  Google Scholar 

  20. Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52.

    Article  PubMed  CAS  Google Scholar 

  21. Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA. 2004;101(49):17216–21.

    Article  PubMed  CAS  Google Scholar 

  22. Cavard C, Colnot S, Audard V, et al. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 2008;4(5):647–60.

    Article  PubMed  CAS  Google Scholar 

  23. Braeuning A, Sanna R, Huelsken J, Schwarz M. Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos. 2009;37(5):1138–45.

    Article  PubMed  CAS  Google Scholar 

  24. Chafey P, Finzi L, Boisgard R, et al. Proteomic analysis of ­beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics. 2009;9(15):3889–900.

    Article  PubMed  CAS  Google Scholar 

  25. Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137(1):62–79.

    Article  PubMed  CAS  Google Scholar 

  26. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134(12):2207–17.

    Article  PubMed  CAS  Google Scholar 

  27. Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signaling positively regulates liver specification. Nature. 2006;442(7103):688–91.

    Article  PubMed  CAS  Google Scholar 

  28. Decaens T, Godard C, de Reynies A, et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology. 2008;47(1):247–58.

    Article  PubMed  CAS  Google Scholar 

  29. Tan X, Yuan Y, Zeng G, et al. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology. 2008;47(5):1667–79.

    Article  PubMed  CAS  Google Scholar 

  30. Apte U, Zeng G, Thompson MD, et al. Beta-catenin is critical for early postnatal liver growth. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1578–85.

    Article  PubMed  CAS  Google Scholar 

  31. Zeng G, Awan F, Otruba W, et al. Wnt’er in liver: expression of Wnt and frizzled genes in mouse. Hepatology. 2007;45(1):195–204.

    Article  PubMed  CAS  Google Scholar 

  32. Lee VM, Cameron RG, Archer MC. Zonal location of compensatory hepatocyte proliferation following chemically induced hepatotoxicity in rats and humans. Toxicol Pathol. 1998;26(5):621–7.

    PubMed  CAS  Google Scholar 

  33. Sell S. The hepatocyte: heterogeneity and plasticity of liver cells. Int J Biochem Cell Biol. 2003;35(3):267–71.

    Article  PubMed  CAS  Google Scholar 

  34. Andreu P, Colnot S, Godard C, et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development. 2005;132(6):1443–51.

    Article  PubMed  CAS  Google Scholar 

  35. Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18(12):1385–90.

    Article  PubMed  CAS  Google Scholar 

  36. Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 2008;47(1):288–95.

    Article  PubMed  CAS  Google Scholar 

  37. Hu M, Kurobe M, Jeong YJ, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133(5):1579–91.

    Article  PubMed  CAS  Google Scholar 

  38. Cadoret A, Ovejero C, Saadi-Kheddouci S, et al. Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res. 2001;61(8):3245–9.

    PubMed  CAS  Google Scholar 

  39. Harada N, Miyoshi H, Murai N, et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res. 2002;62(7):1971–7.

    PubMed  CAS  Google Scholar 

  40. Cavard C, Terris B, Grimber G, et al. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with beta-catenin mutations. Oncogene. 2006;25(4):599–608.

    Article  PubMed  CAS  Google Scholar 

  41. Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446(7136):676–9.

    Article  PubMed  CAS  Google Scholar 

  42. Sekine S, Gutierrez PJ, Lan BY, Feng S, Hebrok M. Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology. 2007;45(2):361–8.

    Article  PubMed  CAS  Google Scholar 

  43. Reed KR, Athineos D, Meniel VS, et al. B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proc Natl Acad Sci USA. 2008;105(48):18919–23.

    Article  PubMed  CAS  Google Scholar 

  44. Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology. 2006;131(5):1561–72.

    Article  PubMed  CAS  Google Scholar 

  45. Vlad A, Rohrs S, Klein-Hitpass L, Muller O. The first five years of the Wnt targetome. Cell Signal. 2008;20(5):795–802.

    Article  PubMed  CAS  Google Scholar 

  46. Braeuning A, Menzel M, Kleinschnitz EM, et al. Serum components and activated Ha-ras antagonize expression of perivenous marker genes stimulated by beta-catenin signaling in mouse hepatocytes. FEBS J. 2007;274(18):4766–77.

    Article  PubMed  CAS  Google Scholar 

  47. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res. 2004;64(1):48–54.

    Article  PubMed  CAS  Google Scholar 

  48. Battle MA, Konopka G, Parviz F, et al. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci USA. 2006;103(22):8419–24.

    Article  PubMed  CAS  Google Scholar 

  49. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001;21(4):1393–403.

    Article  PubMed  CAS  Google Scholar 

  50. Inoue Y, Hayhurst GP, Inoue J, Mori M, Gonzalez FJ. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4alpha (HNF4alpha). HNF4alpha regulates ­ornithine transcarbamylase in vivo. J Biol Chem. 2002;277(28):25257–65.

    Article  PubMed  CAS  Google Scholar 

  51. Odom DT, Zizlsperger N, Gordon DB, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303(5662):1378–81.

    Article  PubMed  CAS  Google Scholar 

  52. Parviz F, Matullo C, Garrison WD, et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 2003;34(3):292–6.

    Article  PubMed  CAS  Google Scholar 

  53. Lindros KO, Oinonen T, Issakainen J, Nagy P, Thorgeirsson SS. Zonal distribution of transcripts of four hepatic transcription factors in the mature rat liver. Cell Biol Toxicol. 1997;13(4–5):257–62.

    Article  PubMed  CAS  Google Scholar 

  54. Colletti M, Cicchini C, Conigliaro A, et al. Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology. 2009;137(2):660–72.

    Article  PubMed  CAS  Google Scholar 

  55. Stanulovic VS, Kyrmizi I, Kruithof-de Julio M, et al. Hepatic HNF4alpha deficiency induces periportal expression of glutamine synthetase and other pericentral enzymes. Hepatology. 2007;45(2):433–44.

    Article  PubMed  CAS  Google Scholar 

  56. Hatzis P, van der Flier LG, van Driel MA, et al. Genome-wide ­pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol. 2008;28(8):2732–44.

    Article  PubMed  CAS  Google Scholar 

  57. Braeuning A, Ittrich C, Kohle C, Buchmann A, Schwarz M. Zonal gene expression in mouse liver resembles expression patterns of Ha-ras and beta-catenin mutated hepatomas. Drug Metab Dispos. 2007;35(4):503–7.

    Article  PubMed  CAS  Google Scholar 

  58. Lee JS, Chu IS, Mikaelyan A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet. 2004;36(12):1306–11.

    Article  PubMed  CAS  Google Scholar 

  59. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations ­associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120(7):1763–73.

    Article  PubMed  CAS  Google Scholar 

  60. Zucman-Rossi J, Benhamouche S, Godard C, et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene. 2007;26(5):774–80.

    Article  PubMed  CAS  Google Scholar 

  61. Hoehme et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration Proc Natl Acad Sci USA. 2010;107(23):10371–6.

    Google Scholar 

Download references

Acknowledgments

We warmly thank Drs Jan Hengstler (IFADo, Dortmund, Germany), Stefan Hoehme and Dirk Drasdo (INRIA, France) for providing their three-dimensional reconstruction of the liver lobule (Fig. 2.1a) [61]. This work was supported by INSERM, CNRS and the “Ligue Nationale Contre le Cancer” (LNCC, Comité de Paris, équipe Labellisée 2008), the ANR-07-PHYSIO and the CANCERSYS European network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Colnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Colnot, S., Perret, C. (2011). Liver Zonation. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics