Skip to main content

Hepatic Progenitors in Development and Transplantation

  • Chapter
  • First Online:
  • 3634 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

Abstract

The rationale for studies to repopulate the liver with transplanted cells is essentially based on three observations: (1) The well-known finding that the liver can fully regenerate after acute hepatotoxic injury or surgical reduction in liver mass, (2) the regenerated liver functions normally, without long-term impairment, and (3) a unique portal (venous to venous) circulation exists in the liver that provides ready access of transplanted cells to the parenchyma through the hepatic sinusoids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol. 1931;12:186–202.

    Google Scholar 

  2. Grisham JW. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver: autoradiography with thymidine-H3. Cancer Res. 1962;22:842–9.

    PubMed  CAS  Google Scholar 

  3. Grisham JW, Thorgeirsson SS. Liver stem cells. In: Potten CS, editor. Stem cells. London: Academic; 1997. p. 233–82.

    Google Scholar 

  4. Dong J, Feldman G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    PubMed  CAS  Google Scholar 

  5. Grossman M, Rader DJ, Muller WM, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Nat Med. 1995;1:1148–54.

    PubMed  CAS  Google Scholar 

  6. Bucher NLR, Swaffield MN. The rate of incorporation of labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Res. 1964;240:1611–25.

    Google Scholar 

  7. Rajvanshi PA, Kerr A, Bhargava KK, Burk RD, Gupta S. Studies on liver repopulation using the dipeptidyl peptidase IV deficient rat and other rodent recipients: cell size and structure relationships regulate capacity for increased transplanted hepatocytes mass in the liver lobule. Hepatology. 1996;23:482–96.

    PubMed  CAS  Google Scholar 

  8. Rajvanshi P, Kerr A, Bhargava KK, Burk RD, Gupta S. Efficacy and safety of repeated hepatocyte transplantation for significant liver repopulation in rodents. Gastroenterology. 1996;111:1092–102.

    PubMed  CAS  Google Scholar 

  9. Sangren EP, Palmiter RD, Keckel JL, et al. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell. 1991;66:245–56.

    Google Scholar 

  10. Rhim J, Sangren EP, Degan JL, Palmiter RD, Brinster RL. Replacement of diseased mouse liver by hepatic cell transplantation. Science. 1994;263:1149–52.

    PubMed  CAS  Google Scholar 

  11. Overturf K, Al-Dhalimy M, Tanguay R, Brantly M, Ou CN, Finegold M, et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet. 1996;12:266–73.

    PubMed  CAS  Google Scholar 

  12. Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992;340:813–7.

    PubMed  CAS  Google Scholar 

  13. Al-Dhalimy M, Overturf K, Finegold M, Grompe M. Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol Genet Metab. 2002;75:38–45.

    PubMed  CAS  Google Scholar 

  14. Overturf K, Al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol. 1997;51:1273–80.

    Google Scholar 

  15. Laconi E, Oren R, Mukhopadhyay DK, Hurston E, Laconi S, Pani P, et al. Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am J Pathol. 1998;153:319–29.

    PubMed  CAS  Google Scholar 

  16. Guo D, Fu T, Nelson JA, Superina RA, Soriano HE. Liver repopulation after cell transplantation in mice treated with retrorsine and carbon tetrachloride. Transplantation. 2002;73:1818–24.

    PubMed  CAS  Google Scholar 

  17. Nierhoff D, Ogawa A, Oertel M, Chen YQ, Shafritz DA. Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology. 2005;42:130–9.

    PubMed  Google Scholar 

  18. Witek RP, Fisher SH, Petersen BE. Monocrotaline, an alternative to retrorsine-based hepatocyte transplantation in rodents. Cell Transplant. 2005;14:41–7.

    PubMed  Google Scholar 

  19. Oren R, Dabeva M, Petkov P, Hurston E, Laconi E, Shafritz DA. Restoration of normal serum albumin levels in Nagase analbuminemic rats using a newly described strategy for hepatocyte transplantation. Hepatology. 1999;29:75–81.

    PubMed  CAS  Google Scholar 

  20. Guha C, Sharma A, Gupta S, Alfieri A, Gorla GR, Gagandeep S, et al. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation. Cancer Res. 1999;59:5871–4.

    PubMed  CAS  Google Scholar 

  21. Malhi H, Gorla GR, Irani AN, Annamaneni P, Gupta S. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation. Proc Natl Acad Sci USA. 2002;99:13114–9.

    PubMed  CAS  Google Scholar 

  22. Oren R, Dabeva MD, Karnezis AN, Petkov PM, Rosencrantz R, Sandhu JP, et al. Role of thyroid hormone in stimulating liver repopulation by transplanted hepatocytes. Hepatology. 1999;30:903–13.

    PubMed  CAS  Google Scholar 

  23. Landis CS, Yamanouchi K, Shou H, Mohan S, Roy-Chowdhury N, Shafritz DA, et al. Noninvasive evaluation of liver repopulation by transplanted hepatocytes using 31P MRS imaging in mice. Hepatology. 2006;44:1250–8.

    PubMed  CAS  Google Scholar 

  24. Mignon A, Guidotti JE, Mitchell C, Fabre M, Wernet A, De La Coste A, et al. Selective repopulation of normal mouse liver by Fas/CD-95 resistant hepatocytes. Nat Med. 1998;4:1185–8.

    PubMed  CAS  Google Scholar 

  25. Yuan RH, Ogawa A, Ogawa E, Neufeld D, Zhu L, Shafritz DA. p27Kip1 inactivation provides a proliferative advantage to transplanted hepatocytes in DPPIV/Rag2 double knockout mice after repeated host liver injury. Cell Transplant. 2003;12:907–19.

    PubMed  Google Scholar 

  26. Farber E. Similarities of the sequence of the early histological changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956;16:142–8.

    PubMed  CAS  Google Scholar 

  27. Lemire JM, Shiojiri N, Fausto N. Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am J Pathol. 1991;139:535–52.

    PubMed  CAS  Google Scholar 

  28. Dabeva MD, Shafritz DA. Activation, proliferation and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. Am J Pathol. 1993;143:1606–20.

    PubMed  CAS  Google Scholar 

  29. Sells MA, Katyal SL, Shinozuka H, Estes LW, Sell S, Lombardi B. Isolation of oval cells and transitional cells from the livers of rats fed the carcinogen DL-ethionine. J Natl Cancer Inst. 1981;66:355–62.

    PubMed  CAS  Google Scholar 

  30. Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B, et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 2001;34:519–22.

    PubMed  CAS  Google Scholar 

  31. Yin L, Lynch D, Sell S. Participation of different cell types in the restitutive response of the rat liver to periportal injury induced by allyl alcohol. J Hepatol. 1999;31:497–507.

    PubMed  CAS  Google Scholar 

  32. Factor VM, Radaeva SA, Thorgeirsson SS. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol. 1994;145:409–22.

    PubMed  CAS  Google Scholar 

  33. Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Invest. 1999;79:103–9.

    PubMed  CAS  Google Scholar 

  34. Tatematsu M, Ho RH, Kaku T, Ekem JK, Farber E. Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorine and partial hepatectomy. Am J Pathol. 1984;114:418–30.

    PubMed  CAS  Google Scholar 

  35. Evarts RP, Nagy P, Marsden E, Thorgeirsson SS. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987;8:1737–40.

    PubMed  CAS  Google Scholar 

  36. Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 1989;49:1541–7.

    PubMed  CAS  Google Scholar 

  37. Fujio K, Evarts RP, Hu Z, Marsden ER, Thorgeirsson SS. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest. 1994;70:511–6.

    PubMed  CAS  Google Scholar 

  38. Omori N, Omori M, Evarts RP, Teramoto T, Miller MJ, Hoang TN, et al. Partial cloning of rat CD34 cDNA and expression during stem cell-dependent liver cell regeneration in the adult rat. Hepatology. 1997;26:720–7.

    PubMed  CAS  Google Scholar 

  39. Omori M, Omori N, Evarts RP, Teramoto T, Thorgeirsson SS. Co-expression of flt-3 ligand/flt-3 and SCF/c-kit signal transduction systems in bile duct ligand SI and W mice. Am J Pathol. 1997;150:1179–87.

    PubMed  CAS  Google Scholar 

  40. Omori N, Evarts RP, Omori M, Hu Z, Marsden ER, Thorgeirsson SS. Expression of leukemia inhibitory factor and its receptor during liver regeneration in the adult rat. Lab Invest. 1996;75:15–24.

    PubMed  CAS  Google Scholar 

  41. Petersen B, Grossbard B, Hatch H, Pi L, Deng J, Scott EW. Mouse A6 positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology. 2003;37:632–40.

    PubMed  Google Scholar 

  42. Wright N, Samuelson L, Walkup MH, Chandrasekaran P, Gerber DA. Enrichment of a bipotent hepatic progenitor cell from naïve adult liver tissue. Biochem Biophys Res Comm. 2008;366:367–72.

    PubMed  CAS  Google Scholar 

  43. Sackett SD, Li Z, Reginald H, Yan G, Wells RG, Brondell K, et al. Fox11 is a marker of bipotential hepatic progenitor cells in mice. Hepatology. 2009;49:920–9.

    PubMed  CAS  Google Scholar 

  44. Paku S, Schnur J, Nagy P, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001;158:1313–23.

    PubMed  CAS  Google Scholar 

  45. Crosby HA, Kelly DA, Strain AJ. Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Gastroenterology. 2001;120:534–44.

    PubMed  CAS  Google Scholar 

  46. Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology. 1998;27:433–45.

    PubMed  CAS  Google Scholar 

  47. Suzuki A, Zheng Y, Kondo R, Kusakabe M, Takada Y, Fukao K, et al. Flow cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology. 2000;32:1230–9.

    PubMed  CAS  Google Scholar 

  48. Tanimizu N, Nishikawa M, Saito H, Tsujimura T, Miyajima A. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci. 2003;116:1775–86.

    PubMed  CAS  Google Scholar 

  49. Dezso K, Jelnes P, László V, Baghy K, Bödör C, Paku S, et al. Thy-1 is expressed in hepatic myofibroblasts and not oval cells in stem cell-mediated liver regeneration. Am J Pathol. 2007;171:1529–37.

    PubMed  CAS  Google Scholar 

  50. Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C, Dabeva MD. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology. 2007;45:139–49.

    PubMed  CAS  Google Scholar 

  51. Yovchev MI, Zhang J, Neufeld DS, Grozdanov PN, Dabeva MD. Thymus cell antigen-1 expressing cells in the oval cell compartment. Hepatology. 2009;50:601–11.

    PubMed  CAS  Google Scholar 

  52. Dunsford HA, Sell S. Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Res. 1989;49:4887–93.

    PubMed  CAS  Google Scholar 

  53. Hixson DC, Faris RA, Thompson NL. An antigenic portrait of the liver during carcinogenesis. Pathobiology. 1990;58:65–77.

    PubMed  CAS  Google Scholar 

  54. Faktor VM, Engel’gardt NV, Iazova AK, Lazareva MN, Poltoranina VS, Rudinskaia TD. Common antigens of oval cells and cholangiocytes in the mouse. Their detection by using monoclonal antibodies. Ontogenez. 1990;21:625–32.

    PubMed  CAS  Google Scholar 

  55. Dorrell C, Erker L, Lanxon-Cookson KM, Abraham SL, Victoroff T, Ro S, et al. Surface markers for the murine oval cell response. Hepatology. 2008;48:1282–91.

    PubMed  CAS  Google Scholar 

  56. Faris RA, Hixson DC. Selective proliferation of chemically altered rat liver epithelial cells following hepatic transplantation. Transplantation. 1989;48:87–92.

    PubMed  CAS  Google Scholar 

  57. Dabeva MD, Hwang S-G, Vasa SRG, Hurston E, Novikoff PM, Hixson DC, et al. Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc Natl Acad Sci USA. 1997;94:7356–61.

    PubMed  CAS  Google Scholar 

  58. Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell. 2009;16:358–73.

    PubMed  CAS  Google Scholar 

  59. Wang X, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am J Pathol. 2001;158:571–9.

    PubMed  CAS  Google Scholar 

  60. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci USA. 2003;100:11881–8.

    PubMed  CAS  Google Scholar 

  61. Song S, Witek RP, Lu Y, Choi YK, Zheng D, Jorgensen M, et al. Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology. 2004;40:918–24.

    PubMed  CAS  Google Scholar 

  62. Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C, Dabeva MD. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology. 2008;47:636–47.

    PubMed  CAS  Google Scholar 

  63. Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H, Nakauchi H, et al. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology. 2008;48:1964–78.

    PubMed  CAS  Google Scholar 

  64. Arends B, Vankelecom H, Vander Borght S, Roskams T, Penning LC, Rothuizen J, et al. The dog liver contains a “side population” of cells with hepatic progenitor-like characteristics. Stem Cells Dev. 2009;18:343–50.

    PubMed  CAS  Google Scholar 

  65. Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci USA. 2000;97:12132–7.

    PubMed  CAS  Google Scholar 

  66. Coleman WB, McCullough KD, Esoh GL, Faris RA, Hixson DC, Smith GJ, et al. Evaluation of the differentiation potential of WB-F344 rat liver epithelial stem-like cells in vivo. Differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficient rat liver. Am J Pathol. 1997;151:353–9.

    PubMed  CAS  Google Scholar 

  67. Yasui O, Miura N, Terada K, Kawarada Y, Koyama K, Sugiyama T. Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology. 1997;25:329–34.

    PubMed  CAS  Google Scholar 

  68. Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, Nakauchi H, et al. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol. 2002;156:173–84.

    PubMed  CAS  Google Scholar 

  69. Strick-Marchand H, Morosan S, Charneau P, Kremsdorf D, Weiss MC. Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. Proc Natl Acad Sci USA. 2004;101:8360–5.

    PubMed  CAS  Google Scholar 

  70. Fougere-Deschatrette C, Imaizumi-Scherrer T, Strick-Marchand H, Morosan S, Charneau P, Kremsdorf D, et al. Plasticity of hepatic cell differentiation: bipotential adult mouse liver clonal cell lines competent to differentiate in vitro and in vivo. Stem Cells. 2006;24:2098–109.

    PubMed  CAS  Google Scholar 

  71. Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci. 2002;115:2679–88.

    PubMed  CAS  Google Scholar 

  72. Mahieu-Caputo D, Allain JE, Branger J, Coulomb A, Delgado JP, Andreoletti M, et al. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Hum Gene Ther. 2004;15:1219–28.

    PubMed  CAS  Google Scholar 

  73. Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, et al. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA. 2006;103:9912–7.

    PubMed  CAS  Google Scholar 

  74. Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells. 2002;20:561–72.

    PubMed  Google Scholar 

  75. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437:275–80.

    PubMed  CAS  Google Scholar 

  76. Lee HS, Crane GG, Merok JR, Tunstead JR, Hatch NL, Panchalingam K, et al. Clonal expansion of adult rat hepatic stem cell lines by suppression of asymmetric cell kinetics (SACK). Biotechnol Bioeng. 2003;83:760–71.

    PubMed  CAS  Google Scholar 

  77. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63.

    PubMed  CAS  Google Scholar 

  78. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104:233–45.

    PubMed  CAS  Google Scholar 

  79. Blanpain C, Lowry WE, Geoghehan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635–48.

    PubMed  CAS  Google Scholar 

  80. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature. 2007;449:238–42.

    PubMed  CAS  Google Scholar 

  81. Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND. The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology. 2008;47:1994–2002.

    PubMed  Google Scholar 

  82. Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays. 2002;4:91–8.

    Google Scholar 

  83. DuBois AM. The embryonic liver. In: Rouiller CH, editor. The liver. New York: Academic; 1963.

    Google Scholar 

  84. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41:956–67.

    PubMed  CAS  Google Scholar 

  85. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322:1490–4.

    PubMed  CAS  Google Scholar 

  86. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003.

    PubMed  CAS  Google Scholar 

  87. Rossi JM, Dunn NR, Hogan BLM, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001;15:1998–2009.

    PubMed  CAS  Google Scholar 

  88. Shiojiri N, Lemire JM, Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 1991;51:2611–20.

    PubMed  CAS  Google Scholar 

  89. Fausto N. Liver regeneration. J Hepatol. 2000;32:19–31.

    PubMed  CAS  Google Scholar 

  90. Barth RK, Gross KW, Gremke LC, Hastie ND. Developmentally regulated mRNAs in mouse liver. Proc Natl Acad Sci USA. 1982;79:500–4.

    PubMed  CAS  Google Scholar 

  91. Meehan RR, Barlow DP, Hill RE, Hogan BL, Hastie ND. Pattern of serum protein gene expression in mouse visceral yolk sac and fetal liver. EMBO J. 1984;3:1881–5.

    PubMed  CAS  Google Scholar 

  92. Van Den Hoff MJB, Vermeulen JLM, De Boer PAJ, Lamers WH, Moorman AFM. Developmental changes in the expression of the liver-enriched transcription factors LF-B1, C/EBP, DBP and LAP/LIP in relation to the expression of albumin, α-fetoprotein, carbamoylphosphate synthase and lactase mRNA. Histochem J. 1994;26:20–31.

    PubMed  Google Scholar 

  93. Marceau N, Blouin M-J, Noel M, Torok N, Loranger A. The role of bipotential progenitor cells in liver ontogenesis and neoplasia. In: Sirica AE, editor. The role of cell types in hepatocarcinogenesis. Boca Raton: CRC; 1992. p. 121–49.

    Google Scholar 

  94. Tanimizi N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004;117:3165–74.

    Google Scholar 

  95. Dabeva MD, Petkov PM, Sandhu J, Oren R, Laconi E, Hurston E, et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol. 2000;156:2017–31.

    PubMed  CAS  Google Scholar 

  96. Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol. 2001;159:1323–34.

    PubMed  CAS  Google Scholar 

  97. Petkov PM, Zavadil J, Goetz D, Chu T, Carver R, Rogler CE, et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology. 2004;39:617–27.

    PubMed  CAS  Google Scholar 

  98. Van Eyken R, Sciot R, Desmet V. Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Lab Invest. 1988;59:52–9.

    PubMed  Google Scholar 

  99. Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology. 2006;130:507–20.

    PubMed  Google Scholar 

  100. Haridass D, Yuan Q, Becker PD, Cantz T, Iken M, Rothe M, et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol. 2009;175:1483–92.

    PubMed  CAS  Google Scholar 

  101. Shafritz DA, Oertel M, Menthena A, Nierhoff D, Dabeva MD. Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology. 2006;43:S89–98.

    PubMed  CAS  Google Scholar 

  102. Moreno E, Basler K. dMyc transforms cells into super-competitors. Cell. 2004;117:117–29.

    PubMed  CAS  Google Scholar 

  103. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila myc regulates organ size by inducing cell competition. Cell. 2004;117:107–16.

    PubMed  Google Scholar 

  104. Oertel M, Menthena A, Chen Y-Q, Shafritz DA. Properties of cryopreserved fetal liver stem/progenitor cells that exhibit long-term repopulation of the normal rat liver. Stem Cells. 2006;24:2244–51.

    PubMed  Google Scholar 

  105. Oertel M, Menthena A, Chen Y-Q, Teisner B, Harken-Jensen C, Shafritz DA. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology. 2008;134:823–32.

    PubMed  CAS  Google Scholar 

  106. Goodell MA. Stem-cell “plasticity”: befuddled by the muddle. Curr Opin Hematol. 2003;10:208–13.

    PubMed  Google Scholar 

  107. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116:639–48.

    PubMed  CAS  Google Scholar 

  108. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39:1477–87.

    PubMed  Google Scholar 

  109. Thorgeirsson SS, Grisham JW. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology. 2006;43:2–8.

    PubMed  Google Scholar 

  110. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168–70.

    PubMed  CAS  Google Scholar 

  111. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, et al. Deriviation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology. 2000;31:235–40.

    PubMed  CAS  Google Scholar 

  112. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, et al. Liver from bone marrow in humans. Hepatology. 2000;32:11–6.

    PubMed  CAS  Google Scholar 

  113. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, et al. Hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.

    PubMed  CAS  Google Scholar 

  114. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–34.

    PubMed  CAS  Google Scholar 

  115. Menthena A, Deb N, Oertel M, Grozdanov PN, Sandhu J, Shah S, et al. Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells. 2004;22:1049–61.

    PubMed  Google Scholar 

  116. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416:542–5.

    PubMed  CAS  Google Scholar 

  117. Ying Q-L, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002;416:545–8.

    PubMed  CAS  Google Scholar 

  118. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422:897–901.

    PubMed  CAS  Google Scholar 

  119. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;42:901–4.

    Google Scholar 

  120. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425:968–73.

    PubMed  CAS  Google Scholar 

  121. Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66.

    PubMed  CAS  Google Scholar 

  122. Camargo FD, Finegold M, Goodell MA. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest. 2004;113:1266–70.

    PubMed  CAS  Google Scholar 

  123. Willenbring H, Bailey AS, Foster M, Akkari Y, Dorrell C, Olson S, et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med. 2004;10:744–8.

    PubMed  CAS  Google Scholar 

  124. Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med. 2003;9:1520–7.

    PubMed  CAS  Google Scholar 

  125. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K, et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology. 2003;124:1891–900.

    PubMed  Google Scholar 

  126. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Lack of a fusion requirement for development of bone marrow-derived epithelia. Science. 2004;305:90–3.

    PubMed  CAS  Google Scholar 

  127. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. 2004;6:532–739.

    PubMed  CAS  Google Scholar 

  128. Danet GH, Luongo JL, Butler G, Lu MM, Tenner AJ, Simon MC, et al. ClqRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci USA. 2002;99:10441–5.

    PubMed  CAS  Google Scholar 

  129. Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood. 2003;101:4201–8.

    PubMed  CAS  Google Scholar 

  130. Kakinuma S, Tanaka Y, Chinzei R, Watanabe M, Shimizu-Saito K, Hara Y, et al. Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells. 2003;21:217–27.

    PubMed  Google Scholar 

  131. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003;112:160–9.

    PubMed  CAS  Google Scholar 

  132. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002;109:1291–302.

    PubMed  CAS  Google Scholar 

  133. Jiang J, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    PubMed  CAS  Google Scholar 

  134. Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.

    PubMed  CAS  Google Scholar 

  135. Brulport M, Schormann W, Bauer A, Hermes M, Elsner C, Hammersen FJ, et al. Fate of extrahepatic human stem and precursor cells after transplantation into mouse livers. Hepatology. 2007;46:861–70.

    PubMed  Google Scholar 

  136. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134:2111–21.

    PubMed  Google Scholar 

  137. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell types under minimal damage conditions. J Cell Sci. 2004;117:5655–64.

    PubMed  CAS  Google Scholar 

  138. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood. 2005;106:756–63.

    PubMed  CAS  Google Scholar 

  139. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, Dollinger M, et al. Functional integration of human mesenchymal stem cell-derived hepatocytes into mouse livers. Gut. 2007;56:405–15.

    PubMed  CAS  Google Scholar 

  140. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219–28.

    PubMed  CAS  Google Scholar 

  141. Sgodda M, Aurich H, Kleist S, Aurich I, König S, Dollinger MM, et al. Hepatocyte differentiation of mesencymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res. 2007;313:2875–86.

    PubMed  CAS  Google Scholar 

  142. Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacheam AM, Zon LI, et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 2001;497:15–9.

    PubMed  CAS  Google Scholar 

  143. Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester LM. Hepatic differentiation of murine embryonic stem cells. Exp Cell Res. 2002;272:15–22.

    PubMed  CAS  Google Scholar 

  144. Yamada T, Yoshikawa M, Kanda S, Kato Y, Nakajima Y, Ishizaka S, et al. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells. 2002;20:146–54.

    PubMed  Google Scholar 

  145. Yamamoto H, Quinn G, Asari A, Yamanokuchi H, Teratani T, Terada M, et al. Differentiation of embryonic stem cells into hepatocytes: Biological functions and therapeutic application. Hepatology. 2003;37:983–93.

    PubMed  CAS  Google Scholar 

  146. Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 2003;12:1–11.

    PubMed  Google Scholar 

  147. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, et al. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004;131:1651–62.

    PubMed  CAS  Google Scholar 

  148. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:1402–11.

    PubMed  CAS  Google Scholar 

  149. Heo J, Factor JM, Uren T, Takahama Y, Lee JS, Major M, et al. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology. 2006;44:1478–86.

    PubMed  CAS  Google Scholar 

  150. Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells. 2007;25:3058–68.

    PubMed  CAS  Google Scholar 

  151. Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9.

    PubMed  CAS  Google Scholar 

  152. Slack JMW. Origin of stem cells in organogenesis. Organ Dev. 2008;322:1498–501.

    CAS  Google Scholar 

  153. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    PubMed  CAS  Google Scholar 

  154. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    PubMed  CAS  Google Scholar 

  155. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    PubMed  CAS  Google Scholar 

  156. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development. 2009;136:509–23.

    PubMed  CAS  Google Scholar 

  157. Roskams T, Van Den OJJ, De Vos R, Desmer VJ. Neuroendocrine features of reactive bile ductules in cholestatis liver disease. Am J Pathol. 1990;137:1019–25.

    PubMed  CAS  Google Scholar 

  158. Demetris AJ, Seaberg EE, Wennerberg A, Lonellie J, Michalopoulos G. Ductular reaction after submassive necrosis in humans: special emphasis on analysis of ductular hepatocytes. Am J Pathol. 1996;149:439–48.

    PubMed  CAS  Google Scholar 

  159. Roskams T, De Vos R, Van Eyken P, Myazaki H, Van Damme B, Desmer V. Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol. 1998;29:455–63.

    PubMed  CAS  Google Scholar 

  160. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739–45.

    PubMed  Google Scholar 

  161. Zhou H, Rogler LE, Teperman L, Morgan G, Rogler CE. Identification of hepatocytic and bile ductular cell lineages and candidate stem cells in bipolar ductular reactions in cirrhotic human liver. Hepatology. 2007;45:716–24.

    PubMed  Google Scholar 

  162. Haruna Y, Saito K, Spaulding S, Nalesnik MA, Gerber MA. Identification of bipotential progenitor cells in human liver development. Hepatology. 1996;23:476–81.

    PubMed  CAS  Google Scholar 

  163. Schmelzer E, Wauthier E, Reid L. The phenotypes of pluripotent human hepatic progenitors. Stem Cells. 2006;24:1852–8.

    PubMed  CAS  Google Scholar 

  164. Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 2007;204:1973–87.

    PubMed  CAS  Google Scholar 

  165. Dandri M, Burda MR, Török E, Pollok JM, Iwanska A, Sommer G, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology. 2001;33:981–8.

    PubMed  CAS  Google Scholar 

  166. Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165:901–12.

    PubMed  CAS  Google Scholar 

  167. Meuleman P, Libbrecht L, De Vos R, de Hemptinne B, Gevaert K, Vandekerckhove J, et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology. 2005;41:847–56.

    PubMed  CAS  Google Scholar 

  168. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/I12rg−/− mice. Nat Biotechnol. 2007;25:903–10.

    PubMed  CAS  Google Scholar 

  169. Yoshida Y, Tokusashi Y, Lee GH, Ogawa K. Intrahepatic transplantation of normal hepatocytes prevents Wilson’s disease in Long-Evans cinnamon rats. Gastroenterology. 1996;111:1654–60.

    PubMed  CAS  Google Scholar 

  170. Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointestinal Liver Physiol. 2004;286:G851–62.

    CAS  Google Scholar 

  171. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA 2010;107:1437–42.

    Google Scholar 

  172. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.

    Google Scholar 

  173. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010;51:329–35.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anna Caponigro and Emily Bobe for assistance in typing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Shafritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shafritz, D.A., Oertel, M., Dabeva, M.D. (2011). Hepatic Progenitors in Development and Transplantation. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics