Skip to main content

Physical Exercise, Sports, and Diabetes

  • Chapter
  • First Online:
Book cover Hormone Use and Abuse by Athletes

Part of the book series: Endocrine Updates ((ENDO,volume 29))

  • 999 Accesses

Abstract

Physical exercise is an appropriate and effective medicine to cure and prevent type 2 diabetes mellitus. It exerts positive effects mainly by increasing insulin sensitivity in the most important insulin-sensitive tissue: skeletal muscle. In muscle, exercise promotes insulin action, mitochondrial biogenesis and activity, and lipid and glucose oxidation. There is evidence in the literature about the efficacy of both aerobic and endurance training in ameliorating glucose control. The combination of both types of exercise has greater beneficial effects. Motivation of the great majority of subjects with type 2 diabetes to long-term practice of exercise is possible if it is conducted with simple and reproducible strategies of counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hossain P, Kawar B et al. Obesity and diabetes in the developing world – a growing challenge. N Engl J Med 2007; 356: 213–215.

    Article  CAS  PubMed  Google Scholar 

  2. Maffeis C. Physical activity: an effective way to control weight in children? Nutr Metab Cardiovasc Dis 2007; 17: 394–408.

    Article  PubMed  Google Scholar 

  3. Hood DA, Salem A. Exercise-induced mitochondrial biogenesis in skeletal muscle. Nutr Metab Cardiovasc Dis 2007; 17: 332–337.

    Article  CAS  PubMed  Google Scholar 

  4. Baron AD, Brechtel G, Wallace P, Edelman SV. Rates and tissue sites on non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 1988; 255: E769–E774.

    CAS  PubMed  Google Scholar 

  5. Laaksonen DE et al. Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 2002; 25: 1612–1618.

    Article  PubMed  Google Scholar 

  6. Brage S et al. European Youth Heart Study (EYHS). Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children: the European Youth Heart Study (EYHS). Diabetes Care 2004; 27: 2141–2148.

    Article  PubMed  Google Scholar 

  7. Wisloff U, Najjar SM et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 2005; 307: 418–420.

    Article  CAS  PubMed  Google Scholar 

  8. Kelley DE et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51: 2944–2950.

    Article  CAS  PubMed  Google Scholar 

  9. De Feo P, Stocchi V. Physical activity for the treatment and prevention of metabolic syndrome. Nutr Metab Cardiovasc Dis 2007; 17: 327–331.

    Article  Google Scholar 

  10. Guescini M et al. Fine needle aspiration coupled with real-time PCR: a painless methodology to study adaptive functional changes in skeletal muscle. Nutr Metab Cardiovasc Dis 2007; 17: 383–393.

    Article  CAS  PubMed  Google Scholar 

  11. Cooper JM, Mann VM, Shapira AH. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci 1992; 98: 113–191.

    Google Scholar 

  12. Coggan AR, Spina RJ, Kings DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and ederly men and women. J Gerontol 1992; 47: B71–B76.

    CAS  PubMed  Google Scholar 

  13. Short KR, Bigelow ML, Kahl J et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005; 102: 5618–5623.

    Article  CAS  PubMed  Google Scholar 

  14. Simoneau JA, Colberg SR, Thaete FL, Kelley DE. Skeletal muscle glycolitic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J 1995; 9: 273-278.

    CAS  PubMed  Google Scholar 

  15. Mootha V, Lindgren CM, Eriksson KF et al. PGC-1alpha responsive genes involved in oxidative phosphorylation are co-ordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  16. Patti M, Butte A, Crunkhorn S et al. Coordinated reduction on genes of oxidative metabolism in humans with insulin resistance and diabetes: potential roles of PGC1 and NRF-1. Proc Natl Acad Sci USA 2003, 100: 8466–8471.

    Article  CAS  PubMed  Google Scholar 

  17. Rönn T, Poulsen P, Hansson O et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia 2008; 51: 1159–1168.

    Article  PubMed  Google Scholar 

  18. De Feo P, Di Loreto C, Ranchelli A et al. Physical inactivity is the main cause of the metabolic syndrome. In: Stocchi V, de Feo P, Hood DA (eds) Role of physical exercise in preventing disease and improving the quality of life. Milan: Springer 2007; 23–33.

    Chapter  Google Scholar 

  19. Dohm GL, Huston RL, Askew EW, Fleshood HL. Effects of exercise, training, and diet on muscle citric acid cycle enzyme activity. Can J Biochem 1973; 51: 849–854.

    Article  CAS  PubMed  Google Scholar 

  20. Holloszy JO, Oscai LB, Dohn IJ, Molé PA. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem Biophys Res Commun 1970; 40: 1368–1373.

    Article  CAS  PubMed  Google Scholar 

  21. Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well trained orienteers. Pfuegers Arch 1973; 344: 217–232.

    Article  CAS  Google Scholar 

  22. Coggan AR, Spina RJ, Kings DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol 1992; 72: 1780–1786.

    CAS  PubMed  Google Scholar 

  23. Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE. Large energetic adaptations of ederly muscle to resistance and endurance training. J Appl Physiol 2001; 90: 1663–1670.

    Article  CAS  Google Scholar 

  24. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61: 534–540.

    PubMed  Google Scholar 

  25. Toledo FGS, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, Kelley DE. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 2007; 56: 2142–2147.

    Article  CAS  PubMed  Google Scholar 

  26. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286: 1218–1227.

    Article  PubMed  Google Scholar 

  27. Thomas DE, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev 2006; (3): CD002968.

    CAS  PubMed  Google Scholar 

  28. Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J, Zimmet P. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 2002; 25: 1729–1736.

    Article  PubMed  Google Scholar 

  29. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, Roubenoff R, Tucker KL, Nelson ME. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care 2002; 25: 2335–2341.

    Article  PubMed  Google Scholar 

  30. Balducci S, Leonetti F, Di Mario U, Fallucca F. Is a long-term aerobic plus resistance training program feasible for and effective on metabolic profiles in type 2 diabetic patients? Diabetes Care 2004; 27: 841–842.

    Article  PubMed  Google Scholar 

  31. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P, Jennings A, Jaffey J. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007; 147: 357–369.

    PubMed  Google Scholar 

  32. Kraus WE, Levine BD. Exercise training for diabetes: the “strength” of the evidence. Ann Intern Med 2007; 147: 423–424.

    PubMed  Google Scholar 

  33. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 2006; 29: 1433–1438.

    Article  PubMed  Google Scholar 

  34. Di Loreto C, Fanelli C, Lucidi P, et al. Make your diabetic patients walk: long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care 2005; 28: 1295–1302.

    Article  PubMed  Google Scholar 

  35. Di Loreto C, Fanelli C, Lucidi P et al. Validation of a counseling strategy to promote the ­adoption and the maintenance of physical activity by type 2 diabetic subjects. Diabetes Care 2003; 26: 404–408.

    Article  PubMed  Google Scholar 

  36. De Feo P, Di Loreto C, Lucidi P, Murdolo G, Parlanti N, De Cicco A, Piccioni F, Santeusanio F. Metabolic response to exercise. J Endocrinol Invest 2003; 26: 851–854.

    PubMed  Google Scholar 

  37. Bajpeyi S, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Hickner RC, Kraus WE, Houmard JA. Effect of exercise intensity and volume on the persistence of insulin sensitivity during training cessation. J Appl Physiol 2009; 106: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  38. Kirk A, De Feo P. Strategies to enhance compliance to physical activity for patients with insulin resistance. Appl Physiol Nutr Metab 2007; 32: 549–556.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo de Feo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Feo, P. (2011). Physical Exercise, Sports, and Diabetes. In: Ghigo, E., Lanfranco, F., Strasburger, C. (eds) Hormone Use and Abuse by Athletes. Endocrine Updates, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7014-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7014-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7013-8

  • Online ISBN: 978-1-4419-7014-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics