Skip to main content

Sperm Mitochondrial DNA

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

Human mitochondrial DNA (mtDNA) is 16.6 kb in size and resides in the mitochondrion. It encodes 13 of the subunits of the electron transfer chain that generates the vast majority of cellular ATP through the process of oxidative phosphorylation (OXPHOS). The importance of OXPHOS to sperm motility and function has been controversial. However, we present a case for the importance of OXPHOS in sperm function based on the effects that pathogenic mtDNA mutations and deletions have on sperm motility and function and how they are descriptive of certain forms of male subfertility. We also describe patterns of inheritance for the mitochondrial genome and how the elimination of sperm mtDNA in mammals prevents the transmission of mutant/deleted mtDNA to subsequent generations but when there is leakage it leads to a severe phenotype. This is also portrayed in the light of how mtDNA copy is reduced during the later stages of spermatogenesis and how reduced mtDNA copy number in the mature spermatozoa is indicative of good-quality, not poor-quality spermatozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organisation of the human mitochondrial genome. Nature. 1981;290:457–65.

    PubMed  CAS  Google Scholar 

  2. Pfeiffer T, Schuster S, Bonhoeffer S, et al. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292:504–7.

    PubMed  CAS  Google Scholar 

  3. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–4.

    PubMed  CAS  Google Scholar 

  4. Clayton DA. Transcription and replication of animal mitochondrial DNAs. Int Rev Cyto. 1992;141:217–32.

    CAS  Google Scholar 

  5. Clayton DA. Replication of animal mitochondrial DNA. Cell. 1982;28:693–705.

    PubMed  CAS  Google Scholar 

  6. Kohnemann S, Pennekamp P, Schmidt PF, et al. qPCR and mtDNA SNP analysis of experimentally degraded hair samples and its application in forensic casework. Int J Legal Med. 2010;124:337–42.

    PubMed  Google Scholar 

  7. Gill P, Ivanov PL, Kimpton C, et al. Identification of the remains of the Romanov family by DNA analysis. Nat Genet. 1994;6:130–5.

    PubMed  CAS  Google Scholar 

  8. Brenner CA, Barritt JA, Willadsen S, et al. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril. 2000;74:573–8.

    PubMed  CAS  Google Scholar 

  9. Lloyd RE, Lee JH, Alberio R, et al. Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics. 2006;172:2515–27.

    PubMed  CAS  Google Scholar 

  10. Bowles EJ, Lee JH, Alberio R, et al. Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics. 2007;176:1511–26.

    PubMed  CAS  Google Scholar 

  11. Bowles EJ, Tecirlioglu RT, French AJ, et al. Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells. 2008;26:775–82.

    PubMed  CAS  Google Scholar 

  12. Moyes CD, Battersby BJ, Leary SC. Regulation of muscle mitochondrial design. J Exp Biol. 1998;201:299–307.

    CAS  Google Scholar 

  13. Lazarou M, Smith SM, Thorburn DR, et al. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J. 2009;276:6701–13.

    PubMed  CAS  Google Scholar 

  14. Birky Jr CW. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet. 2001;35:125–48.

    PubMed  CAS  Google Scholar 

  15. Birky Jr CW. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Nat Acad Sci USA. 1992;92:11331–8.

    Google Scholar 

  16. He Y, Wu J, Dressman DC, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature. 2010;464:610–4.

    PubMed  CAS  Google Scholar 

  17. Kobayashi Y, Momoi MY, Tominaga K, et al. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun. 1990;173:816–22.

    PubMed  CAS  Google Scholar 

  18. Fryer A, Appleton R, Sweeney MG, et al. Mitochondrial DNA 8993 (NARP) mutation presenting with a heterogeneous phenotype including “cerebral palsy”. Arch Dis Child. 1994;71:419–22.

    PubMed  CAS  Google Scholar 

  19. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–30.

    PubMed  CAS  Google Scholar 

  20. Shoffner JM, Lott MT, Lezza AM, et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61:931–7.

    PubMed  CAS  Google Scholar 

  21. Schon EA, Rizzuto R, Moraes CT, et al. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science. 1989;244:346–9.

    PubMed  CAS  Google Scholar 

  22. Melov S, Shoffner JM, Kaufman A, et al. Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res. 1995;23:4122–6.

    PubMed  CAS  Google Scholar 

  23. Yu-Wai-Man P, Griffiths PG, Hudson G, et al. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46:145–58.

    PubMed  CAS  Google Scholar 

  24. Chinnery PF, Andrews RM, Turnbull DM, et al. Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet. 2001;98:235–43.

    PubMed  CAS  Google Scholar 

  25. Boulet L, Karpati G, Shoubridge EA. Distribution and threshold expression of the tRNA (Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged red fibres (MERRF). Am J Hum Genet. 1992;51:1187–200.

    PubMed  CAS  Google Scholar 

  26. Sacconi S, Salviati L, Nishgaki Y, et al. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet. 2008;17:1814–20.

    PubMed  CAS  Google Scholar 

  27. Kirby DM, Rennie KJ, Smulders-Srinivasan TK, et al. Transmitochondrial embryonic stem cells ­containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif. 2009;42:413–24.

    PubMed  CAS  Google Scholar 

  28. Otani H, Tanaka O, Kasai K, et al. Development of mitochondrial helical sheath in the middle piece of the mouse spermatid tail: regular dispositions and synchronized changes. Anat Rec. 1988;222:26–33.

    PubMed  CAS  Google Scholar 

  29. Lee S, Kim S, Sun X, et al. Cell cycle-dependent mitochondrial biogenesis and dynamics in mammalian cells. Biochem Biophys Res Commun. 2007;357:111–7.

    PubMed  Google Scholar 

  30. de Sousa Lopes SM, Roelen BA. An overview on the diversity of cellular organelles during the germ cell cycle. Histol Histopathol. 2010;25:267–76.

    PubMed  Google Scholar 

  31. Sutovsky P, Tengowski MW, Navara CS, et al. Mitochondrial sheath movement and detachment in mammalian, but not nonmammalian, sperm induced by disulfide bond reduction. Mol Reprod Dev. 1997;47:79–86.

    PubMed  CAS  Google Scholar 

  32. Sinowatz F, Wrobel KH. Development of the bovine acrosome; an ultrastructural and cytochemical study. Cell Tissue Res. 1981;219:511–24.

    PubMed  CAS  Google Scholar 

  33. Storey BT. Energy metabolism of spermatozoa. IV. Effect of calcium on respiration of mature epididymal sperm of the rabbit. Biol Reprod. 1975;13:1–9.

    PubMed  CAS  Google Scholar 

  34. Storey BT. Effect of ionophores and inhibitors and uncouplers of oxidative phosphorylation on sperm respiration. Arch Androl. 1978;1:169–77.

    PubMed  CAS  Google Scholar 

  35. Storey BT. Strategy of oxidative metabolism in bull spermatozoa. J Exp Zool. 1980;212:61–7.

    PubMed  CAS  Google Scholar 

  36. Storey BT, Kayne FJ. Energy metabolism of spermatozoa. V. The Embden-Myerhof pathways of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa. Fertil Steril. 1975;26:1257–65.

    PubMed  CAS  Google Scholar 

  37. Storey BT, Kayne FJ. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biol Reprod. 1977;16:549–56.

    PubMed  CAS  Google Scholar 

  38. Storey BT, Kayne FT. Properties of pyruvate kinase and flagellar ATPase in rabbit spermatozoa: relation to metabolic strategy of the sperm cell. J Exp Zool. 1980;211:361–7.

    PubMed  CAS  Google Scholar 

  39. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44:493–8.

    PubMed  CAS  Google Scholar 

  40. St. John JC, Jokhi RP, Barratt CLR. The impact of mitochondrial genetics on male infertility. Int J Androl. 2005;28:65–73.

    PubMed  CAS  Google Scholar 

  41. Ruiz-Pesini E, Lapeña AC, Diez-Sanchez C, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet. 2000;67:682–96.

    PubMed  CAS  Google Scholar 

  42. Ruiz-Pesini E, Diez C, Lapena AC, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem. 1998;44:1616–20.

    PubMed  CAS  Google Scholar 

  43. Folgero T, Bertheussen K, Lindal S, et al. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8:1863–8.

    PubMed  CAS  Google Scholar 

  44. Miller FJ, Rosenfeldt FL, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31:e6.

    Google Scholar 

  45. He J, Mao CC, Reyes A, et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol. 2007;176:141–6.

    PubMed  CAS  Google Scholar 

  46. Amaral A, Ramalho-Santos J, St. John JC. The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod. 2007;22:1585–96.

    PubMed  CAS  Google Scholar 

  47. Piko L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol. 1987;123:364–74.

    PubMed  CAS  Google Scholar 

  48. Piko L, Matsumoto L. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol. 1976;49:1–10.

    PubMed  CAS  Google Scholar 

  49. Kucej M, Butow RA. Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol. 2007;17:586–92.

    PubMed  CAS  Google Scholar 

  50. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–35.

    PubMed  CAS  Google Scholar 

  51. Yasukawa T, Yang MY, Jacobs HT, et al. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell. 2005;18:651–62.

    PubMed  CAS  Google Scholar 

  52. Bogenhagen DF, Clayton DA. The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci. 2003;28:357–60.

    PubMed  CAS  Google Scholar 

  53. Holt IJ, Jacobs HT. Response: The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci. 2003;28:355–6.

    PubMed  CAS  Google Scholar 

  54. Yasukawa T, Reyes A, Cluett TJ. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006;25:5358–71.

    PubMed  CAS  Google Scholar 

  55. Walker RL, Anziano P, Meltzer PS. A PAC containing the human mitochondrial DNA polymerase gamma gene (POLG) maps to chromosome 15q25. Genomics. 1997;40:376–8.

    PubMed  CAS  Google Scholar 

  56. Gray H, Wong TW. Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem. 1992;267:5835–41.

    PubMed  CAS  Google Scholar 

  57. Graves SW, Johnson AA, Johnson KA. Expression, purification, and initial kinetic characterization of the large subunit of the human mitochondrial DNA polymerase. Biochem. 1998;37:6050–8.

    CAS  Google Scholar 

  58. Lim SE, Longley MJ, Copeland WC. The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem. 1999;274:38197–203.

    PubMed  CAS  Google Scholar 

  59. Longley MJ, Nguyen D, Kunkel TA, et al. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem. 2001;276:38555–62.

    PubMed  CAS  Google Scholar 

  60. Fan L, Sanschagrin PC, Kaguni LS, et al. The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Nat Acad Sci USA. 1999;96:9527–32.

    PubMed  CAS  Google Scholar 

  61. Cormier V, Rotig A, Tardieu M, et al. Autosomal dominant deletions of the mitochondrial genome in a case of progressive encephalomyopathy. Am J Hum Genet. 1991;48:643–8.

    PubMed  CAS  Google Scholar 

  62. Van Goethem G, Schwartz M, Lofgren A, et al. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet. 2003;11:547–9.

    PubMed  Google Scholar 

  63. Van Goethem G, Dermaut B, Lofgren A, et al. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet. 2001;28:211–2.

    PubMed  Google Scholar 

  64. Nowak R, Zub R, Skoneczna I, et al. CAG repeat polymorphism in the DNA polymerase γ gene in a Polish population: an association with testicular cancer risk. Ann Oncol. 2005;16:1211–2.

    PubMed  CAS  Google Scholar 

  65. Naviaux RK, Nguyen KV. POLG mutations associated with Alpers syndrome and mitochondrial DNA depletion. Ann Neurol. 2005;58:491.

    PubMed  Google Scholar 

  66. Naviaux RK. V. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann Neurol. 2004;55:706–12.

    PubMed  CAS  Google Scholar 

  67. Davidzon G, Mancuso M, Ferraris S, et al. POLG mutations and Alpers syndrome. Ann Neurol. 2005;57:921–3.

    PubMed  CAS  Google Scholar 

  68. Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet. 2004;364:875–82.

    PubMed  CAS  Google Scholar 

  69. Pagnamenta AT, Taanman JW, Wilson CJ, et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma. Hum Reprod. 2006;21:2467–73.

    PubMed  CAS  Google Scholar 

  70. Chowers M, Gottesman BS, Leibovici L, et al. Nucleoside reverse transcriptase inhibitors in combination therapy for HIV patients: systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2010;29:779–86.

    PubMed  CAS  Google Scholar 

  71. Ashley N, Harris D, Poulton J. Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp Cell Res. 2005;303:432–46.

    PubMed  CAS  Google Scholar 

  72. Dalakas MC, Semino-Mora C, Leon-Monzon M. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2’3’-dideoxycytidine (ddC). Lab Invest. 2001;81:1537–44.

    PubMed  CAS  Google Scholar 

  73. White DJ, Mital D, Taylor S, et al. Sperm mitochondrial DNA deletions as a consequence of long term highly active antiretroviral therapy. AIDS. 2001;15:1061–2.

    PubMed  CAS  Google Scholar 

  74. Ropp PA, Copeland WC. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics. 1996;36:449–58.

    PubMed  CAS  Google Scholar 

  75. Gottlieb B, Lombroso R, Beitel LK, et al. Molecular pathology of the androgen receptor in male (in)fertility. Reprod Biomed Online. 2005;10:42–8.

    PubMed  CAS  Google Scholar 

  76. Rovio AT, Marchington DR, Donat S, et al. Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nat Genet. 2001;29:261–2.

    PubMed  CAS  Google Scholar 

  77. Jensen M, Leffers H, Petersen JH, et al. Frequent polymorphism of the mitochondrial DNA polymerase gamma gene (POLG) in patients with normal spermiograms and unexplained subfertility. Hum Reprod. 2004;19:65–70.

    PubMed  Google Scholar 

  78. Krausz C, Guarducci E, Becherini L, et al. The clinical significance of the POLG gene polymorphism in male infertility. J Clin Endocrinol Metab. 2004;89:4292–7.

    PubMed  CAS  Google Scholar 

  79. Aknin-Seifer IE, Touraine RL, Lejeune H, et al. Is the CAG repeat of mitochondrial DNA polymerase gamma (POLG) associated with male infertility? A multi-centre French study. Hum Reprod. 2005;20:736–40.

    PubMed  CAS  Google Scholar 

  80. Brusco A, Michielotto C, Gatta V, et al. The polymorphic polyglutamine repeat in the mitochondrial DNA polymerase gamma gene is not associated with oligozoospermia. J Endocrinol Invest. 2006;29:1–4.

    PubMed  CAS  Google Scholar 

  81. Hance N, Ekstrand MI, Trifunovic A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet. 2005;14:1775–83.

    PubMed  CAS  Google Scholar 

  82. Harris TP, Gomas KP, Weir F. Molecular analysis of polymerase gamma gene and mitochondrial polymorphism in fertile and subfertile men. Int J Androl. 2006;29:421–33.

    PubMed  CAS  Google Scholar 

  83. Parisi MA, Clayton DA. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science. 1991;252:965–9.

    PubMed  CAS  Google Scholar 

  84. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18:231–6.

    PubMed  CAS  Google Scholar 

  85. Seidel-Rogol BL, Shadel GS. Modulation of mitochondrial transcription in response to mtDNA depletion and repletion in HeLa cells. Nucleic Acids Res. 2002;30:1929–34.

    PubMed  CAS  Google Scholar 

  86. Gensler S, Weber K, Schmitt WE, et al. Mechanism of mammalian mitochondrial DNA replication: import of mitochondrial transcription factor A into isolated mitochondria stimulates 7S DNA synthesis. Nucl Acids Res. 2001;29:3657–63.

    PubMed  CAS  Google Scholar 

  87. Dairaghi DJ, Shadel GS, Clayton DA. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol. 1995;249:11–28.

    PubMed  CAS  Google Scholar 

  88. Kaufman BA, Durisic N, Mativetsky JM, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell. 2007;18:3225–36.

    PubMed  CAS  Google Scholar 

  89. Falkenberg M, Gaspari M, Rantanen A, et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet. 2002;31:289–94.

    PubMed  CAS  Google Scholar 

  90. Evans MJ, Scarpulla RC. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J Biol Chem. 1989;264:14361–8.

    PubMed  CAS  Google Scholar 

  91. Virbasius CA, Virbasius JV, Scarpulla RC. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 1993;7:2431–45.

    PubMed  CAS  Google Scholar 

  92. Choi YS, Lee HK, Pak YK. Characterization of the 5’-flanking region of the rat gene for mitochondrial transcription factor A (Tfam). Biochim et Biophys Acta. 2002;1574:200–4.

    CAS  Google Scholar 

  93. Smith LC, Alcivar AA. Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil Suppl. 1993;48:31–43.

    PubMed  CAS  Google Scholar 

  94. Hecht NB, Liem H. Mitochondrial DNA is synthesized during meiosis and spermiogenesis in the mouse. Exp Cell Res. 1984;154:293–8.

    PubMed  CAS  Google Scholar 

  95. Larsson NG, Garman JD, Oldfors A, et al. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box ­protein. Nat Genet. 1996;13:296–302.

    PubMed  CAS  Google Scholar 

  96. Larsson NG, Oldfors A, Garman JD, et al. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum Mol Genet. 1997;6:185–91.

    PubMed  CAS  Google Scholar 

  97. May-Panloup P, Chretien MF, Savagner F, et al. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod. 2003;18:550–6.

    PubMed  CAS  Google Scholar 

  98. Kao SH, Chao HT, Liu HW, et al. Sperm mitochondrial DNA depletion in men with asthenospermia. Fertil Steril. 2004;82:66–73.

    PubMed  CAS  Google Scholar 

  99. Shitara H, Hayashi JI, Takahama S, et al. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics. 1998;148:851–7.

    PubMed  CAS  Google Scholar 

  100. Gyllensten U, Wharton D, Josefsson A, et al. Paternal inheritance of mitochondrial DNA in mice. Nature. 1991;352:255–67.

    PubMed  CAS  Google Scholar 

  101. Zhao X, Li N, Guo W. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity. 2004;93:399–403.

    PubMed  CAS  Google Scholar 

  102. St. John JC, Schatten G. Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics. 2004;167:897–905.

    PubMed  CAS  Google Scholar 

  103. Sutovsky P, Moreno RD, Ramalho-Santos J, et al. Ubiquitin tag for sperm mitochondria. Nature. 1999;402:371–2.

    PubMed  CAS  Google Scholar 

  104. Sutovsky P, Navara CS, Schatten G. Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization. Biol Reprod. 1996;55:1195–205.

    PubMed  CAS  Google Scholar 

  105. Kaneda H, Hayashi JI, Takahama S, et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Nat Acad Sci USA. 1995;92:4542–6.

    PubMed  CAS  Google Scholar 

  106. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    PubMed  CAS  Google Scholar 

  107. Sutovsky P, Moreno R, Ramalho-Santos J, et al. Putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci. 2001;114:1665–75.

    PubMed  CAS  Google Scholar 

  108. Nishimura Y, Yoshinari T, Naruse K, et al. Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc Nat Acad Sci USA. 2006;103:1382–7.

    PubMed  CAS  Google Scholar 

  109. May-Panloup P, Vignon X, Chretien MF, et al. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol. 2005;3:65–72.

    PubMed  Google Scholar 

  110. Spikings EC, Alderson J. St John JC. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod. 2007;76:327–35.

    PubMed  CAS  Google Scholar 

  111. Kondo R, Matsuura ET, Chigusa SI. Further observation of paternal transmission of Drosophila ­mitochondrial DNA by PCR selective amplification method. Genet Res. 1992;59:81–4.

    PubMed  CAS  Google Scholar 

  112. Fisher C, Skibinski DOF. Sex-biased mitochondrial DNA heteroplasmy in the marine mussel Mytilus. Proc Royal Soc Lond B. 1990;242:149–56.

    Google Scholar 

  113. Hoeh WM, Blakley KH, Brown WM. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science. 1991;251:1488–90.

    PubMed  CAS  Google Scholar 

  114. St. John J, Sakkas D, Dimitriadi K, et al. Abnormal human embryos show a failure to eliminate paternal mitochondrial DNA. Lancet. 2000;355:200.

    PubMed  CAS  Google Scholar 

  115. Kraytsberg Y, Schwartz M, Brown TA, et al. Recombination of human mitochondrial DNA. Science. 2004;304:981.

    PubMed  CAS  Google Scholar 

  116. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Eng J Med. 2002;347:576–80.

    Google Scholar 

  117. Cummins JM, Jequier AM, Kan R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Reprod Dev. 1994;37:345–62.

    PubMed  CAS  Google Scholar 

  118. Spiropoulos J, Turnbull DM, Chinnery PF. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod. 2002;8:719–21.

    PubMed  CAS  Google Scholar 

  119. Kao SH, Chao HT, Wei YH. Mitochondrial deoxyribnucleic acid 4977 bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 1995;52:729–36.

    PubMed  CAS  Google Scholar 

  120. Cummins JM, Jequier AM, Martin R, et al. Semen levels of mitochondrial DNA deletions in men attending an infertility clinic do not correlate with phenotype. Int J Androl. 1998;21:47–52.

    PubMed  CAS  Google Scholar 

  121. St. John JC, Jokhi RP, Barratt CL. Men with oligoasthenoteratozoospermia harbour higher numbers of multiple mitochondrial DNA deletions in their spermatozoa, but individual deletions are not indicative of overall aetiology. Mol Hum Reprod. 2001;7:103–11.

    Google Scholar 

  122. Kao SH, Chao HT, Wei YH. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod. 1998;4:657–66.

    PubMed  CAS  Google Scholar 

  123. Lestienne P, Reynier P, Chretien MF, et al. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997;3:811–4.

    PubMed  CAS  Google Scholar 

  124. Reynier P, Chretien MF, Savagner F, et al. Long PCR analysis of human gamete mtDNA suggests defective mitochondrial maintenance in spermatozoa and supports the bottleneck theory for oocytes. Biochem Biophys Res Comm. 1998;252:373–7.

    PubMed  CAS  Google Scholar 

  125. Quigley A, Reardon K, Kapsa R, et al. A novel ­clinical phenotype of myopathy, sensorimotor ­neuropathy, infertility, and hypogonadism with ­multiple mitochondrial DNA deletions. J Clin Neuromuscul Dis. 2001;3:77–82.

    PubMed  CAS  Google Scholar 

  126. Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta. 1995;1271:177–89.

    PubMed  Google Scholar 

  127. St. John JC, Sakkas D, Barratt CLR. A role for mitochondrial DNA in sperm survival. J Androl. 2000;21:189–99.

    PubMed  CAS  Google Scholar 

  128. Agbaje IM, McVicar CM, Schock BC, et al. Increased concentrations of the oxidative DNA adduct 7,8-dihydro-8-oxo-2-deoxyguanosine in the germ-line of men with type 1 diabetes. Reprod Biomed Online. 2008;16:401–9.

    PubMed  CAS  Google Scholar 

  129. Kumar R, Venkatesh S, Kumar M, et al. Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian J Biochem Biophys. 2009;46:172–7.

    PubMed  CAS  Google Scholar 

  130. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA. 1997;94:514–9.

    PubMed  CAS  Google Scholar 

  131. Dunbar DR, Moonie PA, Jacobs HT, Holt IJ. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci USA. 1995;92:6562–6.

    PubMed  CAS  Google Scholar 

  132. Wallace DC. Mitochondrial DNA variation in human evolution, degenerative disease, and aging. Am J Hum Genet. 1995;57:201–23.

    PubMed  CAS  Google Scholar 

  133. El Shourbagy SH, Spikings EC, Freitas M, et al. Mitochondria directly influence fertilisation outcome in the pig. Reproduction. 2006;131:233–45.

    PubMed  Google Scholar 

  134. Sutarno, Cummins JM, Greeff J, Lymbery AJ. Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology. 2002;57:1603–10.

    Google Scholar 

  135. Schutz MM, Vanraden PM, Wiggans GR. Genetic variation in lactation means of somatic cell scores for six breeds of dairy cattle. J Dairy Sci. 1994;77:284–93.

    PubMed  CAS  Google Scholar 

  136. Nagao Y, Totsuka Y, Atomi Y, et al. Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet Syst. 1998;73:21–7.

    PubMed  CAS  Google Scholar 

  137. Montiel-Sosa F, Ruiz-Pesini E, Enriquez JA, et al. Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene. 2006;368:21–7.

    PubMed  CAS  Google Scholar 

  138. Pereira L, Goncalves J, Goios A, et al. Human mtDNA haplogroups and reduced male fertility: real association or hidden population substructuring. Int J Androl. 2005;28:241–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. St. John MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

John, J.C.S., John, B.S. (2011). Sperm Mitochondrial DNA. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics