Skip to main content

Chromosome Positioning in Spermatozoa

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

Similar to interphase chromosomes, mammalian supercompact and genetically inactive sperm chromatin is arranged in non-overlapping chromosome territories. Recent works demonstrate that chromosome territories in sperm have defined and nonrandom intranuclear positioning. It is hypothesized that preferred localization of chromosomes in sperm together with well-organized chromosome architecture provide epigenetic signature to genome, which might be important at fertilization and early development. Here, we describe relevant experimental data with primary attention to the studies related to human spermatozoa. Possible implications of sperm chromosome positioning for modern reproductive technologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cremer T, Kurz A, Zirbel R, et al. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol. 1993;58:777–92.

    PubMed  CAS  Google Scholar 

  2. Ramirez MJ, Surralles J. Laser confocal microscopy analysis of human interphase nuclei by three-­dimensional FISH reveals dynamic perinucleolar clustering of telomeres. Cytogenet Genome Res. 2008;122(3–4):237–42.

    PubMed  CAS  Google Scholar 

  3. Bolzer A, Kreth G, Solovei I, et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005;3(5):e157.

    Article  PubMed  Google Scholar 

  4. Cremer T, Kupper K, Dietzel S, Fakan S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell. 2004;96(8):555–67.

    Article  PubMed  CAS  Google Scholar 

  5. Fedorova E, Zink D. Nuclear genome organization: common themes and individual patterns. Curr Opin Genet Dev. 2009;19(2):166–71.

    Article  PubMed  CAS  Google Scholar 

  6. Misteli T. Spatial positioning; a new dimension in genome function. Cell. 2004;119(2):153–6.

    Article  PubMed  CAS  Google Scholar 

  7. Verschure PJ. Positioning the genome within the nucleus. Biol Cell. 2004;96(8):569–77.

    Article  PubMed  CAS  Google Scholar 

  8. Parada LA, Roix JJ, Misteli T. An uncertainty principle in chromosome positioning. Trends Cell Biol. 2003;13(8):393–6.

    Article  PubMed  CAS  Google Scholar 

  9. Bickmore WA, Chubb JR. Dispatch. Chromosome position: now, where was I? Curr Biol. 2003;13(9):R357–9.

    Article  PubMed  CAS  Google Scholar 

  10. Sun HB, Shen J, Yokota H. Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J. 2000;79(1):184–90.

    Article  PubMed  CAS  Google Scholar 

  11. Takizawa T, Meaburn KJ, Misteli T. The meaning of gene positioning. Cell. 2008;135(1):9–13.

    Article  PubMed  CAS  Google Scholar 

  12. Elcock LS, Bridger JM. Exploring the relationship between interphase gene positioning, transcriptional regulation and the nuclear matrix. Biochem Soc Trans. 2010;38(Pt 1):263–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007;8(2):104–15.

    Article  PubMed  CAS  Google Scholar 

  14. Kumaran RI, Thakar R, Spector DL. Chromatin dynamics and gene positioning. Cell. 2008;132(6):929–34.

    Article  PubMed  CAS  Google Scholar 

  15. Cook PR, Marenduzzo D. Entropic organization of interphase chromosomes. J Cell Biol. 2009;186(6):825–34.

    Article  PubMed  CAS  Google Scholar 

  16. Sengupta K, Camps J, Mathews P, et al. Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization. Chromosoma. 2008;117(5):499–509.

    Article  PubMed  CAS  Google Scholar 

  17. Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J Cell Biol. 2007;176(5):593–603.

    Article  PubMed  CAS  Google Scholar 

  18. Bridger JM, Foeger N, Kill IR, Herrmann H. The nuclear lamina. Both a structural framework and a platform for genome organization. FEBS J. 2007;274(6):1354–61.

    Article  PubMed  CAS  Google Scholar 

  19. Zalensky A, Zalenskaya I. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans. 2007;35 (Pt 3):609–11.

    Article  PubMed  CAS  Google Scholar 

  20. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6(10):782–92.

    Article  PubMed  CAS  Google Scholar 

  21. Dernburg AF, Sedat JW. Mapping three-dimensional chromosome architecture in situ. Methods Cell Biol. 1998;53:187–233.

    Article  PubMed  CAS  Google Scholar 

  22. Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007;447(7143):413–7.

    Article  PubMed  CAS  Google Scholar 

  23. Walter J, Joffe B, Bolzer A, et al. Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res. 2006;114(3–4):367–78.

    Article  PubMed  CAS  Google Scholar 

  24. Hepperger C, Otten S, von Hase J, Dietzel S. Preservation of large-scale chromatin structure in FISH experiments. Chromosoma. 2007;116(2):117–33.

    Article  PubMed  CAS  Google Scholar 

  25. Goetze S, Mateos-Langerak J, Gierman HJ, et al. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol. 2007;27(12):4475–87.

    Article  PubMed  CAS  Google Scholar 

  26. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    Article  PubMed  Google Scholar 

  27. Hazzouri M, Rousseaux S, Mongelard F, et al. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev. 2000;55(3):307–15.

    Article  PubMed  CAS  Google Scholar 

  28. Zalensky AO, Breneman JW, Zalenskaya IA, Brinkley BR, Bradbury EM. Organization of centromeres in the decondensed nuclei of mature human sperm. Chromosoma. 1993;102(8):509–18.

    Article  PubMed  CAS  Google Scholar 

  29. Wyrobek AJ, Alhborn T, Balhorn R, Stanker L, Pinkel D. Fluorescence in situ hybridization to Y chromosomes in decondensed human sperm nuclei. Mol Reprod Dev. 1990;27(3):200–8.

    Article  PubMed  CAS  Google Scholar 

  30. Pinkel D, Landegent J, Collins C, et al. Fluorescence in situ hybridization with human chromosome-­specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA. 1988;85(23):9138–42.

    Article  PubMed  CAS  Google Scholar 

  31. Sun HB, Yokota H. Correlated positioning of homologous chromosomes in daughter fibroblast cells. Chromosome Res. 1999;7(8):603–10.

    Article  PubMed  CAS  Google Scholar 

  32. Foster HA, Abeydeera LR, Griffin DK, Bridger JM. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci. 2005;118(Pt 9):1811–20.

    Article  PubMed  CAS  Google Scholar 

  33. Koehler D, Zakhartchenko V, Froenicke L, et al. Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res. 2009;315(12):2053–63.

    Article  PubMed  CAS  Google Scholar 

  34. Kupper K, Kolbl A, Biener D, et al. Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma. 2007;116(3):285–306.

    Article  PubMed  Google Scholar 

  35. Sbracia M, Baldi M, Cao D, et al. Preferential location of sex chromosomes, their aneuploidy in human sperm, and their role in determining sex chromosome aneuploidy in embryos after ICSI. Hum Reprod. 2002;17(2):320–4.

    Article  PubMed  CAS  Google Scholar 

  36. Zalenskaya IA, Zalensky AO. Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res. 2004;12(2):163–73.

    Article  PubMed  CAS  Google Scholar 

  37. Mudrak O, Tomilin N, Zalensky A. Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci. 2005;118(Pt 19):4541–50.

    Article  PubMed  CAS  Google Scholar 

  38. Wiland E, Zegalo M, Kurpisz M. Interindividual differences and alterations in the topology of chromosomes in human sperm nuclei of fertile donors and carriers of reciprocal translocations. Chromosome Res. 2008;16(2):291–305.

    Article  PubMed  CAS  Google Scholar 

  39. Finch KA, Fonseka KG, Abogrein A, et al. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod. 2008;23(6):1263–70.

    Article  PubMed  CAS  Google Scholar 

  40. Manvelyan M, Hunstig F, Bhatt S, et al. Chromosome distribution in human sperm – a 3D multicolor banding-study. Mol Cytogenet. 2008;1:25.

    Article  PubMed  Google Scholar 

  41. Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1 Suppl):25–30.

    Article  PubMed  Google Scholar 

  42. Gue M, Sun JS, Boudier T. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited. BMC Cancer. 2006;6:20.

    Article  PubMed  Google Scholar 

  43. Iannuccelli E, Mompart F, Gellin J, Lahbib-Mansais Y, Yerle M, Boudier T. NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments. Bioinformatics. 2010;26(5):696–7.

    Article  PubMed  CAS  Google Scholar 

  44. Geraedts JP, Pearson PL. Spatial distribution of chromosomes 1 and Y in human spermatozoa. J Reprod Fertil. 1975;45(3):515–7.

    Article  PubMed  CAS  Google Scholar 

  45. Luetjens CM, Payne C, Schatten G. Non-random chromosome positioning in human sperm and sex chromosome anomalies following intracytoplasmic sperm injection. Lancet. 1999;353(9160):1240.

    Article  PubMed  CAS  Google Scholar 

  46. Greaves IK, Rens W, Ferguson-Smith MA, Griffin D, Marshall Graves JA. Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res. 2003;11(5):503–12.

    Article  PubMed  CAS  Google Scholar 

  47. Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma. 1995;103(9):577–90.

    Article  PubMed  CAS  Google Scholar 

  48. Gurevitch M, Amiel A, Ben-Zion M, Fejgin M, Bartoov B. Acrocentric centromere organization within the chromocenter of the human sperm nucleus. Mol Reprod Dev. 2001;60(4):507–16.

    Article  PubMed  CAS  Google Scholar 

  49. Watson JM, Meyne J, Graves JA. Ordered tandem arrangement of chromosomes in the sperm heads of monotreme mammals. Proc Natl Acad Sci USA. 1996;93(19):10200–5.

    Article  PubMed  CAS  Google Scholar 

  50. Greaves IK, Svartman M, Wakefield M, et al. Chromosomal painting detects non-random chromosome arrangement in dasyurid marsupial sperm. Chromosome Res. 2001;9(3):251–9.

    Article  PubMed  CAS  Google Scholar 

  51. Meyer-Ficca M, Muller-Navia J, Scherthan H. Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci. 1998;111(Pt 10):1363–70.

    PubMed  CAS  Google Scholar 

  52. Garagna S, Zuccotti M, Thornhill A, et al. Alteration of nuclear architecture in male germ cells of chromosomally derived subfertile mice. J Cell Sci. 2001;114(Pt 24):4429–34.

    PubMed  CAS  Google Scholar 

  53. Borden J, Manuelidis L. Movement of the X chromosome in epilepsy. Science. 1988;242(4886):1687–91.

    Article  PubMed  CAS  Google Scholar 

  54. Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T. Spatial genome organization during T-cell differentiation. Cytogenet Genome Res. 2004;105(2–4):292–301.

    Article  PubMed  CAS  Google Scholar 

  55. Morey C, Da Silva NR, Perry P, Bickmore WA. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development. 2007;134(5):909–19.

    Article  PubMed  CAS  Google Scholar 

  56. Bartova E, Kozubek S. Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell. 2006;98(6):323–36.

    Article  PubMed  CAS  Google Scholar 

  57. Zalensky AO. Genome architecture. In: Verma RS, editor. Advances in genome biology, vol. 24. London: JAI Press; 1998. p. 179–210.

    Google Scholar 

  58. Scherthan H. A bouquet makes ends meet. Nat Rev Mol Cell Biol. 2001;2(8):621–7.

    Article  PubMed  CAS  Google Scholar 

  59. Scherthan H, Wang H, Adelfalk C, et al. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2007;104(43):16934–9.

    Article  PubMed  CAS  Google Scholar 

  60. Zalenskaya IA, Bradbury EM, Zalensky AO. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun. 2000;279(1):213–8.

    Article  PubMed  CAS  Google Scholar 

  61. Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz RL, Bradbury EM. Telomere-telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp Cell Res. 1997;232(1):29–41.

    Article  PubMed  CAS  Google Scholar 

  62. Armstrong SJ, Kirkham AJ, Hulten MA. XY chromosome behaviour in the germ-line of the human male: a FISH analysis of spatial orientation, chromatin condensation and pairing. Chromosome Res. 1994;2(6):445–52.

    Article  PubMed  CAS  Google Scholar 

  63. Parada LA, McQueen PG, Misteli T. Tissue-specific spatial organization of genomes. Genome Biol. 2004;5(7):R44.

    Article  PubMed  Google Scholar 

  64. Parada LA, Sotiriou S, Misteli T. Spatial genome organization. Exp Cell Res. 2004;296(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  65. Mehta IS, Elcock LS, Amira M, Kill IR, Bridger JM. Nuclear motors and nuclear structures containing A-type lamins and emerin: is there a functional link? Biochem Soc Trans. 2008;36(Pt 6):1384–8.

    Article  PubMed  CAS  Google Scholar 

  66. Mudrak O, Zalensky A. Genome architecture in human sperm cells: possible implications for male infertility. In: Kruger TF, Oehninger S, editors. Diagnosis and treatment of male infertility. Informa Healthcare; 2006.

    Google Scholar 

  67. Olszewska M, Wiland E, Kurpisz M. Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy. Chromosome Res. 2008;16(6):875–90.

    Article  PubMed  CAS  Google Scholar 

  68. McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125(5):625–33.

    Article  PubMed  CAS  Google Scholar 

  69. Adenot PG, Szollosi MS, Geze M, Renard JP, Debey P. Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization. Mol Reprod Dev. 1991;28(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  70. Cavalli G. Chromosome kissing. Curr Opin Genet Dev. 2007;17(5):443–50.

    Article  PubMed  CAS  Google Scholar 

  71. Tilgen N, Guttenbach M, Schmid M. Heterochromatin is not an adequate explanation for close proximity of interphase chromosomes 1–Y, 9–Y, and 16–Y in human spermatozoa. Exp Cell Res. 2001;265(2):283–7.

    Article  PubMed  CAS  Google Scholar 

  72. Bedford JM. The co evolution of mammalian gametes. In: Dunbar BS, O’Rand MG, editors. A comparative overview of mammalian fertilization. New York: Plenum; 1991. p. 3–28.

    Google Scholar 

  73. Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2006;75(3):442–51.

    Article  PubMed  CAS  Google Scholar 

  74. Palermo GD, Neri QV, Takeuchi T, Rosenwaks Z. ICSI: where we have been and where we are going. Semin Reprod Med. 2009;27(2):191–201.

    Article  PubMed  Google Scholar 

  75. Sutovsky P, Hewitson L, Simerly CR, et al. Intracytoplasmic sperm injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly. Hum Reprod. 1996;11(8):1703–12.

    PubMed  CAS  Google Scholar 

  76. Hewitson L, Dominko T, Takahashi D, et al. Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys. Nat Med. 1999;5(4):431–3.

    Article  PubMed  CAS  Google Scholar 

  77. Ramalho-Santos J, Sutovsky P, Simerly C, et al. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum Reprod. 2000;15(12):2610–20.

    Article  PubMed  CAS  Google Scholar 

  78. Katayama M, Koshida M, Miyake M. Fate of the acrosome in ooplasm in pigs after IVF and ICSI. Hum Reprod. 2002;17(10):2657–64.

    Article  PubMed  CAS  Google Scholar 

  79. Terada Y, Luetjens CM, Sutovsky P, Schatten G. Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril. 2000;74(3):454–60.

    Article  PubMed  CAS  Google Scholar 

  80. Jones EL, Mudrak O, Zalensky AO. Kinetics of human male pronuclear development in a heterologous ICSI model. J Assist Reprod Genet. 2010;27(6):277–83.

    Article  PubMed  Google Scholar 

  81. In’t Veld PA, van Opstal D, Van den Berg C, et al. Increased incidence of cytogenetic abnormalities in chorionic villus samples from pregnancies established by in vitro fertilization and embryo transfer (IVF-ET). Prenat Diagn. 1995;15(10):975–80.

    Article  PubMed  Google Scholar 

  82. Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma. 2005;114(4):212–29.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Jones Foundation grant, and in part by National Institutes of Health Grant HD-042748 to A. Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Zalensky PhD, DSci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zalensky, A., Mudrak, O., Zalenskaya, I. (2011). Chromosome Positioning in Spermatozoa. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics